Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Conte, Michele (2013) Studio del comportamento bio-meccanico dei rifiuti solidi urbani (RSU) e modellazione dei cedimenti secondari. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
12Mb

Abstract (inglese)

One of the strategic aspects of the development of large urban agglomerations is undoubtedly the management of solid wastes. To cope with the need for waste disposal, two strategies can be followed: the incineration and the storage in landfill, with or without pre-treatment. The latter solution, widely practiced in Italy, requires many careful considerations about the environmental, sanitary and geotechnical aspects, in order to ensure the usability of this service in safety conditions during the time of landfill management, which ordinarily exceeds decades.
The topic of the research is the theoretical modeling of the secondary bio-mechanical compressibility of Municipal Solid Wastes (MSW), through laboratory tests and verifications with large-scale facilities.
The research, developed during the period 2010-2012, has a practical interest because the incorrect assessment of the waste settlements may lead to imprecise evaluations of the storage capacity of the plant, as well as difficulties in the operation of the accessory works, due to both the total and differential settlements. These settlements are a consequential overlapping of the immediate, primary and secondary components, which differ among their for intensity and evolution.
The immediate settlement occurs whenever a load is applied over a waste layer, during the storage phase; the primary settlement is related to the compressibility, delayed in time, of the solid skeleton, due to the start of fluid motions, either liquid or gaseous, within the voids of the porous medium. The secondary settlement, or long-term settlement, is produced by compression of the solid skeleton under effective constant stress. The well-known creep phenomenon is coupled, in the MSW, with phenomena of biological degradation resulting from the transformation of organic matter in leachate and biogas.

The aim of the research was to calibrate a one-dimensional bio-mechanical decoupled model for the evaluation of settlement strains and their evolution over time, starting from the biological and mechanical parameters of the municipal solid waste.
The analysis of the bio-mechanical waste parameters, which represents the preliminary phase of the research, is based on data coming from the literature, as well as on the results of some experiments carried out by means of biological reactors, at the laboratories of the University of Padua and Grenoble, using an original waste (in Padua) or a pretreated waste (in Grenoble). Once the bio-mechanical parameters of the model were calibrated, it was possible to quantify the changes in volume due to both the creep and biological components, that are simultaneously present but activated at different times, because of the effects of the organic component and the conditions of biological degradation (anaerobic and/or aerobic). Therefore, the study of the model was completed by verifications from monitoring data of large-scale landfills, coming from both the literature and in situ investigations of existing plants.

Survey methods

1. Introductive activities
In the initial phase of this research, a review of the municipal solid waste (MSW) management is presented at the global, European and national level. These strategies concern: incineration, selection and recycling of the waste, reduction of organic material by aerobic and/or anaerobic degradation and storage in landfills. A particular emphasis is given to the methods of mechanical and biological pretreatment, which are able to limit the emissions of pollutants and reduce the incoming volumes, through the preventive stabilization of the organic matter (bioreactor landfill, landfill mining, in situ aeration).

2. State of the knowledge on the mechanics of MSW
In the second part of this research, the framework of knowledge about the chemical, physical, hydraulic and mechanical properties of this heterogeneous porous medium, which is the municipal solid waste, was defined.

3. Development of a bio-mechanical model for the secondary compressibility of MSW
In the third phase of this study, an assessment about the main characteristics of the MSW and the possible transformations that it can experience over time, was made. In particular, the following aspects were examined: composition, particle size, density, water content, degree of compaction and statistical representativeness. Referring to the chemical parameters, the characteristics of biodegradation were analyzed, in relation to the incidence of the organic matter and the type of process (aerobic and anaerobic). In this context, the biogas and leachate production, the temperature, the gravimetric water content and the involved stress level, were examined. Therefore, the characterization of the mechanical parameters affecting the development of the secondary settlements, was made.
Settlement prediction models, currently present in the literature, can be classified according to different criteria, depending on the assumptions on which they are based: there are models derived from the soil mechanics laws (Sowers, 1973; Bjarngard and Edgers, 1990), rheological models (Gibson and Lo, 1961), experimental models (Yen and Scanlon, 1975; Edil et al., 1990, Ling et al., 1998), models incorporating the biodegradation (Marques et al., 2003; Hettiarachchi et al ., 2009) and constitutive models (Machado et al., 2008; Sivakumar Babu et al., 2010).
The model, developed in this research work, considers two distinct (creep and biological) components, present simultaneously but activated at different times, because of the effects of the organic component and the conditions of biological degradation (anaerobic and/or aerobic). The model parameters were calibrated from the results of an experimental investigation, carried out in laboratory medium scale reactors, and from in situ observations, related to large scale facilities.

4. Laboratory analysis and experimental research
In order to obtain a complete range of representative data, experimental investigations on the behaviour of two types of waste, subjected to compression, were carried out, using in parallel two laboratory reactors. These experiments, which represent the fourth phase of the research work, were implemented at the laboratory of Environmental Engineering of the University of Padua (ICEA Department) and at the LTHE laboratory (Laboratoire d'étude des Transferts en Hydrologie et Environnement) of the University of Grenoble (France). Tests at the University of Grenoble were carried out under the supervision of the Professor Jean-Pierre Gourc, during a stage lasted five months (May-October 2012).
The employed material is a municipal solid waste (MSW) coming from the Legnago landfill (VR, Italy), obtained from both an original unaltered waste and a bio-mechanical pretreated waste. The original MSW was subjected to compression tests on a reactor present at the University of Padua, for a period of 180 days, receiving weekly a predetermined amount of incoming leachate, in order to improve the degradability conditions. In parallel, the bio-mechanically pretreated MSW was subjected to compression tests on a reactor present at the University of Grenoble, for a period of 77 days, without any liquid injection. Thus, these tests have allowed to highlight the dependence of bio-mechanical parameters with the initial state of the waste.

5. Extension of the model to the large scale landfills
In the last phase of the research, starting from the experimental data obtained from small and medium scale laboratory reactors, a prediction of the secondary settlements for large scale landfills was made. The behaviour of the single elementary cell was integrated to a series of vertical cells, in order to simulate the behaviour of a waste column in landfill. For this purpose, the prediction of the proposed bio-mechanical model was compared with monitoring data coming from the Chatuzange landfill (France), the Yolo County landfill (USA) and the S-landfill (USA), obtaining very encouraging results.

