Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Cavinato, Marianna (2013) Verso la comprensione dello stato vegetativo e di minima coscienza. [Tesi di dottorato]

Questa è la versione più aggiornata di questo documento.

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di dottorato)
10Mb

Abstract (inglese)

The limited evidence and inconsistency of purposeful behaviors in patients in a minimally conscious state (MCS) asks for objective electrophysiological marker of the level of consciousness. Here, a comparison between event-related potentials (ERPs) was investigated using different level of stimulus complexity. ERPs were recorded in seventeen patients, 6 of which in vegetative state (VS), 11 in MCS, and 10 controls. Three oddball paradigms with different level of complexity were applied: sine tones, the subject’s own name versus sine tones and other first names. Latencies and amplitudes of N1 and P3 waves were compared. Cortical responses were found in all MCS patients, and in 6 of 11 patients in VS. Healthy controls and MCS patients showed a progressive increase of P3 latency in relation to the level of stimulus complexity. No modulation of P3 latency was observed in the vegetative patients. These results suggest that the modulation of P3 latency related to stimulus complexity may represent an objective index of higher-order processing integration that predicts the recovery of consciousness from VS to MCS when clinical manifestations are inconsistent.
A second step was encouraged by the work of Schiff et al. (2007) reporting a MCS patient who responded to deep brain stimulation (DBS). We explored six patients that participated in an ABA design alternating between repetitive transcranial magnetic stimulation (rTMS) and peripheral nerve stimulation. After peripheral stimulation, patients did not exhibit clinical, behavioral, or electroencephalographic (EEG) changes. The frequency of specific and meaningful behaviors increased after rTMS in a patient, along with the absolute and relative power of the EEG δ, β, and α bands.
Afterwards, a more consistent sample has been enrolled to reproduce the first encouraging results. Thirty MCS/VS patients participated to a randomized controlled trial consisting of transcranial stimulations with transcranial direct current stimulation (tDCS) and rTMS. Patients in MCS showed an increase of long range fronto-parietal connectivity indicating a complex information processing and a decrease of fluctuation of arousal . VS patients did not. These results suggest that rTMS may improve long range connections between remote cortical areas and promote, at some level, recovery of awareness and arousal in MCS patients.

Abstract (italiano)

Le limitate evidenze e la fluttuazione dei comportamenti intenzionali neiin pazienti in stato di minima coscienza (SMC) richiedono la ricerca di un indice marcatore elettrofisiologico obiettivo del livello di coscienza. Nel presente studio, è stato mostrato un confronto tra potenziali evento-correlati (ERP) utilizzando diversi livelli di complessità di stimolo. Gli ERP sono stati registrati in diciassette pazienti, di cui sei in stato vegetativo (SV), 11 in SMC, e 10 controlli sani. I partecipanti sono stati sottoposti a tre paradigmi di diverso grado di complessità: toni puri, il nome proprio del soggetto verso toni puri, e verso altri nomi. Sono state riscontrate risposte corticali in tutti i pazienti in SMC, ed in 6 degli 11 pazienti in SV. I controlli sani ed i pazienti in SMC hanno mostrato un progressivo aumento della latenza dell’onda P300 in relazione al livello di complessità dello stimolo. Nessuna modulazione di latenza è stata osservata nei pazienti in SV. Questi risultati suggeriscono che la modulazione di latenza della P300 relativa a complessità dello stimolo può rappresentare un indice obiettivo dell’integrazione tra aree di elaborazione di ordine superiore, presupposto necessario per il recupero della coscienza.
Un secondo passo è stato incoraggiato dal lavoro di Schiff e coll. (2007) che riportarono il miglioramento clinico di un paziente in SMC dopo stimolazione cerebrale profonda (DBS). Abbiamo studiato sei pazienti sottoponendoli ad uno studio di tipo ABA con alternanza tra stimolazione magnetica transcranica ripetitiva (rTMS) e stimolazione dei nervi periferici. Dopo stimolazione periferica, i pazienti non ha evidenziato variazioni dei quadric clinico, comportamentale o elettroencefalografico (EEG). Tuttavia, dopo la rTMS, un paziente manifestò un aumento della frequenza di specifici comportamenti coscienti, associato ad un incremento della potenza assoluta e relativa delle bande EEG alfa, beta e delta. Successivamente, è stato arruolato un campione più consistente di pazienti per riprodurre i primi incoraggianti risultati. Trenta pazienti in SV/SMC hanno partecipato ad uno studio controllato randomizzato che comportava l’utilizzo di stimoli transcranici con stimolazione transcranica a corrente continua (tDCS) e rTMS. I pazienti in SMC hanno mostrato un aumento di connettività fronto-parietale, che indica una complessa elaborazione delle informazioni sensoriali, ed una diminuzione della fluttuazione dell’arousal. Il quadro dei pazienti in SV rimase invariato. Questi risultati suggeriscono che la rTMS può migliorare le connessioni a lungo raggio tra remote aree corticali e promuovere, in qualche modo, il recupero di coscienza nei pazienti in SMC.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Battistin, Leontino
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE MEDICHE, CLINICHE E SPERIMENTALI > NEUROSCIENZE
Data di deposito della tesi:28 Gennaio 2013
Anno di Pubblicazione:28 Gennaio 2013
Parole chiave (italiano / inglese):coscienza; stato vegetativo; TMS; tDCS; coerenza EEG consciousness; vegetative state; TMS; tDCS; EEG coherence
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/26 Neurologia
Struttura di riferimento:Dipartimenti > Dipartimento di Neuroscienze
Codice ID:5707
Depositato il:28 Ott 2013 10:14
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adams JH, Graham DI, Jennett B. The neuropathology of the vegetative state after an acute brain insult. Brain. 2000;123:1327-38. Cerca con Google

