Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Fincato, Riccardo (2013) 3D nonlinear coupled modelling of geomaterials using the unconventional Subloading Surface approach. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Ph.D. Thesis) - Altro
17Mb

Abstract (inglese)

The purpose of the work presented in this thesis is aimed to investigate the nonlinear behaviour of porous media, in detail soils, by means of an unconventional plasticity model named subloading surface.
The main feature of this model is the abolition of the neat distinction between elastic and plastic domains by assuming that plastic deformations occur whenever a change in the stress state is induced. Inside the conventional yield surface a new surface is create by means of a similarity transformation. This new surface, named subloading surface, expands or contracts depending on the stress evolution, leading to a gradual and smooth development of permanent deformations in the granular material.
Besides the more realistic answer of the simulations this theory allows a simpler numerical computation without the recourse of special techniques to define if the stress lies or not on the yield surface. In fact the subloading surface is such to pass always to the current stress point assuming the role of driving and measuring how the stress evolves in the analysis.
Many unconventional plasticity models can be found in literature but, except for the present, they all show some defects which may be relevant in cyclic plastic analyses where the accumulation of errors can produce a significant mistake in the forecast of the simulations.
As it will be shown in the following chapters the simple subloading surface model and the extended subloading surface one have been implemented in a fully coupled hydro-(thermo)-mechanical three dimensional F.E. research code, PLASCON 3D, in several scenarios dealing with: consolidation problems, subsidence at regional scale, numerical triaxial tests, tensile strength for particular soils and finally cyclic plasticity investigations. All the results show a good accordance with experimental data proving the reliability both of the theoretical model and of its implementation in the F.E. code

Abstract (italiano)

Lo scopo di questo elaborato è quello di analizzare il comportamento non lineare di mezzi porosi, nel dettaglio terreni, tramite un modello di plasticità non convenzionale chiamato subloading surface.
La principale caratteristica di questo modello è l’abolizione della distinzione in un dominio elastico ed uno plastico assumendo che le deformazioni plastiche si producano ogni qualvolta venga introdotta una variazione nello stato tensionale nel materiale. All’interno della superficie plastica convenzionale si crea una nuova superficie tramite una trasformazione di similitudine. Questa nuova superficie, chiamata subloading surface, si espande o si contrae a seconda dell’evoluzione dello stato di stress, producendo un graduale e regolare sviluppo delle deformazioni plastiche nei materiali.
Al di là della risposta più realistica del modello nelle simulazioni, questa teoria permette un calcolo numerico “più snello” senza dover ricorrere a speciali tecniche numeriche per verificare se lo stress giaccia o meno sulla superficie plastica ed eventualmente riportarlo su di essa. Infatti la superficie di subloading è costruita in modo tale da passare sempre per il punto di stress attuale assumendo il ruolo di guidare e misurare come lo stato tensionale evolva nelle analisi.
In letteratura si trovano numerosi esempi di modelli plastici non convenzionali ma, ad eccezione del presente, tutti mostrano qualche lacuna che può risultare rilevante in analisi cicliche dove l’accumulo di errori è in grado di produrre uno scostamento notevole dalla risposta reale.
Come verrà mostrato nei capitoli successivi il modello simple subloading surface e quello extended subloading surface sono stati implementati in un codice di ricerca igro-(termo-)meccanico pienamente accoppiato, chiamato PLASCON 3D, per simulare diversi scenari: problemi di consolidazione, prove triassiali, resistenza a trazione per alcune tipologie di terreni ed infine per analisi di plasticità con carichi ciclici. Tutti i risultati ottenuti mostrano una buona capacità di riprodurre dati sperimentali provando l’affidabilità sia del modello teorico che della sua implementazione nel codice ad elementi finiti

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Salomoni, Valentina - Majorana, Carmelo
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE,
Data di deposito della tesi:28 Gennaio 2013
Anno di Pubblicazione:28 Gennaio 2013
Parole chiave (italiano / inglese):unconventional plasticity, subloading surface, geomaterials, nonlinear modelling
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/08 Scienza delle costruzioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:5567
Depositato il:15 Ott 2013 09:41
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