The main results of the research can be summarized in the following aspects:
* The need of calibration of this bio-mechanical proposed model for the evaluation of the secondary settlement strains, considering the two distinct (creep and biological) components, is highlighted. The model was calibrated considering data from the literature, as well as laboratory tests carried out at the University of Padua and Grenoble. Further validations were given by the study of the settlements of three landfill. The advantage of a correct calibration is observed over very wide time periods, as shown by comparisons with large scale landfills.
* The models that include the component of biological degradation are efficient, only if they are able to consider and quantify the settlement component due to the biogas production in anaerobic processes. This circumstance is crucial in large scale MSW landfills.
* A modest aerobic pretreatment, bringing forward the times of biodegradation of the organic matter, can limit the settlements and reduce the periods of storage in landfills

Abstract (italiano)

Uno degli aspetti strategici dello sviluppo dei grandi agglomerati urbani è senza dubbio la gestione dei rifiuti solidi. Per far fronte alle necessità di smaltimento si possono seguire due strategie: quella dell’incenerimento e quella dello stoccaggio in discarica, con o senza pre-trattamento. Quest’ultima soluzione, molto praticata in Italia, richiede delle attente valutazioni di carattere ambientale, sanitario e geotecnico, al fine di garantire la fruibilità del servizio in sicurezza, durante il tempo di gestione che ordinariamente supera i decenni.
L’attività di ricerca s’inserisce nell’ambito della modellazione teorica della compressibilità secondaria bio-meccanica dei Rifiuti Solidi Urbani (RSU), attraverso test di laboratorio e riscontri con opere in vera grandezza.
La ricerca, sviluppata nel corso del triennio 2010-2012, riveste un certo interesse pratico ove si consideri che l’inesatta valutazione dei cedimenti dei rifiuti possa comportare un’imprecisa stima della capacità di accumulo dell’impianto, nonché difficoltà di funzionamento delle opere accessorie a causa dei cedimenti totali e differenziali. Quest’ultimi derivano dalla sovrapposizione delle componenti: immediata, primaria e secondaria, differenti per intensità e decorso.
Il cedimento immediato si produce ogni qualvolta si applichi un carico al di sopra di uno strato di rifiuto, durante lo stoccaggio; il cedimento primario è legato alla compressibilità differita nel tempo dello scheletro solido, a causa dell’instaurarsi di moti di fluido, sia liquido che gassoso, all’interno dei vuoti. Il cedimento secondario, o di lungo termine, oggetto della presente Tesi di Dottorato, è prodotto dalla compressione dello scheletro solido sotto tensioni effettive costanti. Il ben noto fenomeno di creep si accoppia, negli RSU, a fenomeni di degradazione biologica, derivanti dalla trasformazione della sostanza organica in percolato e biogas.

Scopo della ricerca è stato quello di calibrare un modello bio-meccanico disaccoppiato di tipo monodimensionale per la valutazione delle deformazioni da cedimento e del loro decorso nel tempo, partendo dai parametri biologici e meccanici del rifiuto urbano. L’analisi dei parametri bio-meccanici del rifiuto, costituente la parte preliminare della ricerca, si fonda, oltre che su dati provenienti dalla letteratura specialistica, sui risultati di esperienze con reattori biologici presso i laboratori delle Università di Padova e di Grenoble, utilizzando materiale tal quale (a Padova) o pretrattato (a Grenoble). Una volta calibrati i parametri del modello bio-meccanico è stato possibile quantificare le variazioni di volume riconducibili alle due distinte componenti, di creep e biologica, presenti simultaneamente ma attivatesi con tempi diversi, in ragione dell’incidenza della componente organica e delle condizioni di degradazione biologica (anaerobica e/o aerobica). Completa lo studio il riscontro con i dati provenienti da opere in vera grandezza, ricavati sia dalla letteratura specialistica che da indagini in situ su discariche esistenti.

Modalità di indagine

1. Attività introduttive
Nella fase iniziale del lavoro viene presentata una rassegna sulla gestione dei rifiuti solidi urbani (RSU) a livello mondiale, europeo e nazionale. Queste strategie riguardano l’incenerimento, l’attività di selezione(raccolta differenziata) e riciclo del materiale, la riduzione dell’attività biologica del materiale tramite degradazione aerobica e/o anaerobica, e lo stoccaggio in discarica. Particolare evidenza è data ai metodi di pretrattamento meccanico e biologico, in grado di limitarne le emissioni inquinanti e di ridurre i volumi conferiti attraverso la preventiva stabilizzazione della sostanza organica (discarica bioreattore, landfill mining, aerazione in situ).

2. Stato delle conoscenze sulla meccanica degli RSU
Nella seconda parte della ricerca si è tracciato il quadro delle conoscenze riguardo alle proprietà chimiche, fisiche, idrauliche e meccaniche del mezzo poroso eterogeneo, qual è il rifiuto solido urbano.

3. Elaborazione di un modello bio-meccanico per la compressibilità secondaria degli RSU
Nella terza fase dello studio si è resa necessaria una valutazione delle principali caratteristiche del rifiuto e delle possibili trasformazioni che esso può sperimentare nel tempo. In particolare, sono stati esaminati i seguenti aspetti: composizione merceologica, granulometria, densità, contenuto d’acqua, grado di compattazione e rappresentatività statistica. Con riferimento ai parametri chimici, sono state prese in esame le caratteristiche di biodegradazione in relazione all’incidenza della sostanza organica ed al tipo di processo, aerobico e anaerobico. In tale ambito sono state esaminate le produzioni di percolato e di biogas, la temperatura, il contenuto d’acqua gravimetrico ed il livello di tensione coinvolto. Si è proceduto, quindi, alla caratterizzazione dei parametri meccanici che incidono sullo sviluppo dei cedimenti secondari.
I modelli di previsione dei cedimenti, attualmente presenti nella letteratura tecnica, possono essere classificati secondo differenti criteri, in relazione alle ipotesi su cui si fondano: modelli derivanti dalle leggi della meccanica delle terre (Sowers, 1973; Bjarngard ed Edgers, 1990), modelli di tipo reologico (Gibson e Lo, 1961), modelli empirici (Yen e Scanlon, 1975; Edil et al., 1990; Ling et al., 1998), modelli incorporanti la biodegradazione (Marques et al., 2003; Hettiarachchi et al., 2009) e modelli di tipo costitutivo (Machado et al., 2008; Sivakumar Babu et al., 2010).
Il modello sviluppato nella ricerca considera le due distinte componenti, di creep e biologica, presenti simultaneamente ma attivatesi con tempi diversi, in ragione dell’incidenza della componente organica e delle condizioni di degradazione biologica (anaerobica e/o aerobica). I parametri del modello sono stati calibrati sulla base dei risultati di un’indagine sperimentale condotta in laboratorio con reattori di medie dimensioni ed osservazioni in sito relative ad opere in vera grandezza.

4. Analisi di laboratorio e ricerca sperimentale
Per ottenere una gamma completa di dati rappresentativi, sono state condotte delle ricerche sperimentali sul comportamento di due tipi di rifiuto soggetti a compressione, utilizzando, in parallelo, due serie di indagini di laboratorio. La sperimentazione, che costituisce la quarta fase della ricerca, è stata condotta presso il laboratorio di Ingegneria Sanitaria Ambientale dell’Università di Padova (Dipartimento ICEA) e presso il laboratorio LTHE (Laboratoire d’étude des Transferts en Hydrologie et Environnement) dell’Università di Grenoble (Francia). Le prove all’Università francese sono state condotte sotto la guida del Professor Jean-Pierre Gourc, durante un periodo di stage di cinque mesi (maggio–ottobre 2012).
Il materiale utilizzato è un rifiuto solido urbano proveniente dall’impianto di Legnago (VR), ottenuto sia da rifiuti tal quali, sia da un pretrattamento bio-meccanico. L’RSU originario (tal quale), è stato sottoposto a prove di compressione su un reattore presente all’Università di Padova, per un periodo di 180 giorni, ricevendo, settimanalmente, una determinata quantità entrante di percolato, al fine di migliorarne le condizioni di degradabilità. Parallelamente, l’RSU pretrattato bio-meccanicamente è stato sottoposto a prove di compressione su un reattore presente all’Università di Grenoble, per un periodo di 77 giorni, senza alcuna iniezione di liquido. Tale sperimentazione ha consentito di mettere in luce la dipendenza dei parametri bio-meccanici in funzione dello stato iniziale del rifiuto.