Alkire MT. A unitary physiologic theory for the mechanism of anesthetic-induced loss of consciousness. In: toward a science of consciousness. Thorverton: Imprint Academic; 2000 Cerca con Google

Andrews K, Murphy L, Munday R, Littlewood C. Misdiagnosis of the vegetative state: retrospective study in a rehabilitation unit. BMJ 1996; 313: 13-16. Cerca con Google

Azila Noh N, Fuggetta G. Human cortical theta reactivity to high-frequency repetitive transcranial magnetic stimulation. Hum Brain Mapp 2012; 33:2224-2237. Cerca con Google

Babiloni C, Sarà M, Vecchio F, e coll. Cortical sources of resting-state alpha rhythms are abnormal in persistent vegetative state patients. Clin Neurophysiol 2009;120:719-729. Cerca con Google

Başar E, Schürmann M, Sakowitz O. The selectively distributed theta system: functions. Int J Psychophysiol. 2001;39:197-212. Cerca con Google

Baumer, T, Lange R, Liepert J, Weiller C, Siebner HR, Rothwell JC, et al. Repeated premotor rTMS leads to cumulative plastic changes of motor cortex excitability in humans. Neuroimage 2003;20:550–60. Cerca con Google

Bekinschtein TA, Shalom DE, Forcato C, Herrera M, Coleman MR, Manes FF, Sigman M. Classical conditioning in the vegetative and minimally conscious state. Nat Neurosci. 2009;12(10):1343-9 Cerca con Google

Beninger RJ, Kendall SB, Vanderwolf CH. The ability of rats to discriminate their own behaviour. Can J Psychol 1974; 28:79–91. Cerca con Google

Berardelli A, Inghilleri M, Rothwell JC, e coll. Facilitation of muscle-evoked responses after repetitive cortical stimulation in man. Exp Brain Res 1998; 22:79-84. Cerca con Google

Berger H. Uber das Elektrenkephalogramm des Menschen. Arch Psychiat 1929; 87:527–70. Cerca con Google

Bernat JL, Rottenberg DA. Conscious awareness in PVC and MCS. The borderlands of neurology. Neurology 2007; 68:885-886. Cerca con Google

Boly M, Faymonville ME, Peigneux P, Lambermont B, Damas F, Luxen A, Lamy M, Moonen G, Maquet P, Laureys S. Cerebral processing of auditory and noxious stimuli in severely brain injured patients: differences between VS and MCS. Neuropsychol Rehabil. 2005;15:283-9. Cerca con Google

Boly M, Faymonville ME, Peigneux P, Lambermont B, Damas P, Del Fiore G, Degueldre C, Franck G, Luxen A, Lamy M, Moonen G , Maquet P, Laureys S. Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol. 2004;61:233-8. Cerca con Google

Bostanov V, Kotchoubey B. Recognition of affective prosody: continuous wavelet measures of event-related brain potentials to emotional exclamations. Psychophysiol 2004;41:259–68. Cerca con Google

Brasil-Neto JP, Cohen LG, Pascual-Leone A, Jabir FK, Wall RT, Hallett M. Rapid reversible modulation of human motor outputs after transient deafferentation of the forearm: a study with transcranial magnetic stimulation. Neurology 1992;42:1302-06. Cerca con Google

Brazier MAB. A history of the electrical activity of the brain: the first half-century. London; Pitman: 1961 Cerca con Google

Bremer F. Cerveau `isole' et physiologie du sommeil. C R Seanc Soc Biol 1929; 102:1235–41. Brignani D, Manganotti P, Rossini PM, e coll. Modulation of cortical oscillatory activity during transcranial magnetic stimulation. Hum Brain Mapp 2008;29:603-612. Cerca con Google

