Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

POZZA, LUCA (2013) Ductility and behaviour factor of wood structural systems - Theoretical and experimental development of a high ductility wood-concrete shearwall system. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi phd luca pozza)
11Mb

Abstract (inglese)

This dissertation focuses on the seismic behavior, ductility and dissipative capacity of modern timber buildings. A number of innovations in the field of timber structures are reported with special regard to the modeling techniques suitable for timber joints and to the characterization of the seismic behavior of modern timber systems.
A preliminary overview on the seismic-resistant timber building technology and on their evolution from the past to nowadays is reported in the introduction of this thesis work. A review of the state of art about the available seismic codes is also reported and the main lack and incongruence with the current constructive practice are pointed out.
The basic terms and concepts used in structural modeling and nonlinear analysis of timber structure are provided in the first part of this dissertation. The specific behavior of wood joints under cyclic actions and therefore under earthquakes is described with emphasis to the pinching effect and strength and stiffness degrading. A literature review on the main numerical models proposed to reproduce the hysteretic load-slip curve of single fasteners, joints and whole wooden elements is presented and discussed. A proposal for a new wood joint numerical model that can be easily implemented into a standard commercial Finite Element code is reported. The reliability of such new developed model to reproduce the fasteners hysteresis behavior is presented and critically discussed in comparison with experimental results.
The second part of this thesis work is based on the evidence that the growing spread of the use of timber structures has led to the development of numerous innovative construction systems but at the same time a lack of code provisions for seismic timber structure still remains, in particular concerning the ductility (or behavior) factor q to be used for the design of different timber systems. This part of dissertation analyzes the definitions of the q-factor given in the scientific literature and its relevance in the design of seismic resistant structures. The traditional methods for estimating the q-factor are investigated and an innovative procedure for expeditious q-factor estimation is presented. The theoretical aspects of this new analytical-experimental procedure are reported and the main advantages and limitations are critically discussed.
The seismic behavior of the Cross Laminated Timber structure is in deep studied in the third part of this dissertation. Such building system is largely spreading in the constructive practice but no design guidelines are provided in the seismic codes yet, especially for what concerning the definition of their sound behavior factor. Aim of this part of dissertation is to define the influence of some significant building characteristics, such as building technology, storeys number, slenderness, design criteria etc.., on the q-factor value. Such influences were studied referring to a numbers of building configuration and by means of nonlinear analyses carried out using specific hysteretic spring lamp-mass models. Based on such numerical assessment a proposal for an analytical formulation suitable to calculate the q-factor of CrossLam buildings has been developed and is presented. The validation and the applicability limits of the proposed formulation are presented and critically discussed.
The final part of the dissertation investigates from the structural efficacy of newly developed construction technology which uses an external concrete shelter made of precast R.C. slabs to improve the performance of standard platform-frame shear walls. The idea consists of external plating made of thin reinforced concrete slabs screwed to the wooden frame of the walls. The concrete slab acts as a diaphragm against the horizontal forces. The structural response of this shearwalls under monotonic and cyclic loading conditions has been assessed by means of experimental tests. The tests outcomes are presented and compared with those from code provisions. Fulfillment of the requirements given by current codes as regards the attribution to the Higher Ductility Class is also verified. The influence of concrete skin on the seismic response of the shearwalls is also evaluated by means of numerical analysis and the assured “q” ductility factor is estimated.

Abstract (italiano)