5. Estensione del modello alle opere in vera grandezza
Nell’ultima fase della ricerca, sono stati esaminati i riscontri provenienti dal monitoraggio di opere in vera grandezza. Partendo dai dati sperimentali, su piccola e media scala, ottenuti dai reattori di laboratorio, si è proceduto al calcolo delle deformazioni da cedimento di opere in vera grandezza. Il comportamento della singola cella elementare è stato generalizzato ad una serie di celle verticali, in grado di simulare il comportamento di una colonna di rifiuti all’interno della discarica. A tal fine si sono confrontati i risultati con i dati di monitoraggio provenienti dalle discariche di Chatuzange in Francia e di Yolo County e S-Landfill negli USA, ottenendo risultati molto incoraggianti.

Il principale prodotto della ricerca si può sintetizzare nei seguenti aspetti:
* Si evidenzia la necessità della taratura del modello bio-meccanico proposto per la valutazione delle deformazioni secondarie da cedimento, considerando le due distinte componenti, di creep e biologica. Il modello è stato tarato sulla base dei dati provenienti dalla letteratura specialistica, nonché attraverso prove di laboratorio presso le Università di Padova e Grenoble. Ulteriori conferme sono state desunte dallo studio dei cedimenti di tre impianti di stoccaggio degli RSU. Il beneficio di una corretta taratura si osserva su intervalli di tempo molto ampi, come dimostrato dai riscontri con opere in vera grandezza.
* I modelli che includono la componente di degradazione biologica si rivelano efficienti solo se in grado di considerare e di quantificare la componente di cedimento dovuta alla produzione di biogas nei processi anaerobici, circostanza questa molto influente nei grandi cumuli urbani di RSU.
* Un modesto pretrattamento aerobico, anticipando i tempi di biodegradazione della sostanza organica, consente di limitare i cedimenti e di abbreviare i tempi di stoccaggio in discarica

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Carrubba, Paolo
Correlatore:Gourc, Jean-Pierre
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE,
Data di deposito della tesi:29 Gennaio 2013
Anno di Pubblicazione:29 Gennaio 2013
Parole chiave (italiano / inglese):Rifiuti Solidi Urbani (RSU), cedimenti, biodegradazione, reattori di laboratorio, opere in vera grandezza / Municipal Solid Wastes (MSW), settlements, biodegradation, laboratory reactors, large scale landfills
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/03 Ingegneria sanitaria-ambientale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:5662
Depositato il:08 Ott 2013 15:12
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

ADEME, 1993. Agence De l’Environnement et de la Maîtrise de l’Energie. MODECOM™, Méthode de caractérisation des ordures ménagères. Seconde édition, ADEME Editions, Paris. Cerca con Google

ADEME-LIRIGM, 2005. Agence De l’Environnement et de la Maîtrise de l’Energie – Laboratoire Interdisciplinaire de Recherche Impliquant la Géologie et la Mécanique. Guide méthodologique pour le suivi des tassements des Centres de Stockage de Classe II - Déchets ménagers et assimilés. Cerca con Google

ADEME-LIRIGM, 2006. Agence De l’Environnement et de la Maîtrise de l’Energie – Laboratoire Interdisciplinaire de Recherche Impliquant la Géologie et la Mécanique. Note de synthèse du programme de recherche sur la gestion des Installations de Stockage de Déchets ménagers et assimilés (dits aussi non dangereux) en bioréacteur. Cerca con Google

Aguilar-Juarez, O., 2000. Analyse et modélisation des réactions biologiques aérobies au cours de la phase d’exploitation d’un casier d’un centre d’enfouissement technique. Ph.D. Thesis, University of Toulouse, France. Cerca con Google

Andersen, E.O., Balanko, L.A., Lem, J.M., Davis, D.H., 2004. Field monitoring of the compressibility of Municipal Solid Waste and soft alluvium. Proceedings 5th International Conference on Case Histories in Geotechnical Engineering, New York, USA. Cerca con Google

APAT-ONR, 2005. Agenzia per la Protezione dell’Ambiente e per i servizi Tecnici – Osservatorio Nazionale sui Rifiuti. Rapporto Rifiuti, 2005. Cerca con Google

APHA, 1998. American Public Health Association. Standard methods for the examination of water and wastewater. 20th edition, Washington, DC. Cerca con Google

Arigala, S.G., Tsotsis, T.T., Webster, I.A., Yortsos, Y.C., Kattapuram, J., 1995. Gas generation, transport and extraction in landfills. Journal of Environmental Engineering, 121, 33–44. Cerca con Google

Bayard, R., Benbelkacem, H., Zhang, Y.Y., Gourdon, R., 2009. Impact of leachate injection modes on landfill gas production. Proceedings Sardinia 2009, 12th International Waste Management and Landfill Symposium, Santa Margherita di Pula, Cagliari, Italy. Cerca con Google

Bayard, R., Benbelkacem, H., Gourc, J-P., Gourdon, R., 2013. Mass balance on Water and dry solids from pilot-scale landfill bioreactor studies. Waste Management (2013), paper accepted. Cerca con Google

Bear, J., 1972. Dynamics of fluids in porous media. Elsevier, New York. Cerca con Google

Beaven, R.P., Powrie, W., 1995. Hydrogeological and geotechnical properties of refuse using a large-scale compression cell. Proceedings Sardinia 1995, 5th International Landfill Symposium, S. Margherita di Pula, Cagliari, 744-760. Cerca con Google

Beaven, R.P., Barker, J.A., Hudson, A., 2003. Description of a tracer test through waste and application of a double porosity model. Proceeding Sardinia 2003, 9th International Waste Management and Landfill Symposium. Santa Margherita di Pula, Cagliari, Italy. Cerca con Google

Beaven, R.P., Powrie, W., Zardava, K., 2011. Hydraulic properties of MSW. Geotechnical characterization field measurement and laboratory testing of Municipal Solid Waste. ASCE Geotechnical Special Publication, 209, 1–43. Cerca con Google

Benson, C.H., Barlaz, M.A., Lane, D.T., Rawe, J.M., 2007. Practice Review of five bioreactor/recirculation landfills. Waste Management, 27, 13–29. Cerca con Google

Bidlingmaier, W., Scheelhaase, T., 1997. Geomechanical evaluation of mechanical-biological pretreated waste. Proceedings Sardinia 1997, 6th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, vol. I, 495–500. Cerca con Google

Bjarngard, A., Edgers, L., 1990. Settlement of Municipal Solid Waste landfills. Proceedings 13th Annual Madison Waste Conference, Madison, 192–205. Cerca con Google

Bleiker, D., Farquhar, G., McBean, E., 1995. Landfill settlement and the impact on site capacity and refuse hydraulic conductivity. Waste Managementand Research, 13, 533–554. Cerca con Google

Boutwell, G.P., Fiore, N.A., 1995. Settlement of clay cover on saturated garbage. Acar YB, Daniels D. (Eds) Geoenvironment 2000. American Society of Civil Engineers, New York, 964–979. Cerca con Google