AGIP. Progetto Alto Adriatico – Studio di impatto ambientale. AGIP, San Donato, Italy, 1996 (in Italian). Cerca con Google

Alonso E.E., Gens A., Josa A., (1990), “A constitutive model for partially saturated soils”, Geotechnique, 40(3), pp. 405-430. Cerca con Google

Baggio P., Majorana C.E., Schrefler B.A., (1995), “Thermo-hygro-mechanical analysis of concrete”, Int. J. Num. Meth. Fluids, 20, pp. 573-595. Cerca con Google

Baù D., Gambolati G., Teatini P., (2000), “Residual land subsidence near abandoned gas fields raises concern over Northern Adriatic coastland”, Eos, 81(22), pp. 245-249. Cerca con Google

Bažant Z.P., Baweja S., (2000), “Creep and shrinkage prediction model for analysis and deign of concrete structures: Model B3”, in Adam Neville Sym.: Creep and Shrinkage – Structural Design Effects, ACI SP – 194, pp. 1-83. Cerca con Google

Bažant Z.P. (Editor), (1988), “Mathematical Modelling of creep and shrinkage of concrete”, J. Wiley & Sons, NY, USA. Cerca con Google

Bažant Z.P., Cedolin L., (1991), “Stability of Structures”. Oxford University Press: NY. Cerca con Google

Bažant Z.P., Thonguthai W., (1979), “Pore pressure in heated concrete walls: theoretical predictions”, Mag. Con. Res., 31(107), pp. 67-76. Cerca con Google

Befi M., (1993), “Modelli tridimensionali per l’analisi termomeccanica di geomateriali”, graduation thesis, Department of Civil, Environmental and Architectural Engineering, University of Padua, pp. 271, (Italian). Cerca con Google

Biot M.A., (1941a), "General theory of three-dimensional consolidation", J. Appl. Phys., 12, pp. 155-64. Cerca con Google

Biot M.A., (1941a), "General theory of three-dimensional consolidation", J. Appl. Phys., 12, pp. 155-64. Cerca con Google

Biot M.A., (1941b), "Consolidation settlement under a rectangular load", J. Appl. Phys., 12, pp. 426-30. Cerca con Google

Biot M.A., (1955), "Theory of elasticity and consolidation for a porous anisotropic solid", J. Appl. Phys., 26, pp. 182-85. Cerca con Google

Biot M.A., (1955), "Theory of elasticity and consolidation for a porous anisotropic solid", J. Appl. Phys., 26, pp. 182-85. Cerca con Google

Biot M.A., (1956a), "General solution of the equation of elasticity and consolidation for a porous material", J. Appl. Mech., 23, pp. 91-96. Cerca con Google

Biot M.A., (1956b), "Theory of deformation of a porous viscoelastic anisotropic solid", J. Appl. Phys., 27, pp. 459-67. Cerca con Google

Biot M.A., (1963), "Theory of stability and consolidation of a porous medium under initial stress", J. Math. Mech., 12, pp. 521-41. Cerca con Google

Bishop A.V.,(1959), “The principle of effective stress“. Teknisk Ukeblad, 106(39): 859-863. Cerca con Google

Bishop A.W., Webb D.L., Lewin P.I., (1965), “Undisturbed samples of London clay from the Ashford Common shaft: strength-effective stress relationships”, Geotecnique, 15, pp. 1-31. Cerca con Google

Buckley S.E., Leverett M.C., (1942), “Mechanisms of fluid displacements in sands”, Trans. AIME, 146, pp. 108-116 Cerca con Google

Carbognin L., Gatto P., Mozzi G., Gambolati G., (1978), “Land subsidence of Ravenna and its similarities with the Venice case”. In: SK Saxena (Ed.), Evaluation and Prediction of Subsidence. ASCE: NY, USA, pp. 254-266. Cerca con Google

Chin L.Y., Nagel N.B., (2004), “Modeling of Subsidence and Reservoir Compaction under Waterflood Operations”, International Journal of Geomechanics, 4(1), pp. 28-34. Cerca con Google

Collin F., Cui Y.J., Schroeder C., Charlier R., (2003), “Mechanical behaviour of chalk reservoir: Numerical modeling of water sensitivity and time dependence effects”, Proceedings ISRM 2003-Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy, pp. 219-224. Cerca con Google