In questo lavoro di tesi si analizzano il comportamento sismico, la duttilità e la capacità dissipativa dei moderni edifici con struttura di legno. Le principali innovazioni sviluppate in questa tesi di dottorato riguardano le tecniche di modellazione dei sistemi di connessione usati nelle strutture lignee e la caratterizzazione sismica dei moderni edifici in legno.
L’introduzione della tesi evidenzia le caratteristiche che rendono le strutture in legno idonee per l’impiego in zona sismica e riporta una analisi storica delle principali tipologie di edifici sismo-resistenti a struttura in legno e la loro evoluzione dal passato ai giorni nostri. L’introduzione riporta inoltre un’analisi critica dello stato normativo Europeo ed Extraeuropeo sulle progettazione sismica degli edifici a struttura in legno evidenziando le principali lacune e incongruenze con la pratica costruttiva corrente.
Il lavoro di tesi sviluppato affronta sostanzialmente quattro argomenti dettagliati in parti indipendenti. Le prime due sono di carattere generale e riguardano tutte le strutture in legno mentre le rimanenti sono specifiche di sistemi costruttivi innovativi e non ancora completamente caratterizzati sismicamente.
La prima parte della tesi è dedicata alla descrizione del comportamento isteretico che caratterizza le connessioni utilizzate nelle strutture in legno e dei modelli numerici disponibili in letteratura per una riproduzione fedele di tale comportamento evidenziandone le potenzialità, i limiti di applicazione e l’efficienza numerica. Viene inoltre proposto un modello isteretico innovativo per riprodurre il comportamento delle connessioni tipicamente utilizzate nelle strutture in legno riproducibile anche mediante codici agli elementi finiti di tipo commerciale e non specificatamente orientati alla ricerca. Questa prima parte della tesi si conclude con la validazione e la descrizione dei principali vantaggi e limiti di applicazione della modello numerico proposto.
La seconda parte della tesi riguarda la definizione del fattore di struttura q dei sistemi costruttivi in legno innovati e di recente diffusione che non sono annoverati nelle normative sismiche. In questa parte della tesi vengono descritti i metodi tradizionali utilizzati per la stima del fattore di struttura evidenziandone i vantaggi e i principali limiti. Viene proposta una procedura innovativa di tipo misto analitico-sperimentale che consente una valutazione speditiva del valore del fattore di comportamento q.. Questa parte del lavoro di tesi si conclude riportando la validazione della procedura proposta nonché gli aspetti teorici i limiti di applicabilità.
La terza parte della tesi approfondisse lo studio sul sistema costruttivo a parete massiccia del tipo CrossLam. Preliminarmente viene riportatolo lo stato dell’arte sull’attività di ricerca sinora svolta su tale sistema costruttivo. L’obiettivo di questa parte del lavoro di tesi consiste nella definizione dell’effetto di determinate caratteristiche dell’edificio come il numero di piani, la snellezza, la composizione delle pareti, i criteri di progetto ecc. sul valore del fattore di struttura da utilizzare nella progettazione sismica dell’edificio stesso. Tale correlazione viene studiata mediante una serie di simulazioni numeriche su diverse configurazioni di edifici. I risultati ottenuti sono stati sintetizzati in una nuova formulazione analitica per la definizione del fattore di struttura q a partire dalle specifiche caratteristiche dell’edificio. Infine si riporta la validazione di tale formulazione analitica e si descrivono i principali vantaggi e limitazioni.
L’ultima parte di questo lavoro di tesi consiste nello sviluppo teorico e sperimentale di un nuovo sistema costruttivo misto legno-calcestruzzo ad alta duttilità e performance anti-sismiche. Il sistema sviluppato consiste nell’applicazione di un rivestimento esterno in lastre di calcestruzzo alle tradizionali pareti di taglio a telaio. La riposta strutturale, la duttilità e il comportamento isteretico è stato verificato mediante dei test sperimentali condotti su differenti configurazioni di pareti. Infine sono state condotte delle simulazioni numeriche, con modelli numerici appositamente sviluppati e tarati sulla base dei test sperimentali, mediane le quali è stato possibile stimare il valore del fattore di struttura q da utilizzare per il progetto sismico di questo nuovo sistema costruttivo.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:SCOTTA, ROBERTO
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE,
Data di deposito della tesi:29 Gennaio 2013
Anno di Pubblicazione:Gennaio 2013
Parole chiave (italiano / inglese):timber engineering, timber systems, timber buildings, seismic design, pinching, hysteretic model, ductility, by-linearization criteria, yielding limit, failure limit, wood connection, Cross Laminated Timber system, shearwall, behavior factor, ductility factor, q-factor
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/09 Tecnica delle costruzioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:5637
Depositato il:22 Ott 2013 14:45
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Akan A. Some Observation on the seismic behaviour of traditional timber structures in Turkey. Ph.d. thesis, June 2004 Cerca con Google