Bray, J.D., Zekkos, D., Kavazanijian, Jr. E., Athanasopoulos, G.A., Riemer, M.F., 2009. Shear strength of municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 135(6), 709-722. Cerca con Google

Brink, D., Day, P.W., Du Prez, L., 1999. Failure and remediation of Bulbul Drive landfill: Kwazulu-Natal, South Africa. Proceedings Sardinia 1999, 7th International Waste anagement and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, vol. III, 555-562. Cerca con Google

Buchanan, D., 1997. The impact of waste processing on the hydraulic behaviour of landfilled wastes. Designing and Managing Sustainable Landfill. Scientific Societies Lecture Theatre, IBC UK Conferences Ltd. Cerca con Google

Buchanan, D., Clark, C.F., Ferguson, N.S., Kenny, N.J., 2001. Hydraulic characteristics of wet-pulverised municipal waste. CIWEM Journal (Chartered Institution of Water and Environmental Management), 14-20. Cerca con Google

Burrows, M.R., Joseph, J.B., Mather, J.D., 1997. The hydraulic properties of in situ landfilled waste. Proceedings Sardinia 1997, 5th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy. Cerca con Google

Caicedo, B., Yamin, L., Giraldo, E., Coronado, O., Soler, N., 2002. Geomechanical properties of municipal solid waste in Dona Juana sanitary landfill. Proceedings of the 4th International Congress on Environmental Geotechnics, Rio De Janeiro, Brazil, A.A. Balkema, vol.1, 177-182 Cerca con Google

Capelo, J., De Castro, M., 2007. Measuring transient water flow in unsaturated municipal solid waste – a new experimental approach. Waste Management, 27, 811–819. Cerca con Google

Carman, P.C., 1939. Permeability of saturated sands, soils and clays. Journal of Agricoltural Science, 29, 262–273. Cerca con Google

Carrubba, P., Cossu, R., 2003. Investigation on compressibility and permeability of pre-treated waste Cerca con Google

mixture. Proceedings Sardinia 2003, 9th International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy. Cerca con Google

Choudhury, D., Savoikar, P., 2008. Simplified method to characterize municipal solid waste properties under seismic conditions. Waste Management, 29, 924–933. Cerca con Google

Christensen, T.H., Kjeldsen, P., 1989. Basic biochemical processes in landfills. Christensen, Cossu, Stegmann (Eds). Sanitary landfilling: process, technology and environmental impact, Academic Press, London, 29–42. Cerca con Google

Coduto, D.P., Huitric, R., 1990. Monitoring landfill movements using precise instruments. Geotechnics of waste fills-Theory and practices, ASTM STP 1070, Philadelphia, 225–239. Cerca con Google

Collins, H.J., 1993. Impact of the temperature inside the landfill on the behavior of barrier systems. Proceedings Sardinia 1993, 4th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, vol. I, 417-432. Cerca con Google

Conte, M., Carrubba, P., 2011. Mechanical and biological aspects in MSW settlements. Proceedings Sardinia 2011, 13th International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, paper 456. Cerca con Google

Conte, M., Carrubba, P., 2012a. Componente meccanica e biologica nei cedimenti secondari dei rifiuti solidi urbani: modellazione teorica e riscontri sperimentali. Incontro Annuale dei Ricercatori di Geotecnica, IARG 2012, Padova, 2-4 luglio 2012. Cerca con Google

Conte, M., Carrubba, P., 2012b. La previsione dei cedimenti nei rifiuti solidi urbani. Remtech 2012 Remediation Technologies, Ferrara, Italy, 19-21 September 2012, Cazzuffi D. & Petrini I. Editors, 290-301. Cerca con Google

Conte, M., Carrubba, P., 2013. Geotechnical implications in the construction of landfills. Italian Geotechnical Journal, gennaio-marzo 2013, 1, 68-77. Cerca con Google

Cossu, R., Andreoletta, G., Muntoni, A., 1996. Modelling landfill gas production. Landfilling of waste: Biogas, E&FN Spon, London, 238–268. Cerca con Google

Cossu, R., 2001. Fondamenti di chimica, chimica organica, microbiologia e biochimica (COMB) per l’Ingegneria Ambientale. Dipartimento IMAGE, Università di Padova, Dicembre 2001. Cerca con Google

Cossu, R., Raga, R., Testolin, G., 2011a. Landfill aeration experience in Italy. Proceedings Sardinia 2011, 13th International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy. Cerca con Google

Cossu, R., Carrubba, P., Conte, M., Raga, R., Salieri, V., 2011b. When wrong design is the main problem in landfilling. Proceedings Sardinia 2011, 13th International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, paper 737. Cerca con Google

Coumoulos, D.G., Koryalos, T.P., 1997. Prediction of attenuation of landfill settlement rates with time. Proceedings, 14th International Conference on Soil Mechanics and Foundation Engineering, vol. 3, Hamburg, Germany, 1807–1811. Cerca con Google

Cowland, J.W., Tang, K.Y., Gabay, J., 1993. Density and strength properties of Hong Kong refuse. Proceedings Sardinia 1993, 4th International Landfill Symposium, Santa Margherita di Pula, Cagliari, Italy, 1433–1446. Cerca con Google

CTD, 1997. Comitato Tecnico Discariche. Linee Guida per le discariche controllate di rifiuti solidi urbani, CISA Publication. Cerca con Google

Del Greco, O., Oggeri, C., 1993. Geotechnical parameters of sanitary wastes. Proceedings Sardinia ’93, 4th International Landfill Symposium, S. Margheritadi Pula, Cagliari, Vol.II, 1421–1431. Cerca con Google

Dixon, N., Jones, R.D.V., 2005. Engineering properties of Municipal Solid Waste. Geotextiles and Geomembranes, 23, 205–233. Cerca con Google

Durmusoglu, E., Corapcioglu, M.Y., Tuncay, K., 2005. Landfill settlement with decomposition and gas generation. Journal of Environmental Engineering, 131, 1311–1321. Cerca con Google

Durmusoglu, E., Sanchez, I.M., Corapcioglu, M.Y., 2006. Permeability and compression characteristics of municipal solid waste samples. Environmental Geology, 50, 773-786. Cerca con Google

Edgers, L., Noble, J.J., Williams, E., 1992. A biological model for long term settlement in landfills. Usmen MA, Acar YB (Eds), Environmental Geotechnology. Balkema, Rotterdam, 177–184. Cerca con Google

Edil, T.B., Ranguette, V.J., Wuellner, W.W., 1990. Settlement of municipal refuse. Geotechnics of waste fills - Theory and practice, ASTM STP 1070, Philadelphia, 225–239. Cerca con Google

Ehrig, H.-J., 1983. Quality and quantity of sanitary landfill leachate. Waste Management & Research, 1, 53-68. Cerca con Google

Elagroudy, S.A., Abdel-Razik, M.H., Warith, M.A., Ghobrial, F.H., 2008. Waste settlement in bioreactor landfill models. Waste Management, 28, 2366–2374. Cerca con Google

Eleazer, W.E., Odle, W.S., Wang, Y.S., Barlaz, M.A., 1997. Biodegradability of municipal solid waste components in laboratory-scale landfills. Environmental Science and Technology, 31 (3), 911–917. Cerca con Google

