Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Zanon, Mattia (2013) Non-Invasive Continuous Glucose Monitoring: Identification of Models for Multi-Sensor Systems. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Diabetes is a disease that undermines the normal regulation of glucose levels in the blood. In people with diabetes, the body does not secrete insulin (Type 1 diabetes) or derangements occur in both insulin secretion and action (Type 2 diabetes). In
spite of the therapy, which is mainly based on controlled regimens of insulin and drug administration, diet, and physical exercise, tuned according to self-monitoring of blood glucose (SMBG) levels 3-4 times a day, blood glucose concentration often exceeds the normal range thresholds of 70-180 mg/dL. While hyperglycaemia mostly affects long-term complications (such as neuropathy, retinopathy, cardiovascular, and heart diseases), hypoglycaemia can be very dangerous in the short-term and, in the worst-case scenario, may bring the patient into hypoglycaemic coma. New scenarios in diabetes treatment have been opened in the last 15 years, when continuous glucose monitoring (CGM) sensors, able to monitor glucose concentration continuously (i.e. with a reading every 1 to 5 min) over several days, entered clinical research. CGM sensors can be used both retrospectively, e.g., to optimize the metabolic control, and in real-time applications, e.g., in the "smart" CGM sensors, able to generate alerts when glucose concentrations are predicted to exceed the normal range thresholds or in the so-called "artificial pancreas". Most CGM sensors exploit needles and are thus invasive, although minimally. In order to improve patients comfort, Non-Invasive Continuous Glucose Monitoring (NI-CGM) technologies have been widely investigated in the last years and their ability to monitor glucose changes in the human body has been demonstrated under highly controlled (e.g. in-clinic) conditions.
As soon as these conditions become less favourable (e.g. in daily-life use) several problems have been experienced that can be associated with physiological and environmental
perturbations. To tackle this issue, the multisensor concept received greater attention in the last few years. A multisensor consists in the embedding of sensors of different nature
within the same device, allowing the measurement of endogenous (glucose, skin perfusion, sweating, movement, etc.) as well as exogenous (temperature, humidity, etc.) factors.
The main glucose related signals and those measuring specific detrimental processes have to be combined through a suitable mathematical model with the final goal of estimating glucose non-invasively. White-box models, where differential equations are used to describe the internal behavior of the system, can be rarely considered to combine multisensor measurements because a physical/mechanistic model linking multisensor data
to glucose is not easily available. A more viable approach considers black-box models, which do not describe the internal mechanisms of the system under study, but rather depict how the inputs (channels from the non-invasive device) determine the output (estimated glucose values) through a transfer function (which we restrict to the class of multivariate linear models). Unfortunately, numerical problems usually arise in the
identication of model parameters, since the multisensor channels are highly correlated (especially for spectroscopy based devices) and for the potentially high dimension of the
measurement space.
The aim of the thesis is to investigate and evaluate different techniques usable for the identication of the multivariate linear regression models parameters linking multisensor data and glucose. In particular, the following methods are considered: Ordinary Least Squares (OLS); Partial Least Squares (PLS); the Least Absolute Shrinkage and Selection Operator (LASSO) based on l1 norm regularization; Ridge regression based on l2 norm regularization; Elastic Net (EN), based on the combination of the two previous norms. As a case study, we consider data from the Multisensor device mainly based on dielectric
and optical sensors developed by Solianis Monitoring AG (Zurich, Switzerland) which partially sponsored the PhD scholarship. Solianis Monitoring AG IP portfolio is now
held by Biovotion AG (Zurich, Switzerland). Forty-five recording sessions provided by Solianis Monitoring AG and collected in 6 diabetic human beings undertaken hypo and
hyperglycaemic protocols performed at the University Hospital Zurich are considered. The models identified with the aforementioned techniques using a data subset are then
assessed against an independent test data subset. Results show that methods controlling complexity outperform OLS during model test. In general, regularization techniques outperform PLS, especially those embedding the l1 norm (LASSO end EN), because they set many channel weights to zero thus resulting more robust to occasional spikes occurring in the Multisensor channels. In particular, the EN model results the best one,
sharing both the properties of sparseness and the grouping effect induced by the l1 and l2 norms respectively. In general, results indicate that, although the performance, in terms of overall accuracy, is not yet comparable with that of SMBG enzyme-based needle sensors, the Multisensor platform combined with the Elastic-Net (EN) models is a valid tool for the real-time monitoring of glycaemic trends. An effective application concerns the complement of sparse SMBG measures with glucose trend information within the recently developed concept of dynamic risk for the correct judgment of dangerous events such as hypoglycaemia.