Albanesi, T., Nuti, C., Vanzi, I.( 2002). “State of the art of non linear static methods,” Proc. of the 12th European Conf. on Earthquake Engrg., London, United Kingdom, Paper. 602, Oxford: Elsevier Science. Cerca con Google

Amadio C., Gatetsco N., Urban F. 2007. Experimental study of timber shear walls made with OSB or wood fiber-reinforced gypsum panels. Proceeding of ANIDS 2007, Pisa Italy, 2007, CD. Cerca con Google

Aytun, A. “Earthen buildings in seismic areas of Turkey," Proceedings of the International Workshop on Earthen Buildings, Vol. 2, Albuquerque, NM, 1976:352.1. Cerca con Google

Birgit Östman B., Källsner B. National building regulations in relation to multi-storey wooden buildings in Europe. Reports, No. 60 School of Technology and Design Växjö University. Växjö, Sweden 2011 Cerca con Google

Blass HJ, Fellmoser P. Design of solid wood panels with cross layers. 8th World Conference on Timber Engineering WCTE 2004. Lahti, Finland, June 14–17, 2004, p. 543–8. Cerca con Google

Building Standard Law of Japan - 2009 Cerca con Google

Ceccotti A, Lauriola M.P, Pinna M, Sandhaas C. SOFIE Project – Cyclic Tests on Cross-Laminated Wooden Panels. World Conference on Timber Engineering WCTE 2006. Portland, USA, August 6-10, 2006, CD. Cerca con Google

Ceccotti A. New technologies for construction of medium-rise buildings in seismic regions: the XLAM case. IABSE Struct Eng Internat 2008;18:156–65. Tall Timber Buildings (special ed.). Cerca con Google

Ceccotti A., Follesa M., Lauriola M.P. 2007. “Le strutture di legno in zona sismica 2^ edizione” ISBN: 9788879922418 Cerca con Google

Ceccotti A., Sandhaas C. A proposal for a standard procedure to establish the seismic behaviour factor q of timber buildings. Proceeding of the 11th World Conference on Timber Engineering WCTE 2010. Riva del Garda, Italy, June 20–24, 2010, CD Cerca con Google

Ceccotti, A., (1994). “Modeling timber joint, timber structures in seismic regions: RILEM state of art report” Material and Structures, 27,177-178 Cerca con Google

Ceccotti, A., and Vignoli, A. (1989). “A hysteretic behavioral model for semi rigid joints.”, European Earthquake Engineering, Vol 3-3-9 Cerca con Google

Ceccotti, A., and Vignoli, A. (1990). “Engineered timber structures: An evaluation of their seismic behavior.” Proceedings, 1990 International Timber Engineering Conference, Vol. 3, 946–953. Cerca con Google

Cecotti A., Follesa M. Seismic behavior of multi-storey XLam buildings. Proc. International Workshop on "Earthquake Engineering on Timber Structures" Coimbra, Portugal, 2006. Cerca con Google

Chopra AK. Dynamics of structures—theory and applications to earthquake engineering. Upper Saddle River: NJ: Prentice Hall; 1995. Cerca con Google

Clough, R. W. (1966). “Effect of stiffness degradation on earthquake ductility requirements,” Technical Report No. SESM 66–16, University of California, Berkeley, California. Cerca con Google

CLT Handbook: Cross-Laminated Timber Sylvain Gagnon and Ciprian Pirvu. FPInnovation 2011 Cerca con Google

Cóias V., Silva E. Using advanced composites to retrofit Lisbon’s old seismic resistant timber framed buildings,” in C.Bertolini Cestari, J.Amorim Faria, A.Soikkeli, editors, European Timber Buildings as an Expression of Technological and Technical Cultures, Elsevier, p109-124. Cerca con Google