El-Fadel, M., Shazbak, S., Saliby, E., Leckie, J., 1999a. Comparative assessment of settlement models for municipal solid waste landfill applications. Waste Management Resource, 17(5), 347–368. Cerca con Google

El-Fadel, M., Sadek, S., Khoury, R., 1999b. Simulation of solid waste settlements in laboratory columns. Proceedings of the Sardinia 1999, 7th International Landfill Symposium, Santa Margherita di Pula, Cagliari, Italy, 521–528. Cerca con Google

Ettala, M., 1987. Infiltration and hydraulic conductivity at a sanitary landfill. Aqua Fennica, 17, 231–237. Cerca con Google

Farquhar, G.J., Rovers, F.A., 1973. Gas production during refuse decomposition. Water, Air and Soil Pollution, 2, 483–495. Cerca con Google

Fassett, J.B., Leonardo, G.A., Repetto, P.C., 1994. Geotechnical properties of Municipal Solid Waste and their use in landfill design. Waste Tech. 1994, Landfill Technology Technical Proceedings, Charleston, SC (USA), January 13–14. Cerca con Google

Favaretti, M., Maestrini, S., 1998. Fenomeni di assestamento dei Rifiuti Solidi Urbani: Effetti e possibilità di controllo. Convegno Nazionale “Chiusura e post-chiusura delle discariche controllate”, Castelfranco Veneto, Treviso, 24-25 settembre 1998. Cerca con Google

FNADE, 2007. Fédération Nationale des Activités de la Dépollution et de l’Environnement. Le secteur des déchets et son rôle dans la lutte contre le réchauffement climatique. Etude Bio Intelligence Service (deuxième édition). Cerca con Google

Fungaroli, A.A., Steiner, R.L., 1979. Laboratory study of the behavior of a sanitary landfill. Journal of Water Pollution Control Fed., 43, 252–267. Cerca con Google

Gabr, M.A., Valero, S.N., 1995. Geotechnical properties of Municipal Solid Waste. Geotechical Testing Journal, 18 (2), 241–251. Cerca con Google

Gandolla, M., Dugnani, L., Bressi, G., Acaia, C., 1992. The determination of subsidence effects at municipal solid waste disposal sites. Proceedings 6th International Solid Waste Congress and Exhibition, Madrid, 1–17. Cerca con Google

Gawande, N.A., Reinhart, D.R., Cortazar, A.L. G., 2005. Landfill MSW hydraulic conductivity estimation using in situ moisture sensors. Proceedings Sardinia 2005, 10th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy. Cerca con Google

Gay, G., Kaiser, R., 1981. Bestimmung der scherfestigkeit an hausmüll in verschiedenen variationen. Bericht der Forschungs- und Materialprüfungsanstalt Baden-Würtemberg, Stutgart. Cerca con Google

Gibson, R.E., Lo, K.Y., 1961. A theory of soils exhibiting secondary compression. Acte Polytechnica Scandinavica, C:10, 296, 1–15. Cerca con Google

Golder Associates, 1993. Unpublished internal report. Cerca con Google

Goodley, A.R., Graham, A., Lewin, K., 2005. Estimating biodegradable Municipal Solid Waste diversion from landfill: screening exercise to evaluate the performance of bBiodegradable waste test methods. Environment Agency, R&D Technical Report, phase 1, 1–513. Cerca con Google

Gourc, J.-P., Olivier, F., Thomas, S., Châtelet, L., Denécheau, P., Munoz, M.-L., 2001. Monitoring of waste settlements on five landfills: comparison of the efficiency of different devices. Proceedings Sardinia 2001, 8th International Landfill Symposium, Cagliari, Italy. Cerca con Google

Gourc, J.P., Nousheen Arif, K., Olivier, F., 2007. Long term settlement of domestic waste in landfill: ISPM method. 18ème Congrès Français de Mécanique, Grenoble, France. Cerca con Google

Gourc, J.-P., Staub, M.J., Conte, M., Benbelkacem, H., Bayard, R., Redon, E., 2009. A biochemical model to predict long-term secondary settlement of MSW – Validation on large-scale trials. Proceedings of Sardinia 2009, 12th International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, paper 089. Cerca con Google

Gourc, J.-P., Staub, M.J., Conte, M., 2010. Decoupling MSW settlements into mechanical and biochemical processes – Modelling and validation on large scale setups, Waste Management, 30, 1556–1568. Cerca con Google

Gourc, J.-P., 2012. Hydro-bio-mechanical approach of municipal solid waste landfilling. Seminar at the University of Padua, 23 January 2012, Padua, Italy. Cerca con Google

Green, D., Jamenjad, G., 1997. Settlement characteristics of domestic waste. Proceedings of the Conference on Contaminated Ground. British Geotechnical Society, Cardiff, Wales, 319–324. Cerca con Google

Grisolia, M., 1994. Deformabilità dei rifiuti. Seminario di aggiornamento Meccanica dei rifiuti e analisi strutturale dei componenti di una discarica controllata, Santa Margherita di Pula, Cagliari 10-14 Ottobre 1994. Cerca con Google

Grisolia, M., Napoleoni, Q., Tancredi, G., 1995a. Contribution to a technical classification of MSW. Proceedings Sardinia 1995, 5th International Landfill Symposium, S. Margherita di Pula, Cagliari, Vol. II, 703–710. Cerca con Google

Grisolia, M., Napoleoni, Q., Tancredi, G., 1995b. Modelli di comportamento geotecnico di una discarica di RSU. Scelta dei parametri di progetto; Atti del I° Corso di Aggiornamento Professionale per Problematiche Ambientali: La Progettazione delle Discariche; Bergamo. Cerca con Google

Grisolia, M., Luciani, D., 1995. Considerazioni sulla stabilità e sui cedimenti di una discarica di RSU. Convegno: La progettazione delle discariche, Bergamo. Cerca con Google

Hettiarachchi, H., Meegoda, J., Hettiaratchi, P., 2003. Settlement of bioreactor landfills. Modeling of settlement behavior of bioreactor landfills, Interim report, University of Calgary, Alberta, Canada. Cerca con Google

Hettiarachchi, C.H., 2005. Mechanics of biocell landfill settlements. Ph.D. Thesis, New Jersey Institute of Technology, Newark, New Jersey, USA. Cerca con Google

Hettiarachchi, H., Meegoda, J., Hettiaratchi, P., 2009. Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Management, 29, 1018–1025. Cerca con Google

Hossain, M.S., 2002. Mechanics of compressibility and strength of solid waste in bioreactor landfills. Ph.D. Thesis, North Carolina State University, Raleigh, USA. Cerca con Google

Hossain, S.M., Gabr, M.A., 2005. Prediction of municipal solid waste landfill settlement with leachate recirculation. Proceedings Geo-Frontiers, Austin, Texas, vol. 168, 50–63. Cerca con Google

Hudson, A. P., White, J.K., Beaven, R. P., Powrie, W., 2004. Modelling the compression behaviour of landfilled domestic waste. Waste Management, 24 (3), 259–269. Cerca con Google

ISO/TR 20432, 2006. Guidelines to the determination of long-term strength of geosynthetics for soil reinforcement. ISO Technical Report. Cerca con Google