Collins R.E., (1961), “ Flow of Fluids Trough Porous Materials”, Reinhold, New York. Cerca con Google

Comerlati A., Ferronato M., Gambolati G., Putti M., Teatini P., (2003), “Fluid-dynamic and geomechanical effects of CO2 sequestration below the Venice Lagoon”, Environmental and Engineering Geoscience, XII(3), pp. 211-226. Cerca con Google

Corapcioglu M.Y., (1984) “Land subsidence – a state of art review” in Fundamentals of Trasport Phenomena in Porous Media, ed J. Bear and M.Y. Corapcioglu, Nato A.S.I. Series, E 82, Nijhoff, Dordrecht, pp. 369-444. Cerca con Google

Corey A.T., (1954), “The interrelation between gas and oil relative permeabilities”, Producers Monthly, 19, 38-41. Cerca con Google

Craft B.C., Hawkins M.F., (1969), “Applied petroleum reservoir engineering”, Prentice-Hall, Eglewood Cliffs. Cerca con Google

Crichlow H.B., (1977), “modern Reservoir Engineering – a Simulation Approach”, Pretience Hall, Englewood Cliffs. Cerca con Google

Dafalias Y.F., Popov E.P., (1975), “A Model of Nonlinearly Hardening Maetrials for Complex Loading”, Acta Mech., 23, p.173. Cerca con Google

De Souza E.N., Peric D., Owen D.J.R., (2008), “Computational Methods for Plasticity”. John Wiley and Sons, Chichester. Cerca con Google

De Wiest R.J.M., (1969), ”Flow through porous media”, Academic Press, New York. Cerca con Google

Delage P., Schroeder C., Cui Y.J., (1996), “Subsidence and capillary effects in chalks”. Proceedings Eurock’96, Balkema: Rotterdam, pp. 1291-1298. Cerca con Google

Desai C.S., Siriwardane T.H.J., (1979), “Subsidence due to consolidation including nonlinear behaviour”, Evaluation and Prediction of Subsidence, ed S.K. Saxena, ASCE, New York, pp. 500-515. Cerca con Google

Drucker D.C., (1951), “A more fundamental approach to plastic stress-strain relations”, in: Proc. 1st U.S. National Congress App. Mech., (ASME), vol.1, pp. 487-491 Cerca con Google

Drucker D.C., (1988), “Conventional and unconventional plastic response and representation”, Appl. Meek. Rev., ASME, 41, pp. 151-167. Cerca con Google

Eringen A.C., (1965), “Theory of micropolar continuum”, Proceedings 9th Midwestern Mechanical Conference, University of Wisconsin, Madison, Wisconsin, pp. 23-40. Cerca con Google

Eurock98, (1998), Proceedings SPE/ISRM Rock Mechanics in Petroleum Engineering, Trondheim, Norway, July 8-10, 1/2. Cerca con Google

Finol A., Farouq Ali S.M., (1975), “Numerical simulation of oil production with simultaneous ground subsidence”, S.P.E.J., 15, pp. 411-24. Cerca con Google

Gambolati G. (1973), “Equation for one-dimensional vertical flow of groundwater, 2, Validity range of the diffusion equation”, WAT. Res. Research, 9(5), 1385-95. Cerca con Google

Gambolati G., Freeze R.A., (1973) “Mathematical simulation of the subsidence of Venice, 1, theory”, Wat. Res. Rresearch, 9, pp. 563-77. Cerca con Google

Gambolati G., Gatto P., Freeze R.A., (1974), “Mathematical simulation of the subsidence of Venice, 1, theory”, Wat. Res. Research, 10, pp.563-77. Cerca con Google

Gambolati G., Ricceri G., Bertoni W., Brighenti G., Vuillermin E., (1991), “Mathematical simulation of the subsidence of Ravenna”, Water Resources Research, 27(11), pp. 2899-2918. Cerca con Google

Garikipati K., Hughes T.J.R., (1998), “A study of strain localization in a multiple scale framework - the one dimensional problem”, Comp. Meth. App. Mech. and Eng., 159, pp.193-222. Cerca con Google