Costa A., Romão X., Oliveira C. S. 2009. A methodology for the probabilistic assessment of behaviour factors. Bull Earthquake Eng (2010) 8:47–64 DOI 10.1007/s10518-009-9126-5 Cerca con Google

Dolan, J.D. (1989). “The dynamic response of timber shear walls.” PhD thesis, Univ. of Brotish Columbia, Vancouver, B.C:, Canada Cerca con Google

Dolan, J.D. (1991). “A numerical model to predict the dynamic response of timber shear walls.” Proc., Int. timber Engrg. Conf.,Vol. 4,267-274 Cerca con Google

Dujic B, Aicher S, Zarnic R. Investigation on in-plane loaded wooden elements – influence of loading on boundary conditions. Otto Graf Journal, Materialprüfungsanstalt Universität. Otto-Graf-Institut, Stuttgart, 2005, Vol. 16. Cerca con Google

Dujic B, Hristovsky, Zarnic R. Experimental investigation of massive wooden wall panel system subject to seismic excitation. Proceeding of the First European Conference on Earthquake Engineering. Geneva, Switzerland, 2006 Cerca con Google

Dujic B, Strus K, Zarnic R, Ceccotti A. Prediction of dynamic response of a 7-storey massive XLam wooden building tested on a shaking table. World Conference on Timber Engineering WCTE 2010. Riva del Garda, Italy, June 20–24, 2010, CD. Cerca con Google

E. Miranda and V. V. Bertero, ‘Evaluation of strength reduction factors for earthquake resistant design', Earthquake Spectra 10, 357-379 (1994). Cerca con Google

Elnashai, S. and Mwafy, A. M., (2002), ‘Overstrength and force reduction factors of multi-storey reinforced-concrete buildings’ Struct. Design Tall Build. 11, 329–351 (2002) DOI:10.1002/tal.204 Cerca con Google

Elwood, K.J., and Moehle, J.P., (2006) “Idealized backbone model for existing reinforced concrete columns and comparisons with FEMA 356 criteria”, The Structural Design of Tall and Special Buildings, vol. 15, no. 5, pp. 553-569. Cerca con Google

EN 12512, 2001. Timber Structures – Test methods – Cyclic testing of joints made with mechanical fasteners. Cerca con Google

EN 14358, 2007. Timber structures – Calculation of characteristic 5-percentile values and acceptance criteria for a sample. CEN, Brussels, Belgium. Cerca con Google

EN 594, 1996. Timber Structures – Test methods – Racking strength and stiffness of timber frame wall panels. Cerca con Google

European committee for standardization (CEN). ENV 1992-1-1 Eurocode 2 - Design of concrete structures Part 1-1: General rules and rules for building. 2004 Cerca con Google

European committee for standardization (CEN). ENV 1993-1-1 Eurocode 3 – Design of steel structures Part 1-1: General rules and rules for building. 2005 Cerca con Google

European committee for standardization (CEN). Eurocode 5 – design of timber structures – part 1-1: general rules and rules for buildings. 2004. Cerca con Google

European Committee for Standardization (CEN). Eurocode 8 - design of structures for earthquake resistance, part 1: General rules, seismic actions and rules for buildings. 2004. Cerca con Google

Fajfar P. Design spectra for new generation of code. Proceeding 11th Word Conference on Earthquake Engineering, Acapulco, Mexico, 1996, paper No. 2127. Cerca con Google

Fajfar P. and Gaspersic P., “The N2 method for the seismic damage analysis for RC buildings', Earthquake Engng. Struct. Dyn. 25, 23-67 (1996) Cerca con Google

FEMA (Federal Emergency Management Agency). 1997. NEHRP provisions for the seismic rehabilitation of buildings. Report FEMA 273 (Guidelines) and 274 (Commentary). FEMA, Washington, DC. Cerca con Google

Fenves G.L., 2005, Annual Workshop on Open System for Earthquake Engineering Simulation, Pacific Earthquake Engineering Research Center, UC Berkeley, http://opensees.berkeley.edu. Vai! Cerca con Google