ISPRA, 2005. Istituto Superiore per la Protezione e la Ricerca Ambientale, Rapporto Rifiuti Urbani 2005. Cerca con Google

ISPRA, 2012. Istituto Superiore per la Protezione e la Ricerca Ambientale, Rapporto Rifiuti Urbani 2012. Cerca con Google

Ivanova, L.K., Richards, D.J., Smallman, D.J., 2003. An investigation into the factors affecting secondary settlement of wastes. Proceedings Sardinia 2003, 9th International Landfill Symposium, Santa Margherita di Pula, Cagliari, Italy. Cerca con Google

Ivanova, L.K., Richards, D.J., Smallman, D.J., 2008a. The long-term settlement of landfill waste. Proceedings of the Institution of Civil Engineers. Waste and Resource Management, 161 (3), 121–133. Cerca con Google

Ivanova, L.K., Richards, D.J., Smallman, D.J., 2008b. Assessment of the anaerobic biodegradation potential of MSW. Proceedings of the Institution of Civil Engineers. Waste and Resource Management, 161 (4), 167-180. Cerca con Google

IWWG, 2009. Conferenza dell’IWWG (International Waste Working Group), Toulouse, Francia, aprile 2009. Comunicazione privata. Cerca con Google

Jain, P., Powell, J., Townsend, T.G., Reinhart, D.R., 2005. Air permeability of waste in a municipal solid waste landfill. Journal of Environmental Engineering, 131, 1565–1573. Cerca con Google

Jain, P., Powell, J., Townsend, T.G., 2006. Estimating the hydraulic conductivity of landfilled municipal solid waste using the borehole permeameter test. Journal of Environmental Engineering, 132, 645–652. Cerca con Google

Jessberger, H.L., Kockel, R., 1993. Determination and assessment of the mechanical properties of waste materials. Proceedings Sardinia 1993, 4th International Landfill Symposium, Santa Margherita di Pula, Cagliari, Italy, vol. II, 1383–1392. Cerca con Google

Jessberger, H.L., 1994. Geotechnical aspects of landfill design and construction. Part 2: materials parameters and test methods. Institution of Civil Engineers Geotechnical Engineering Journal, 107, 105–113. Cerca con Google

Jessberger, H.L., Heibrock, G., 1995. Development of a safety concept for landfill liner system. Advanced landfill liner systems, Thomas Telford Publishing. Cerca con Google

Jun, D., Yongsheng, Z., Henry, R.K., Mei, H., 2007. Impacts of aeration and active sludge addition on leachate recirculation bioreactor. Journal of Hazardous Materials, 147, 240–248. Cerca con Google

Kavazanjian, N., Matasovic, R., Bonaparte, G.R., Schmertmazin, E., 1995. Evaluation of MSW properties for seismic analysis. Geoenvironment 2000, Geotechnical Special Publication, 46, 1126–1141. Cerca con Google

Kavazanjian, E., Matasovic, N., Bachus, R.C., 1999. Large-diameter static and cyclic laboratory testing of municipal solid waste. Proceeding Sardinia 1999, 7th International Waste Management and Landfill Symposium, Santa Margherita di Pula, Cagliari, Italy, 437–444. Cerca con Google

Kavazanjian, E., 2001. Mechanical properties of municipal solid waste. Proceedings Sardinia 2001, 8th International Waste Management and Landfill Symposium, Santa Margherita di Pula, Cagliari, Italy, 415–424. Cerca con Google

Kazimoglu, Y.K., McDougall, J.R., Pyrah, I.C., 2005. Moisture retention and moviment in landfilled waste. Proceedings of the International Conference on problematic soils, Famagusta, Cyprus. Cerca con Google

Khire, M., Haydar, M., 2007. Leachate recirculation in bioreactor landfills using geocomposite drainage material. Journal of Geotechnical and Geoenvironmental Engineering, 133(2), 166–174. Cerca con Google

Kölsch, F., 1995. Material values for some mechanical properties of domestic waste. Proceedings Sardinia 1995, 5th International Landfill Symposium, Santa Margherita di Pula, Cagliari, Italy, vol.2, 20. Cerca con Google

Kölsch, F., 1996. The influence of fibrous constituents on shear strength of municipal solid waste. Ph.D. Thesis, Leichtweiss-Institut für Wasserbau der TU Braunschweig, Germany. Cerca con Google

Korfiatis, G.P., Demetracopoulos, A.C., Bourodimos, E.L., Nawy, E.G., 1984. Moisture transport in a solid waste column. Journal of Environmental Engineering, 110(4), 789-796. Cerca con Google

Landva, A.O., Clark, J.I., Weisner, W.R., Burwash, W.J., 1984. Geotechnical engineering and refuse landfills. Proceedings of the 6th National Conference on Waste Management in Canada, Vancouver, B.C., 1–37. Cerca con Google

Landva, A.O., Clark, J.I., 1986. Geotechnical testing of waste fill. Proceedings of Canadian geotechnical Conference, Ottawa, Ontario, 371–385. Cerca con Google

Landva, A.O., Clark, J.I., 1990. Geotechnics of waste fills. Geotechnics of waste fills–Theory and practice, ASTM Special Technical Publication, 1070, 86–106. Cerca con Google

Landva, A.O., Pelkey, S.A., Valsangkar, A.J., 1998. Coefficient of permeability of municipal refuse. Proceedings of the 3rd International Congress on Environmental Geotechnics, Lisbon, vol. I, 63–68. Cerca con Google

Landva, A.O., Valsangkar, A.J., Pelkey, S.G., 2000. Lateral earth pressure at rest and compressibility of Municipal Solid Waste. Canadian Geotechnical Journal, 37, 1157–1165. Cerca con Google

Leckie, J.O., Pacey, J.G., Halvadakis, C., 1979. Landfill management with moisture control. Journal of the Environmental Engineering Division, 105, 337–355. Cerca con Google

Leikam, K., Stegmann, R., 1997. Mechanical-biological pre-treatment of residual MSW and the behaviour of pre-treated waste. Proceedings Sardinia 1997, 6th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, vol. I, 465–474. Cerca con Google

Ling, H.I., Leshchinsky, D., Mohri, Y., Kawabata, T., 1998. Estimation of municipal solid waste landfill settlement. Journal of Geotechnical and Geoenvironmental Engineering, 124 (1), 21–28. Cerca con Google

Lobo, A.G.C., 2003. Moduelo 2: A tool to be used to evaluate municipal solid waste landfills contamination. PhD Thesis, University of Cantabria, Spain. Cerca con Google

Lornage, R., Redon, E., Lagier, T., Hébé, I., Carré, J., 2007. Performance of a low cost MBT prior to landfilling: Study of the biological treatment of size reduced MSW without mechanical sorting. Waste Management, 27, 1755–1764. Cerca con Google

Machado, S.L., Carvalho, M.F., Vilar, O.M., 2002. Constitutive model for municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 128, 940–951. Cerca con Google

Machado, S.L., Vilar, O.M., Carvalho, M.F., 2008. Constitutive model for long term municipal solid waste mechanical behavior. Computers and Geotechnics, 35, 775–790. Cerca con Google