The body of the thesis is organized into three main parts: Part I (including Chapters 1 to 4), first gives an introduction of the diabetes disease and of the current technologies for NI-CGM (including the Multisensor device by Solianis) and then states the aims of the thesis; Part II (which includes Chapters 5 to 9), first describes some of the issues to be faced in high dimensional regression problems, and then presents OLS, PLS, LASSO, Ridge and EN using a tutorial example to highlight their advantages and drawbacks; Finally, Part III (including Chapters 10-12), presents the case study with the data set and results. Some concluding remarks and possible future developments end the thesis. In particular, a Monte Carlo procedure to evaluate robustness of the calibration procedure for the Solianis Multisensor device is proposed, together with a new cost function to be used for identifying models.

Abstract (italiano)

Il diabete e una malattia che compromette la normale regolazione dei livelli di glucosio nel sangue. Nelle persone diabetiche, il corpo non secerne insulina (diabete di tipo 1) o si vericano delle alterazioni sia nella secrezione che nell'azione dell'insulina stessa (diabete di tipo 2). La terapia si basa principalmente su somministrazione di insulina e farmaci, dieta ed esercizio fisico, modulati in base alla misurazione dei livelli di
glucosio nel sangue 3-4 volte al giorno attraverso metodi finger-prick. Nonostante ciò, la concentrazione di glucosio nel sangue supera spesso le soglie di normalita di 70-180 mg/dL. Mentre l'iperglicemia implica complicanze a lungo termine (come ad esempio neuropatia, retinopatia, malattie cardiovascolari e cardiache), l'ipoglicemia puo essere molto pericolosa nel breve termine e, nel peggiore dei casi, portare il paziente in coma ipoglicemico. Nuovi scenari nella cura del diabete si sono affacciati negli ultimi 10 anni, quando sensori per il monitoraggio continuo della glucemia sono entrati nella fase di sperimentazione clinica. Questi sensori sono in grado di monitorare le concentrazioni di glucosio nel sangue con una lettura ogni 1-5 minuti per diversi giorni, permettendo un analisi sia retrospettiva, ad esempio per ottimizzare il controllo metabolico, che in tempo reale, per generare avvisi quando viene predetta l'uscita dalla normale banda euglicemica, e nel
cosiddetto "pancreas artificiale". La maggior parte di questi sensori per il monitoraggio continuo della glicemia sono minimatmente invasivi perche sfruttano un piccolo ago inserito sottocute. Gli ultimi anni hanno visto un crescente interesse verso tecnologie non invasive per il monitoraggio continuo della glicemia, con l'obiettivo di migliorare il comfort del paziente. La loro capacità di monitorare i cambiamenti di glucosio nel corpo
umano e stata dimostrata in condizioni altamente controllate tipiche di un'infrastruttura clinica. Non appena queste condizioni diventano meno favorevoli (ad esempio durante un
uso quotidiano di queste tecnologie), sorgono diversi problemi associati a perturbazioni fisiologiche ed ambientali. Per affrontare questo problema, negli ultimi anni il concetto di "multisensore" ha ottenuto un crescente interesse. Esso consiste nell'integrazione di sensori di diversa natura all'interno dello stesso dispositivo, permettendo la misurazione di fattori endogeni (glucosio, perfusione del sangue, sudorazione, movimento, ecc) ed esogeni (temperatura, umidita, ecc). I segnali maggiormente correlati con il glucosio e quelli legati agli altri processi sono combinati con un opportuno modello matematico con l'obiettivo finale di stimare la glicemia in modo non invasivo. Modelli di sistema (o a "scatola bianca"), nei quali equazioni differenziali descrivono il comportamento interno del
sistema, possono essere considerati raramente. Infatti, un modello fisico/meccanicistico legante i dati misurati dal multisensore con il glucosio non e facilmente disponibile. Un
differente approccio vede l'impiego di modelli di dati (o a "scatola nera") che descrivono il sistema in esame in termini di ingressi (canali misurati dal dispositivo non invasivo), uscita (valori stimati di glucosio) e funzione di trasferimento (che in questa tesi si limita alla classe dei modelli di regressione lineari multivariati). In fase di identificazione dei parametri del modello potrebbero insorgere problemi numerici legati alla collinearita tra sottoinsiemi dei canali misurati dal multisensore (in particolare per i dispositivi basati su spettroscopia) e per la dimensione potenzialmente elevata dello spazio delle misure.