Gawin D., Majorana C.E., Schrefler B.A., (1999), “Numerical analysis of hygro-thermal behaviour and damage of concrete at high temperature”, Mech. Coh. Frict. Mat., 4, pp. 37-74. Cerca con Google

Gibson R.E., Schiffman R.L., Pu S.L., (1970), “Plane strain and axially symmetric consolidation of a clay layer on a smooth impervious base”, Quarterly J. of Mech. and App. Math., 23(4), pp. 505-20. Cerca con Google

Grammatikopoulou A., Zdravkovic L., Potts D.M., (2006), “General Formulation of Two Kinematic Hardening Constitutive Models with a Smooth Elastoplastic Transition”, Int. J. of Geomech., 6(5), pp. 291-302. Cerca con Google

Hashiguchi K., (1978), “Plastic constitutive equations of granular materials”, In: Cowin, S.C., Satake, M. (eds.) Proc. US-Japan Seminar on Continuum Mech. Stast Appr. Mech. Granular Materials, Sendai, pp.321-329. Cerca con Google

Hashiguchi K., (1980), “Constitutive equations of elastoplastic materials with elastic-plastic transition”, J. Appl. Mech. (ASME) 47, pp.266-272. Cerca con Google

Hashiguchi K., (1985) “Macrometric Approaches –Static- Intrinsically Time –Independent”, in Murayama S., (ed.), Constitutive Laws of Soils, (Proc. 11th Int. Conf. Soil Mech. Found. Eng., Discussion Session IA, San Francisco), JSSMFE, Tokyo, p.25. Cerca con Google

Hashiguchi K., (1985), “Subloading Surface Model of Plasticity”, Constitutive Laws of Soils (Proc. 11th Int. Conf. Soil Mech. Found. Eng., Discussion Session IA, San Francisco), JSSMFE, Tokyo, p.127. Cerca con Google

Hashiguchi K., (1986), “Elastoplastic constitutive model with a subloading surface”, in: Proc. Int. Conf. Comput. Mech., pp. IV65-IV70. Cerca con Google

Hashiguchi K., (1989), Subloading surface model in unconventional plasticity. Int. J. Solids Structures, 25, pp. 917-945. Cerca con Google

Hashiguchi K., (1993a), “Fundamental requirements and formulation of the elastoplastic constitutive equations with tangential plasticity”, Int. J. of Plasticity, 9, pp. 525-549. Cerca con Google

Hashiguchi K., (1993b), “Mechanical requirements and structures of cyclic plasticity model”, Int. J. of Plasticity, 9, pp. 721-748. Cerca con Google

Hashiguchi K., (1997), “The extended flow rule in plasticity”, Int. J. of Plasticity, 13, pp. 37-58. Cerca con Google

Hashiguchi K., (2000), “Fundamentals in constitutive equation: continuity and smoothness conditions and loading criterion”, Soil and Foundations, 40(3), pp.155-161. Cerca con Google

Hashiguchi K., (2009), “Elastoplasticity theory”, in Lecture notes in applied and computational mechanics, Pfeiffer- Wriggers Eds., 42, Springer, Berlin. Cerca con Google

Hashiguchi K., (2011), “Subloading Surface Model and its Return-mapping Formulation”, Proc. 60th Nat. Cong. Of Theoretical & Applied Mechanics. Cerca con Google

Hashiguchi K., Chen Z.P., (1998), “Elastoplastic constitutive equations of soils with the subloading surface and the rotational hardening”, Int. J. Numer. Anal. Meth. Geomech., 22, pp. 197-227. Cerca con Google

Hashiguchi K., Mase T., (2007), “Extended yield condition of soils with tensile yield strength and rotational hardening”, Int. J. Plasticity, 23, pp. 1939-1956. Cerca con Google

Hashiguchi K., Mase T., (2007), “Extended yield condition of soils with tensile yield strength and rotational hardening”, Int. J. Plasticity, 23, pp. 1939-1956. Cerca con Google

Hashiguchi K., Saitoh K., Okayasu T., Tsutsumi S., (2002), “Evaluation of typical conventional and unconventional plasticity models for prediction of softening behaviour of soils”. Geotechnique, 52(8), pp. 561-578. Cerca con Google