Machado, S.L., Carvalho, M.F., Gourc, J.-P., Vilar, O.M, do Nascimento, J.C.F., 2009. Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 29, 153–161. Cerca con Google

Manassero, M., Van Impe, W.F., Bouazza, A., 1996. Waste disposal and containment. Proceedings Second International Congress on Environmental Geotechnics, Osaka, Vol. 3, 193–242. Cerca con Google

Manassero, M., Dominijanni, A., Terrioti, C., Buffa, L., 2011. Stabilizzazione di discariche su pendio. Conferenze di geotecnica di Torino, XXIII ciclo. Cerca con Google

Mansoor, I., 2003. Applications of soil mechanics principles to landfill waste. Ph.D. Thesis, School of Civil Engineering and the Environment, Southampton University, UK. Cerca con Google

Marques, A.C.M., 2001. Compaction and compressibility of municipal solid waste. Ph.D. Thesis, Sao Paulo University, Sao Carlos, Brazil. Cerca con Google

Marques, A.C.M., Filz, G.M., Vilar, O.M., 2003. Composite compressibility model for municipal solid waste. Journal of Geotechnical and Geoenvironmental Engineering, 129 (4), 372–378. Cerca con Google

McCreanor, P., Reinhart, D., 2000. Mathematical modeling of leachate routing in a leachate recirculating landfill. Water Research, 34 (4), 1285–1295. Cerca con Google

Mehta, R., Barlaz, M.A., Yazdani, R., Augenstein, D., Bryars, M., Sinderson, L., 2002. Refuse decomposition in the presence and absence of leachate recirculation. Journal of Environmental Engineering, 128 (3), 228–236. Cerca con Google

Mitchell, J.K., Seed, R.B., Seed, H.B., 1990. Kettleman Hills waste landfill slope failure. Liner system properties. Journal of Geotechnical Engineering, 116(4), 647–668. Cerca con Google

Morris, J.W.F., Vasuki, N.C., Baker, J.A., Pendleton, C.H., 2003. Findings from long-term monitoring studies at MSW landfill facilities with leachate recirculation. Waste Management, 23 (7), 653–666. Cerca con Google

Mualem, Y., 1976. A new model predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12, 513–522. Cerca con Google

Münnich, K., Ziehmann, G., Fricke, K., 2003. Hydraulic behaviour of mechanical biological pre-treated waste. Proceedings Sardinia 2003, 9th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy. Cerca con Google

Münnich, K., Bauer, J., Fricke, K., 2005. Investigation on relationship between vertical and horizontal permeabilities of MBT waste. Proceedings Sardinia 2005, 10th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy. Cerca con Google

Olivier, F., 2003. Tassement des déchets en CSD de classe II: du site au modèle. Ph.D. Thesis, University of Grenoble, France. Cerca con Google

Olivier, F., Gourc, J.-P., 2007. Hydro-mechanical behavior of MSW subject to leachate recirculation in a large-scale compression reactor cell. Waste Management, 27, 44–58. Cerca con Google

Oweis, I.S., Khera, R., 1986. Criteria for geotechnical construction on sanitary landfills. Symposium on Environmental Geotechnology, Allentown, PA, 215–222. Cerca con Google

Oweis, I.S., Khera, R.P., 1990. Geotechnology of waste management. Butterworths Eds., Sydney, Australia. Cerca con Google

Park, H.I., Lee, S.R., 1997. Long-term settlement behavior of landfills with refuse decomposition. Journal of Resource Management and Technology, 24(4), 159–165. Cerca con Google

Park, H.I., Lee, S.R., Do, N.Y., 2002. Evaluation of decomposition effect on long-term settlement prediction for fresh Municipal Solid Waste landfills. Journal of Geotechnical and Geoenvironmental Engineering, 128 (2), 107–118. Cerca con Google

Powrie, W., Beaven, R. P., 1999. Hydraulic properties of household waste and implications for landfills. Institution of Civil Engineers Geotechnical Engineering Journal, 137, 235–247. Cerca con Google

Powrie, W., Richards, D., Velkushanova, K., 2009. Mechanisms of settlement in biodegradable wastes. 3rd International Workshop Hydro-Physico-Mechanics of Landfills, Braunschweig, Germany; 10-13 March 2009. Cerca con Google

Rao, S.K., Moulton, L.K., Seals, R.K., 1977. Settlement of refuse landfills. Geotechnical practice for disposal of solid waste materials, Ann Arbor, MI, 574–599. Cerca con Google

Reddy, K.R., Hettiarachchi, H., Parakalla, N., Gangathulasi, J., Bogner, J., 2009b. Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Management, 29 (2), 952–959. Cerca con Google

Reddy, K.R., Hettiarachchi, H., Gangathulasi, J., Bogner, J.E., 2011. Geotechnical properties of municipal solid waste at different phases of biodegradation. Waste Management, 31, 2275–2286. Cerca con Google

Rosqvist, H., Destouni, G., 2000. Solute transport through preferential pathways in municipal solid waste. Journal of Contaminant Hydrology, 46, 39–60. Cerca con Google

Ross, P., Smetten, R., 2000. A simple treatment of physical nonequilibrium water flow in soils. Soil Science Society American Journal, 64, 1926–1930. Cerca con Google

Rowe, R.K., 2005. Methane long term performance of contaminant barrier systems. Géotechnique, 55, n. 9, 631-678. Cerca con Google

Siegel, R.A., Robertson, R.J., Anderson, D.G., 1990. Slope stability investigations at a landfill in Southern California. Geotechnic s of Waste Fill–Theory and Practice; ASTM STP 1070. Cerca con Google

Simões, G.F., Catapreta, C.A.A., 2011. Settlement monitoring of an experimental landfill, Belo Horizonte, Brazil. Proceedings Sardinia 2011, 13th International Waste Management and Landfill Symposium, S. Margherita di Pula, Cagliari, Italy. Cerca con Google

Simpson, P.T., Zimmie, T.F., 2001. Laboratory investigations of potential sanitary landfill settlement. Proceedings of the 15th International Conference on Soil Mechanics, Istanbul, 1925–1928. Cerca con Google

Sivakumar Babu, G.L., Reddy K.R., Chouskey S.K., Kulkarni, H.S., 2010. Prediction of long-term Municipal Solid Waste landfill settlement using constitutive model. Practice periodical of hazardous, toxic, and radioactive waste management, 14(2), 139–150. Cerca con Google

Sowers, G.F., 1968. Foundation problems in sanitary landfills. Journal of Sanitary Engineering, 94 (1), 103–116. Cerca con Google

Sowers, G.F., 1973. Settlement of waste disposal fills. Proceedings 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, Vol. 2, 207–210. Cerca con Google

Soyez, K., Thran, D., Volker, D., Koller, M., 1997. The German Federal research programme on mechanical-biological pre-treatment. Proceedings Sardinia 1997, 6th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, Vol. I, 439–448. Cerca con Google

Spillmann, P., 1980. Beitrag zur langzeitig standsicheren konstruktion hoher abfalldeponien, Teil 1 und 2, Müll und Abfall 12, 311–317, 337–339. Cerca con Google

Staub, M.J., Galietti, B., Oxarango, L., Khire, M.V., Gourc, J.-P., 2009. Porosity and hydraulic conductivity of MSW using laboratory-scale test. 3rd International Workshop “Hydro-Physico-Mechanics of Landfills”, Braunschweig, Germany. Cerca con Google