L'obiettivo della tesi di dottorato e di investigare e valutare diverse tecniche per l'identicazione del modello di regressione lineare multivariata con lo scopo di stimare i livelli di glicemia non invasivamente. In particolare, i seguenti metodi sono considerati: Ordinary Least Squares (OLS), Partial Least Squares (PLS), the Least Absolute Shrinkage and Selection Operator (LASSO) basato sulla regolarizzazione con norma l1; Ridge basato sulla regolarizzazione con norma l2; Elastic-Net (EN) basato sulla combinazione delle due norme precedenti. Come caso di studio per l'applicazione delle metodologie proposte, consideriamo i dati misurati dal dispositivo multisensore, principalmente basato su sensori dielettrici ed ottici, sviluppato dall'azienda Solianis Monitoring AG (Zurigo, Svizzera), che ha parzialmente sostenuto gli oneri finanziari legati al progetto di dottorato durante il quale questa tesi e stata sviluppata. La tecnologia del multisensore e la proprietà
intellettuale di Solianis sono ora detenute da Biovotion AG (Zurigo, Svizzera). Solianis Monitoring AG ha fornito quarantacinque sessioni sperimentali collezionate da 6 pazienti
soggetti a protocolli ipo ed iperglicemici presso l'University Hospital Zurich. I modelli identificati con le tecniche di cui sopra, sono testati con un insieme di dati diverso da quello utilizzato per l'identicazione dei modelli stessi. I risultati dimostrano chei metodi di controllo della complessita hanno accuratezza maggiore rispetto ad OLS. In generale, le tecniche basate su regolarizzazione sono migliori rispetto a PLS. In
particolare, quelle che sfruttano la norma l1 (LASSO ed EN), pongono molti coefficienti del modello a zero rendendo i profili stimati di glucosio piu robusti a rumore occasionale che interessa alcuni canali del multi-sensore. In particolare, il modello EN risulta il migliore, condividendo sia le proprietà di sparsita e l'effetto raggruppamento indotte rispettivamente dalle norme l1 ed l2. In generale, i risultati indicano che, anche se le prestazioni, in termini di accuratezza dei profili di glucosio stimati, non sono ancora confrontabili con quelle dei sensori basati su aghi, la piattaforma multisensore combinata
con il modello EN è un valido strumento per il monitoraggio in tempo reale dei trend glicemici. Una possibile applicazione si basa sull'utilizzo del'informazione dei trend glicemici per completare misure rade effettuate con metodi finger-prick. Sfruttando il concetto di rischio dinamico recentemente sviluppato, e' possibile dare una corretta valutazione di eventi potenzialmente pericolosi come l'ipoglicemia.
La tesi si articola in tre parti principali: Parte I (che comprende i Capitoli 1-4), fornisce inizialmente un'introduzione sul diabete, una recensione delle attuali tecnologie per il monitoraggio non-invasivo della glicemia (incluso il dispositivo multisensore di
Solianis) e gli obiettivi della tesi; Parte II (che comprende i Capitoli 5-9), presenta alcune delle difficoltà affrontate quando si lavora con problemi di regressione su dati di grandi
dimensioni, per poi presentare OLS, PLS, LASSO, Ridge e EN sfruttando un esempio tutorial per evidenziarne vantaggi e svantaggi. Infine, Parte III, (Capitoli 10-12) presenta il set di dati del caso di studio ed i risultati. Alcune note conclusive e possibili sviluppi futuri terminano la tesi. In particolare, vengono brevemente illustrate una metodologia basata su simulazioni Monte Carlo per valutare la robustezza della calibrazione del modello e l'utilizzo di un nuova nuova funzione obiettivo per l'identicazione dei modelli.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Sparacino, Giovanni
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > INGEGNERIA DELL'INFORMAZIONE > BIOINGEGNERIA
Data di deposito della tesi:29 Gennaio 2013
Anno di Pubblicazione:29 Gennaio 2013
Parole chiave (italiano / inglese):multivariate, diabetes, multisensor, linear regression, glucose sensor
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/06 Bioingegneria elettronica e informatica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:5684
Depositato il:14 Ott 2013 13:39
Simple Metadata
Full Metadata
EndNote Format

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record