Hashiguchi K., Ueno M., (1977), “Elastoplastic constitutive laws of granular materials, Constitutive Equation of Soils”, in Murayama S., Schofield A.N. eds., Proc. 9th Int. Conf. Soil Mech. Found. Eng., Spec. Ses. 9, Tokyo, JSSMFE, pp. 73-82. Cerca con Google

Hashiguchi K.,( 2009), “Elastoplasticity theory - Lecture notes in applied and computational mechanics”. In: F Pfeiffer, P Wriggers (Eds.), Springer, Berlin, 42, 393 pp. Cerca con Google

Hill R., (1950), “The mathematical Theory of Plasticity”, Oxford Press University, Oxford, p.66. Cerca con Google

Hill R., (1958), “A General Theory of Uniqueness and Stability in Elastic-Plastic Solids”, J. Mech. Phys. Solids, 6, pp.236. Cerca con Google

Hwang C.T. Morgenstern N.R., Murray D.W., (1971), “On solution of lane strain consolidation problems by finite element methods”, Can. Geot. J., 8, pp.108-18. Cerca con Google

Ilyushin A.A., (1961), “O the postulate of plasticity”, Prik. Mat Mekh, 25, p.503. Cerca con Google

Iwan W.D., (1967) “On a Class of Models for the Yielding Behaviour of Continuous and Composite Systems”, J. Appl. Mech., ASME, 34, p.612. Cerca con Google

Jiang Y., Zhang J., (2008), “Benchmark experiments and characteristics of static friction of machine tool sideway”, Int. J. Plasticity, 24, pp. 1481-1515. Cerca con Google

Kohler R., Hofstetter G., (2008), “A cap model for partially saturated soils”, Int. J. for Num. Anal. Meth. in Geomech., 32, pp. 981-1004. DOI:10.1002/nag.658. Cerca con Google

Krieg R.D., (1975), “A Pratical Two Dimensional Plasticity Theory”, J.Appl. Mech., ASME, 42, p.641. Cerca con Google

Krieg R.D., Krieg D.B., (1977). “Accuracies of Numerical Solution Methods for the Elastic-perfectly Plastic Model”, J. Pressure Vessel Tech., 99, pp. 510–515. Cerca con Google

Kroner E., (1967), “Elasticity theory of material with long-range cohesive forces”, Int. J. of Solid and Struct., 3, pp. 731-742. Cerca con Google

Leverett M.C., (1941), “Capillary behaviour in porous media“, Petr. Trans., AIME, 142, 341-58. Cerca con Google

Lewis R.W., Roberts G.K., Zienkiewicz O.C., (1976), “A non-linear flow deformation analysis of consolidation problems”, Proc. Sec. Int. Conf. Num. Meth. In Geomechanics, ASCE, pp. 1006-88. Cerca con Google

Lewis R.W., Schrefler B.A., (1978), “A fully coupled consolidation model of the subsidence of Venice”, Wat. Res. Research, 14, 223-30. Cerca con Google

Lewis R.W., Schrefler B.A., (1982), “A finite element simulation of the subsidence of a gas reservoir undergoing a waterdrive”, in Finite elements in Fluids, Vol. 4, ed. R.H. Gallagher et al., Wiley, London, pp. 179-200. Cerca con Google

Lewis R.W., Schrefler B.A., (1982), “A finite element simulation of the subsidence of gas reservoirs undergoing a waterdrive”. In: RH Gallagher, DH Norrie, JT Oden, OC Zienkiewicz (Eds.), Finite Element in Fluids, Wiley: Chichester, 4, 179-199. Cerca con Google

Lewis R.W., Schrefler B.A., (1987), “The finite element method in the deformation and consolidation of porous media”, Wiley, Chichester. Cerca con Google

Lewis R.W., Schrefler B.A., (1998), “The Finite Element Method in Static and Dynamic Deformation and Consolidation in Porous Media”, J. Wiley and Sons. Cerca con Google

Lubliner J., (1990), “Plasticity Theory”, Macmillan Publ. Comp., New York, p.117. Cerca con Google

Majorana C.E., (1987) “Two-dimensional non-linear thermo-elastoplastic consolidation program Plascon”, In: RW Lewis, BA Schrefler, The finite element method in the deformation and consolidation of porous media, Chapter 9. Wiley, Chichester. Cerca con Google