Staub, M.J., 2010. Approche multi-échelle du comportement bio-mécanique d’un déchet non dangereux. Ph.D. Thesis, University of Grenoble, France. Cerca con Google

Staub, M.J., Marcolina, G., Gourc, J.-P., Simonin, R., 2011. An incremental model to assess the environmental impact of cap cover systems on MSW landfill emissions. Geotextiles and Geomembranes, 29, 298-312. Cerca con Google

Stinson, J.A., Ham, R.K., 1995. Effect of lignin on the anaerobic decomposition of cellulose as determined through the use of a biochemical methane potential method. Environmental Science and Technology, 29 (9), 2305–2310. Cerca con Google

Stoltz, G., Gourc, J.-P., 2007. Influence of compressibility of domestic waste in fluid permeability. Proceedings Sardinia 2007, 11th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy. Cerca con Google

Stoltz, G., 2007. Influence of compressibility of domestic waste on fluid conductivity. Second International Workshop: Hydro-Physico-Mechanics of Landfills, Southampton, UK. Cerca con Google

Stoltz, G., Gourc, J.-P., Oxarango, L., 2010a. Characterisation of the physico-mechanical parameters of MSW. Waste Management, 30, 1439–1449. Cerca con Google

Stoltz, G., Gourc, J.-P., Oxarango, L., 2010b. Liquid and gas permeabilities of unsaturated municipal solid waste under compression. Journal of Contaminant Hydrology, 118, 27–42. Cerca con Google

Stulgis, R.P., Soydemir, C., Telgener, R.J., 1995. Predicting landfill settlement. Proceedings Geoenvironment 2000. American Society of Civil Engineers, Edited by Acar and Daniel. Geotechnical Special Publication, 46, 980–994. Cerca con Google

Tchobanoglous, G., Theisen, H., Vigil, S., 1993. Integrated Solid Waste Management. McGraw-Hill, Inc., New York, USA. Cerca con Google

Terzaghi, K., 1943. Theoretical soil mechanics. John Wiley, New York. (NY), USA. Cerca con Google

Thomas, S., Aboura, A.A., Gourc, J.-P., Gotteland, P., Billard, H., Delineau, T., Gisbert, T., Ouvry, J.F., Vuillemin, M., 1999. An in-situ waste mechanical experimentation on a French landfill. Proceedings Sardinia 1999, 7th International Waste Management and Landfill Symposium, Cagliari, Italy, 445–452. Cerca con Google

Thomas, S., 2000. Centres de stockage de déchets – Géomécanique des déchets et de leur couverture (Expérimentations sur sites et modélisation). Ph.D. Thesis, University of Grenoble, France. Cerca con Google

Tinet, A.J., Oxarango, L., Bayard, R., Benbelkacem, H., Stoltz, G., Staub, M.J., Gourc, J-P., 2011. Experimental and theoretical assessment of the multi-domain flow behaviour in a waste body during leachate infiltration. Waste Management, 31, 1797–1806. Cerca con Google

Turczynski, U., 1988. Geotechnische Aspekte beim Aufbau von Mehrkomponentendeponien. Ph.D. Thesis, Fakultat der technischen Wissenschaften, Bergakademie Freiberg, Germany. Cerca con Google

USEPA, 2005. First-order kinetic gas generation model parameters for wet landfills. EPA Report, June 2005. Cerca con Google

Van Genuchten, M., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society American Journal, 3, 909–916. Cerca con Google

Van Impe, W.F., Squeglia, N., 1997. Proprietà geotecniche dei rifiuti solidi urbani. Hevelius edizioni. Cerca con Google

Vilar, O., Carvalho, M., 2004. Mechanical properties of municipal solid waste. ASTM Journal of Testing and Evaluation, 32 (6), 1–12. Cerca con Google

Wall, D.K., Zeiss, C., 1995. Municipal landfill biodegradation and settlement. Journal of Environmental Engineering, 121, 214–224. Cerca con Google

Wang, Q., Matsufuji, Y., Dong, L., Huang, Q., Hirano, F., Tanaka, A., 2006. Research on leachate recirculation from different types of landfills. Waste Management, 26, 815–824. Cerca con Google

Warith, M., 2002. Bioreactor landfills: experimental and field results. Waste Management, 22, 7–17.Warrick, A.W., 2002. Soil Physics Companion. CRC Press, Boca Raton. Cerca con Google

Watts, K.S., Charles, J.A., 1990. Settlement of recently placed domestic refuse landfills. Proceedings Institution of Civil Engineers, Part 1 88, 971–993. Cerca con Google

Watts, K.S., Charles, A., 1999. Settlement characteristics of landfill wastes. Proceedings of the Institution of Civil Engineers, Geotechnical Engineering, vol. 137, 225–233. Cerca con Google

Watts, K.S., Fisher, A.R.J., Lewicki, R.A., 2001. A large scale instrumented test of the behaviour of newly placed domestic waste. Proceedings Sardinia 2001, 8th International Landfill Symposium, Santa Margherita di Pula, Cagliari, Italy, vol. II, pp. 105–114. Cerca con Google

www.nationmaster.com (Environment Statistics, 2000. Municipal waste generation (most recent) by country). Vai! Cerca con Google

www.greenanswers.com (Green Answers, 2006. What countries produce the most trash?). Vai! Cerca con Google

www.gsanews.it/igiene-urbana (Giornale dei servizi ambientali, 2008). Vai! Cerca con Google

Yen, B.C., Scanlon, B., 1975. Sanitary landfill settlement rates. Journal of the Geotechnical Engineering Division, 101 (5), 475–487. Cerca con Google

Yuen, S.T.S., 1999. Bioreactor landfills promoted by leachate recirculation: a full-scale study. Ph.D. Thesis, University of Melbourne, Australia. Cerca con Google

Zardava, K., Powrie, W., White, J., 2009. The determination of the moisture retention characteristics of waste materials using vertical drainage experiments. Third International Workshop: Hydro-Physico-Mechanics of Landfills, Braunschweig, Germany. Cerca con Google

Zeiss, C., 1997. A comparison of approaches to the prediction of landfill leachate generation. Proceedings Sardinia 1997, 6th International Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, Vol. II, 13–22. Cerca con Google

Zekkos, D., 2005. Evaluation of static and dynamic properties of Municipal Solid Waste. Ph.D. Thesis, Department of Civil and Environmental Engineering, University of California, Berkeley. Cerca con Google

Zhan, T.L.T., Chen, Y.M., Ling, W.A., 2008. Shear strength characterization of municipal solid waste at the Suzhou landfill, China. Engineering Geology, 97, 97–111. Cerca con Google

Zheng, B., Richards, D.J., Smallman, D.J., Beaven, R.P., 2007. Assessing MSW degradation by BMP and fibre analysis. Proceeding of the Institution of Civil Engineers, Waste and Resource Management, 160 (4), 133–139. Cerca con Google

Zornberg, J.G., Jernigan, B.L., Sanglerat, T.R., Cooley, B.H., 1999. Retention of free liquids in landfills undergoing vertical expansion. Journal of Geotechnical and Geoenvironmental Engineering, 125, 583–594. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record