Foliente GC. 1996. Issues in seismic performance testing and evaluation of timber structural systems. In: Proceedings of the 1996 international timber engineering conference. vol. 1. p. 1.29 –.36. Cerca con Google

Foliente, G. C. (1995). “Hysteresis modeling of wood joints and structural systems.” Journal of Structural Engineering, American Society of Civil Engineers, Vol. 121, No. 6, 1013–1022. Cerca con Google

Follesa M., Fragiacomo M., Lauriola M. P. a proposal for revision of the current timber part(section 8) of eurocode 8 part 1. Meeting 44 of the Working Commission W18-Timber Structures, CIB. Alghero, Italy, 2011 paper CIB-W18/44-15-1. Cerca con Google

Folz, B., and Filiatrault, A. F., (2001). “Cyclic analysis of wood shear walls.” Journal of Structural Engineering, American Society of Civil Engineers, Vol. 127, No. 4, 433-441. Cerca con Google

Folz, B.,Filiatrault, A. 2004. Seismic analysis of wood frame structures. I: model formulation. Journal of Structural engineering, ASCE, Vol 130 pp 1353-1360 Cerca con Google

Folz, B.,Filiatrault, A. 2004. Seismic analysis of wood frame structures. II: model implementation and verification. Journal of Structural engineering, ASCE, Vol 130 pp 1361-1370 Cerca con Google

Foschi RO., Bonac T. 1977. Load slip characteristic for connections with common nails. WOOD SCI Technol 1977;9(3):118-23 Cerca con Google

Foschi, R. O. (2000). “Modeling the hysteretic response of mechanical connections for structures.” Proceedings, World Conference on Timber Engineering, Department of Civil Engineering, Department of Wood Science, and School of Architecture, University of British Columbia, Vancouver, British Columbia, Canada. Cerca con Google

Foschi, R. O., (1977) “Analyses of wood diaphragms and trusses. Part I: diapragms.” Canadian J. Civ. Engrg., 4(3), 345-352 Foschi, R. O., (1977) “analyses of wood diaphragms and trusses. Part I: diapragms.” Canadian J. Civ. Engrg., 4(3), 345-352 Cerca con Google

Foschi, R. O., (1999) “FRAME, Analitycal Hysteresis Model for Dowel-type timber connections, Computer Program, Department of Civil Engineering, University of British Columbia, Canada Cerca con Google

Fragiacomo M, Dujic B, Sustersic I. Elastic and ductile design of multy-storey crosslam wooden buildings under seismic actions. Engineering Structures 33, 2011, 3043-3053. Cerca con Google

Frenette C.D., (1996) “ Dynamic behaviour of timber frame with dowel type connections.” Proceeding of the international Wood Engineering Conference, New Orleans, USA, Vol. 4, 89-96 Cerca con Google

Fujita K., Hanazato T., Sakamoto I. Earthquake response monitoring and seismic performance of five-storied timber pagoda. 13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 54 Cerca con Google

Gavric I, Ceccotti A, Fragiacomo M. Experimental tests on cross-laminated panels and typical connections. Proceeding of ANIDS 2011, Bari Italy, 2011, CD. Cerca con Google

GB 50005:2003 (2005 Version) “Code for Design of Timber Structures” Cerca con Google

GB50001:2001 (2007 Version) “Code for Seismic Design of Buildings” Cerca con Google

He, M., Lam, F., and Foschi, R. O. (2001). “Modeling three-dimensional timber light-frame buildings.” Journal of Structural Engineering, American Society of Civil Engineers, Vol. 127, No. 8, 901–913. Cerca con Google

Heavy Timber Construction. Wood construction data. American Forest & Paper Association. 2004 Cerca con Google