Marotti de Sciarra F., (2008), “A general theory for nonlocal softening plasticity of integral-type”, Int. J. of Plast., 24, pp. 1411-1439. Cerca con Google

Masing G., (1926), “Eigenspannungen und Verfestigung beim Messing”, in: Proc. 2nd Int. Congr. Appl. Mech., Zurich, pp. 332-335. Cerca con Google

Menin A., Salomoni V.A., Santagiuliana R., Simoni L., Gens A., Schrefler B.A., (2008), “A mechanism contributing to subsidence above gas reservoirs”, Int. J. for Comp. Meth. in Eng. Sci. & Mech., 9(5), pp. 270-287. DOI: 10.1080/15502280802225234. Cerca con Google

Morgan K, Lewis R.W., White I.R., (1982) “The mechanism of ground surface subsidence above compacting multiphase reservoirs and their analysis by the finite element method”, App. Math. Modelling, 4, pp. 217-24. Cerca con Google

Mroz Z., (1967), “On the Description of Anisotropic Hardening”, J. Mech. Phys. Solids, 15, p.163. Cerca con Google

Mroz Z., Norris V.A., Zienkiewicz O.C., (1981), “An anisotropic, critical state model for soils subject to cyclic loading”, Geotechnique, 31, pp.451-469. Cerca con Google

Namikawa T., Mihara S., (2007), “Elasto-plastic model for cemented sand”, Int. J. Numer. Anal. Meth. Geomech., 31, 71-107. Cerca con Google

Needleman A., (1988), “Material rate dependence and mesh sensitivity in localization problems”, Comp. Meth. App. Mech. Eng., 67, pp. 69-86. Cerca con Google

Nova R., (1977), “On the hardening of soils”, Arch. Mech. Stos., 29, pp. 445-458. Cerca con Google

Nuth M., Laloui L., (2008), “Effective stress concept in unsaturated soils: Clarification and validation of a unified framework”, International Journal for Numerical and Analytical Methods in Geomechanic, 32, pp. 771-801. DOI:10.1002/nag.645. Cerca con Google

Ortiz M., Popov E.P., (1985), “Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations”, Int. J. Numer. Meth. Engng, 21, pp. 1561–1576. Cerca con Google

Ortiz M., Simo J.C., (1986), “An Analysis of a New Class of Integration Algorithms for Elastoplastic Constitutive Relations”, Int. J. Numer. Meth. Engng, 23, pp. 353–366. Cerca con Google

Pietruszczak S., Mroz Z., (1981), “Finite element analysis of deformation of strain softening materials”, Int. J. for Num. Meth. in Eng., 17, pp. 327-334. Cerca con Google

Pijaudier-Cabot G., Mazars J., Pulikowski J., (1991), “Steel-concrete bond analysis with non local continuous damage”, J. Str. Engrg., 117(3), pp. 862-882. Cerca con Google

Plummer F.B., (1937), “American Petroleum Institute Drilling Production and Practice”, American Petroleum Institute. Cerca con Google

Poland J (Ed.)., (1984), “Guidebook to Studies of Land Subsidence due to Groundwater withdrawal”, UNESCO, Paris. Cerca con Google

Prager W., (1949), “Recent development in the mathematical theory of plasticity”, J. Appl. Mech., ASME, 20, pp.235-241. Cerca con Google

Proceedings SPE/ISRM Rock Mechanics Conference. Irving, TX, USA, October 20-23, 2002. Cerca con Google

Roscoe K.H., Burland J.B., (1968), “On the generalized stress-strain behaviour of ‘wet’ clay”, in: Engineering Plasticity, J Heyman and F.A. Leckie (eds.), Cambridge University Press, Cambridge. Cerca con Google

Salomoni V.A., Fincato R., (2011), “3D subsidence analyses above gas reservoirs accounting for an unconventional plasticity model”, Int. J. for Num. and Analy. Meth. in Geomech., 36, pp. 959-976. Cerca con Google

Salomoni V.A., Fincato R., (2012), “Subloading surface plasticity model algorithm for 3D subsidence analyses above gas reservoirs”, Int. J. of Geomech., 12(4), pp. 414-427. Cerca con Google

Salomoni V.A., Majorana C.E., Giannuzzi G.M., Miliozzi A., (2008), “Thermal-fluid flow within innovative heat storage concrete systems for solar power plants“, Int. J. Num. Meth. Heat and Fluid Flow, 18(7/8), pp. 969-999. Cerca con Google

Salomoni V.A., Mazzucco G., Majorana C.E., (2007), “Mechanical and Durability Behaviour of Growing Concrete Structures”, Engrg. Com., 24(5), pp. 536-561. Cerca con Google

Salomoni V.A., Schrefler B.A., (2005), “A CBS-type stabilizing algorithm fort the consolidation of saturated porous media”, International Journal for Numerical Methods in Engineering, 63, pp. 502-527. Cerca con Google

Sandhu R.S., (1968), “ Fluid flow in saturated porous elastic media”, PhD Thesis, University of California, Berkeley. Cerca con Google

Scheidegger A., (1957), “The physics of flow through porous media“, Univ. of Toronto Press Cerca con Google

Schlumberger-GeoQuest. Eclipse Simulator. Version 2003A. Technical Description, Houston, TX, USA, 2003. Cerca con Google

Schofield A.N., Wroth C.P., (1968), “Critical State Soil Mechanics”, McGraw-Hill, London. Cerca con Google

Schrefler B.A., Bolzon G., Salomoni V., Simoni L., (1997), “On compaction in gas reservoirs”, Atti dell’Accademia Nazionale dei Lincei - Rendiconti Lincei: Scienze Fisiche e Naturali, s. IX, VIII(4): 235-248. Cerca con Google

Schrefler B.A., Lewis R.W., Majorana C.E., (1981), “Subsidence above volumetric and waterdrive gas reservoirs”, Int. J. for Num. Meth. in Fluids, 1(2), pp. 101-15. Cerca con Google

Schrefler B.A., Simoni L., Majorana C.E., (1989), “A general model for the mechanics of saturated-unsaturated porous materials”, Mat. Str., 22, pp. 323-334. Cerca con Google

Schrefler B.A., Wang X., Salomoni V., Zuccolo G., (1999), “An efficient parallel algorithm for three-dimensional analysis of subsidence above gas reservoirs”, Int. J. for Num. Meth. in Fluids, 31(1): 247-60. Cerca con Google

Sekiguchi H., Otha H., (1977), “Induced anisotropy and its time dependence in clays, Constitutive Equations of Soils”, in: Proc. Spec. Session 9, 9th ICSFME, Tokyo, pp. 229-238. Cerca con Google

Shafiqu Q.S.M., (2008), “Finite element analysis of consolidation problems in several types of cohesive soils using the bounding surface model”, ARPN J. of Eng. and App. Sci., 3(6): pp. 51-57. Cerca con Google

Shandu R.S., Liu H., Singh K.J., (1977), “Numerical performance of some finite element schemes for analysis of seepage in porous elastic media”, Int. J. for Num. and Anal. Meth. in Geomech., 1, pp. 177-194. Cerca con Google

Simo J.C., Huges T.J.R., (1998), “Computation Inelasticity”, Springer, Heidelberg. Cerca con Google

Simo J.C., Ortiz M., (1985), “A unified approach to finite deformation elastoplasticity based on the use of hyperelastic constitutive equations”, Compt. Meth. Appl. Mech. Eng., 49, pp. 221-245. Cerca con Google

Simo J.C., Taylor R.L., (1985), “Consistent tangent operators for rate-independent elastoplasticity”, Comput. Methods Appl. Mech. Eng., 48 (3), pp. 101-118. Cerca con Google

Simo J.C., Taylor R.L., (1986), “A Return Mapping Algorithm for Plane Stress Elastoplasticity”, Int. J. Numer. Meth. Engng, 22, pp. 649–670. Cerca con Google

Simoni L., Salomoni V., Schrefler B.A., (1999), “Elastoplastic subsidence models with and without capillary effects”, Comp. Meth. in App. Mech. and Eng., 171(3-4), pp. 491-502. Cerca con Google