Heine, C. P., and Dolan, J. D. (2001). “A new model to predict the load–slip relationship of bolted connections in timber.” Wood and Fiber Science, Society of Wood Science and Technology, Vol. 33, No. 4. Cerca con Google

http://designbuildsource.com.au/plans-for-worlds-tallest-timber-skyscraper-revealed-in-melbourne Vai! Cerca con Google

http://horneinsweden.blogspot.it/2007/02/kiruna.html Vai! Cerca con Google

http://www.academia.edu/703037/la_casa_antisismica_casa_baraccata_ad_intelaiatura_di_legno Vai! Cerca con Google

http://www.frenchimmersion.wordpress.com/2012/10/15/house/colombage-house/ Vai! Cerca con Google

http://www.holzbau.rubner.com/it/strutture-in-legno/1-0.html Vai! Cerca con Google

http://www.old-fachwerk-house-in-wolfenbuttel--niedersachsen-germany Vai! Cerca con Google

http://www.progettosofie.it/index_eng.html Vai! Cerca con Google

http://www.servicelegno.it/ Vai! Cerca con Google

http://www.strongtie.com Vai! Cerca con Google

Humar JL, Ragozar MA. 1996. Concept of overstrength in seismic design. In Proceedings 11th WCEE. IAEE, Acapulco, Mexico. Paper 639. Cerca con Google

International Building Code 2009. International Code Council Cerca con Google

ISO Standard 16670, 2003. Timber Structures – Joints made with mechanical fasteners – Quasi-static reversed-cyclic test method. Cerca con Google

Italian Ministry for the Infrastructures. New technical regulation for construction. Decree of the Ministry for the Infrastructures, Ministry of Interior, and Department of the Civil Defence. 2008. Cerca con Google

Jorissen A., Fragiacomo M. 2011. General notes on ductility in timber structures. Engineering Structures 33, 2011, 2987-2997. Cerca con Google

Judd, J. P., and Fonseca, F. S. (2005). “Analytical model for sheathing-to-framing connections in wood shear walls and diaphragms.” Journal of Structural Engineering, American Society of Civil Engineers, Vol. 131, No. 2, 345–352. Cerca con Google

Karacabeyli E., Ceccotti A. 1997. Seismic force modification Factor for design of multy storey wood-frame platform construction. Meeting 30 of the Working Commission W18-Timber Structures, CIB. Vancouver, Canada, 1997, paper CIB-W18/30-15-3. Cerca con Google

Karacabeyli E., Ceccotti A., (1998), “Nailed wood-frame shear walls for seismic loads: Test results and design considerations”, in Proceedings “Structural Engineering World Congress”, Structural Engineering World Wide, (San Francisco, USA, July 18-23, 1998), edited by Srivastava N.K., London, England, Elsevier Science Ltd, paper T207-T206 Cerca con Google

Karacabeyli, E. Performance of North American platform frame wood construction in earthquakes. COST E5 Workshop on Seismic behaviour of Timber Structures. September 28- 29 2000 Venice Italy. Cerca con Google

Kuklik P., Hansen A.S. Handbook 1 - Timber Structures. Educational Materials for Designing and Testing of Timber Structures, Leonardo da Vinci Pilot Project. 2008 Cerca con Google

Langenbach, R. Survivors amongst the rubble: traditional timber-laced masonry buildings that survived the great 1999 earthquakes in Turkey and the 2001 earthquake in India, while modern buildings fell,” Proceedings of the First International Congress on Construction History, Instituto Juan de Herra, Escuela Técnica Superior de Arquitectura, Madrid, Vol. 2, 2003: 1257-1268. Cerca con Google

L'Aquila. Il progetto C.A.S.E., Edid by Iuss Press, 2010, ISBN: 886198052X Cerca con Google

Lauriola M.P, Sandhaas C. Quasi-Static and Pseudo-Dynamic test on XLam walls and buildings. COST E29 International Workshop on Earthquake Engineering on timber Structures. Coimbra, Portugal, 2006, pages 119-133 Cerca con Google

Loh, C., and HO, R., (1990). “Seismic damage assessment based on different hysteretic rules”. Earthquake engineering and structural Dynamics 19:753-771 Cerca con Google

Maison B., Bonowitz D., Kornfield l., and McCormick d. Adjacency Issues in Soft-Story Wood-Frame Buildings. report to Structural Engineers Association of Northern California. April 2011 Cerca con Google