Siriwardane H.J., Desai C.S. (1981), “Two numerical schemes for non linear consolidation“, Int. Num. Meth. Eng., 17, pp. 405-426. Cerca con Google

Skempton A.W., Brown J.D., (1961), “A landslide in boulder clay at Selset, Yorkshire”, Geotecnique, 11, pp. 280-293. Cerca con Google

Small J.C., Booker J.R, Davis E.H., (1976), “Elastoplastic consolidation of soil”, Int. J. Solids and Struct., 12, pp. 431-438. Cerca con Google

Supangkat H., (1994), “On finite element analysis of nonlinear consolidation”, Master Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1994 (http://hdl.handle.net/1721.1/37795). Vai! Cerca con Google

Taylor D.W., (1948), “Fundamental of soil mechanics”, John Wiley and Sons, NY USA 1948. Cerca con Google

Terzaghi K., (1923), "Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen", Ak. der Wissenschaften in Wien, Sitzungsberichte mathematisch-naturwissenschaftliche Klasse, part IIa, 132 (3/4), pp. 125-38. Cerca con Google

Terzaghi K., (1943), “Theoretical Soil Mechanics”, Wiley, New York. Cerca con Google

Terzaghi K., Peck R.B., (1951) “Soil mechanics in engineering practice”, Wiley Inc., NY USA. Cerca con Google

Tsutsumi S., Toyosada M., Hashiguchi K., (2006), “Extended subloading surface model incorporating elastic limit concept”, in: Proc. Plasticity 2006, Halifax, pp.217-219. Cerca con Google

Vrech S.M., Este G., (2006), “Geometrical localization analysis of gradient-dependent parabolic Drucker-Prager elastoplasticity”, Int. J. Plasticity, 22, pp.943-964. Cerca con Google

Wiborg R., Jewhurst J., (1986), “Ekofisk subsidence detailed and solution assessed. Technology”, Oil and Gas Journal, 2(1), pp. 47-51. Cerca con Google

Wilde P., (1977), “Two invariants depending models of granular media”, Arch Mech. Stos., 29, pp. 799-809. Cerca con Google

Wilkins M.L., (1964), “Calculation of Elasto-plastic Flow”, In: Alder, B. et al. (Ed.), Methods of Computational Physics, Vol. 3, New York, Academic Press. Cerca con Google

Willam K., (1984), “Experimental and computational aspects of concrete failure”. In: F. Damjanic (Ed.), Computer Aided Analysis and Design of Concrete Failure. Pineridge Press: Swansea, pp. 33-70. Cerca con Google

Xotta G., Salomoni V.A., Majorana C.E., (2012), “Thermo-hygro-mechanical meso-scale analysis of concrete as a viscoelastic-damaged material”, Engineering Computations (in press). Cerca con Google

Yale D.P., (2002), “Coupled geomechanics-fluid flow modelling: effects of plasticity and permeability alteration”, SPE/ISRM Rock Mechanics Conference, Irving, TX, USA, October 20-23, SPE/ISRM 78202, 10 pp. Cerca con Google

Yamakawa Y., Hashiguchi K., Ikeda K., (2010), “Implicit stress-update algorithm for isotropic Cam-clay model based on the subloading surface concept at finite strains”, Int. J. of Plast., 26(5), pp. 634-658. Cerca con Google

Yasufuku, Nakata Y.,Hyodo M., Murata M., (1994), “An isotropic hardening model for sand considering the bonding effects”, in: Proc. Pre-Failure Deformation of Geomaterials, Balkema, pp. 445-450. Cerca con Google

Zhou H., Randolph M.F., (2007), “Computational Techniques and Shear Band Development for Cylindrical and Spherical Penetrometers in Strain-Softening Clay”, Int. J. of Geomech., 7(4), pp. 287-295. Cerca con Google

Zienkiewicz O.C., Humpheson C., Lewis R.W., (1977), “A unified approach to soil mechanics including plasticity and visco-plasticity”, Ch.4 in Finite Elements in Geomechanics, ed. G. Gudehus, Wiley, London. Cerca con Google

Zienkiewicz O.C., Taylor R.L., (1982), “The Finite Element Method – Vol. I the Basis”, Fifth Edition, McGraw-Hill ed. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record