Mitchell D, Paulter P. 1994. Ductility and overstrength in seismic design of reinforced concrete structures. Canadian Journal of Civil Engineering 21: 1049–1060. Cerca con Google

Mohammad M., Gagnon S., Karacabeyli E., Popovski M. Innovative Mid-rise Timber Structures Offer New Opportunities for Designers. SEAOC convention proceedings. 2011 Cerca con Google

Munoz W., Mohammad M., Slaenikovich A., Quenville P. 2008. Need for a harmonized approach for calculations of ductility of timber assemblies. Meeting 41 of the Working Commission W18-Timber Structures, CIB. St. Andrews, Canada, 2008, paper CIB-W18/41-15-1. Cerca con Google

NBCC. 2005. National Building Code of Canada. Institute for Research in Construction, National Research Council of Canada, Ottawa, Ontario. Cerca con Google

Ni, C., Popovski, M., Karacabeyli, E., Varoglu, E., Stiemer, Midply wood shear wall system: Concept, performance and code implementation (2007) Proceedings Of Meeting 40 Of CIB-W18 paper 40-15-3, Bled, Slovenia Cerca con Google

Palermo A., Pampanin S., Calvi G. M. (2005). “Concept and Development of Hybrid Solutions for Seismic Resistant Bridge Systems.” Journal of Earthquake Engineering, 9(5): 1-23. Cerca con Google

Pang, W. C., Rosowsky, D. V., Pei, S., and van de Lindt, J. W. (2007). “Evolutionary parameter hysteretic model for wood shear walls.” Journal of Structural Engineering, American Society of Civil Engineers, Vol. 133, No. 8, 1118–1129. Cerca con Google

Park R. 1996. Explicit incorporation of element and structure overstrength in the design process. In Proceedings 11th WCEE. IAEE, Acapulco, Mexico. Paper 2130. Cerca con Google

Pauley T., Priestley M.J.N. Seismic design of reinforced concrete and masonry buildings. Wiley Ed., 1992. Cerca con Google

Pei, S., Popowski, M., van de Lindt, 2012. “Performance based design and force modification factors for CLT structures. Meeting 45 of the Working Commission W18-Timber Structures, CIB. Växjö, Sveden, 2012, paper CIB-W18/45-15-1. Cerca con Google

Pei, S., van de Lindt, J.W., Pryor, S.E., Shimizu, H., and Isoda, H. 2010. Seismic testing of a full-scale sixstory light-frame wood building: NEESWood Capstone test. NEESWood Report NW-04 Cerca con Google

Piazza M., Polastri A., Tomasi R. 2011. Ductility of timber joints under static and cyclic loads. Proceedings of the Institution of Civil Engineer published online, doi: 10.1680/stub. 10.00017 Cerca con Google

Piron H.G.L., Lam F. 2003. Shear walls and diaphragms, timber Engineering, by Thelandersson S., Larsen H.J., pp. 383-408 Cerca con Google

Popovski M, Schneider J, Schweinstreiger M. Lateral load resistance of Cross-Laminated wood panels. World Conference on Timber Engineering WCTE 2010. Riva del Garda, Italy, June 20–24, 2010, CD. Cerca con Google

Pozza L., Scotta R. Valutazione numerica del comportamento sismico e del fattore di struttura “q” di edifici in legno con pareti tipo XLam. Proceeding of ANIDS 2011, Bari Italy, 2011, CD Cerca con Google

Pozza L., Scotta R., Polastri A, Ceccotti A. 2012. Seismic behavioiur of wood concrete frame shear-wall system and comparison with code provisions. Meeting 45 of the Working Commission W18-Timber Structures, CIB. Växjö, Sveden, 2012, paper CIB-W18/45-15-2. Cerca con Google

Pozza, L., Scotta, R., Vitaliani, R. 2009. A non linear numerical model for the assessment of the seismic behaviour and ductility factor of X-lam timber structures. Proceeding of international Symposium on Timber Structures, Istanbul, Turkey, 25-27 June 2009, 151-162. Cerca con Google

Richard, N., Yasumura M. and Davenne, L., (2003) “Prediction of seismic behavior of wood-framed shear walls with openings by pseudodynamic test and FE model.” J Wood Sci 49:145–151 Cerca con Google

Rinaldin, G., Amadio, C. and Fragiacomo, M., (2011), “A component approach for non-linear behavior of cross-laminated solid timber panels” Proceeding of ANIDS 2011, Bari Italy, 2011, CD. Cerca con Google

Saiidi, M. (1982). “Hysteresis models for reinforced concrete,” Journal of the Structural Division, American Society of Civil Engineers, Vol. 108, No. 5, 1077-1087. Cerca con Google

Sakamoto I., Fujita K. Structural analyses on traditional timber buildings in Japan. Proceeding of Conservation of the ancient timber load bearing structures meeting, Florence March 2000. Cerca con Google

Sandhaas C, Boukes J, Kuilen JWG, Ceccotti A. Analysis of X-lam panel-to panel connections under monotonic and cyclic loading. Meeting 42 of the Working Commission W18-Timber Structures, CIB. Dübendorf, Switzerland, 2009, paper CIB-W18/42-12-2. Cerca con Google

Sandhaas C, Boukes J, Kuilen JWG, Ceccotti A. Analysis of X-lam panel-topanel connections under monotonic and cyclic loading. Meeting 42 of the Working Commission W18-Timber Structures, CIB. Dübendorf, Switzerland, 2009, paper CIB-W18/42-12-2. Cerca con Google

Schädle, P., Hans Joachim Blaß, H.J., (2010) “Earthquake behaviour of modern timber construction systems” Proceeding of the 11th World Conference on Timber Engineering WCTE 2010. Riva del Garda, Italy, June 20–24, 2010, CD. Cerca con Google

Stehn L., Björnfot A. 2002. Comparison of different ductility measurements for a nailed steel-to-timber connection. Proceeding of the 7th World Conference on Timber Engineering WCTE 2002. Shah Alam, Selangor Darul Ehsan, Malaysia, 12th-15th August 2002. Cerca con Google

Stewart, W. G. (1987). “The seismic design of plywood sheathed shearwalls.” Ph.D. thesis, University of Canterbury, Christchurch, New Zealand. Cerca con Google

T. Vidic, P. Fajfar and M. Fischinger, ‘Consistent inelastic design spectra: strength and displacement', Earthquake Engng. Struct. Dyn. 23, 502-521 (1994). Cerca con Google

Theoretical Manual - Theoretical background to the Strand 7 finite Element analysis system. Edition 1 – January 2005 Cerca con Google

Toratti T. Seismic Design of Timber Structures. Technical Research Centre of Finland, 2001 Cerca con Google

Touliatos P.G. Seismic disaster prevention in the history of structures in Greece”. Proceeding of Timebr building system – COST E5 Workshop on Seismic behaviour of Timber Structures. September 28- 29 2000 Venice Italy. Cerca con Google

Uang C.M, Bertero V. Evaluation of seismic energy in structures. Earthquake engineering and structural dynamics 1990; 19: 77-90 Cerca con Google

Uang CM. 1991. Establishing R (or Rw) and Cd factors for building seismic provisions. ASCE 117(1): 19–28. Cerca con Google

Vahik E., 2006. TF2000 Timber-frame building was tested at BRE Cardington. Barrier to the enhanced use of wood in construction. Time for Timber in Europe Conference. Gdansk, Poland, 24-25 May 2006 Cerca con Google

van de Lindt, J. W. (2004). “Evolution of wood shear wall testing, modeling, and reliability analysis: Bibliography.” Practice Periodical on Structural Design and Construction, American Society of Civil Engineers, Vol. 9, No. 1, 44–53. Cerca con Google

Vessby J. Shear walls for multi-storey timber buildings. PhD thesis Växjö university, 2008 Cerca con Google

White, M. and Dolan, J. (1995). ”Nonlinear Shear-Wall Analysis.” J. Struct. Eng., 121(11), 1629–1635. doi: 10.1061/(ASCE)0733-9445(1995)121:11(1629) Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record