Buchsbaum MS, Gillin JC, Wu J, Hazlett E, Sicotte N, Dupont RM, et al. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography. Life Sci, 1989; 45: 1349–56. Cerca con Google

Cavinato M, Freo U, Ori C, Zorzi M, Tonin P, Piccione F, Merico A. Post-acute P300 predicts recovery of consciousness from traumatic vegetative state. Brain Inj. 2009;23:973-80. Cerca con Google

Chalmers DJ. The conscious mind. Oxford: Oxford University Press; 1996. Cerca con Google

Chen R, Classen J, Gerloff C, e coll. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997;48:1398-1403. Cerca con Google

Childs NL, Mercer WN, Childs HW. Accuracy of diagnosis of persistent vegetative state. Neurology 1993; 43: 1465–7. Cerca con Google

Coleman MR, Rodd JM, Davis MH, Johnsrude IS, Menon DK, Pickard JD, Owen AM. Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 2007;130:2494-507. Cerca con Google

Commissione tecnico-scientifica (istituita con D.M. 12 Settembre 2005). Stato vegetativo e stato di minima coscienza. Documento Finale. Roma 14 Dicembre 2005; Cerca con Google

Connolly JF, D’Arcy RCN. Innovations in neuropsychological assessment using event-related brain potentials. Int J Psychophysiol 2000; 37: 31-47. Cerca con Google

Consensus Conference Modena 2000. Modalità di trattamento riabilitativo del traumatizzato cranio-encefalico in fase acuta, criteri di trasferibilità in strutture riabilitative e indicazioni a percorsi appropriati. Giornale Italiano di Medicina Riabilitativa 2001; Vol 15 N° 1: 29-39; Cerca con Google

Cooper JB, Jane JA, Alves WM, Cooper EB. Right median nerve electrical stimulation to hasten awakening from coma. Brain Inj 1999;13:261-7. Cerca con Google

Corbetta, M., Shulman, G.L. Control of goal-directed and stimulus driven attention in the brain. Nat. Rev. Neurosci 2005. 3,201–215. Cerca con Google

Daltrozzo J, Wioland N, Mutschler V, Kotchoubey B. Predicting coma and other low responsive patients outcome using event-related brain potentials: a meta-analysis. Clin Neurophysiol 2007; 118(3): 606-14. Cerca con Google

Davey MP, Victor JD, Schiff ND. Power spectra and coherence in the EEG of a vegetative patient with severe asymmetric brain damage. Clin Neurophysiol. 2000;111:1949-54. Cerca con Google

Delorme, A., Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004;134, 9-21. Cerca con Google

Desmedt, JE. Clinical uses of evoked potentials. Clin Neurol. 1984;12(24):1198-210. Cerca con Google

Donchin E, Karis D, Bashore TR, Coles MGH and Gratton G. Cognitive psychophysiology and human information processing. In MGH Coles, E Donchin and SW Porges (Eds), Psychophysiology: Systems, Processes, and Applications, Guilford, New York, 1986, 244-67. Cerca con Google

Donchin E, and Coles MGH. Is the P3 component a manifestation of cognitive updating? Behav Brain Sci 1988; 11, 357–427. Cerca con Google

Engel AK, Fries P, Roelfsema PR, Konig P, Singer W. Temporal binding, binocular rivalry, and consciousness. Conscious Cogn. 1999;8:128-51. Cerca con Google

Faran S, Vatine JJ, Lazary A, Ohry A, Birbaumer N, Kotchoubey B. Late recovery from permanent traumatic vegetative state heralded by event-related potentials. J Neurol Neurosurg Psychiatry. 2006 Aug;77(8):998-1000 Cerca con Google

Fernández-Espejo D, Junqué C, Vendrell P, Bernabeu M, Roig T, Bargalló N, Mercader JM. Cerebral response to speech in vegetative and minimally conscious states after traumatic brain injury. Brain Inj. 2008;22(11):882-90. Cerca con Google

Ferrarelli F, Massimini M, Sarasso S, e coll. Brekdown in cortical effective connectivity during midazolam-induced loss of consciousness. Proc Natl Acad Sci USA 2010;107:2681-6. Cerca con Google

Fischer C, Luauté J, Adeleine P, Morlet D. Predictive value of sensory and cognitive evoked potentials for awakening from coma. Neurology 2004; 63(4): 669-73. Cerca con Google

Fischer C, Luauté J. Evoked potentials for the prediction of vegetative state in the acute stage of coma. Neuropsychol Rehabil. 2005; 15(3-4): 372-80. Cerca con Google

Fischer C, Luaute J, Morlet D. Event-related potentials (MMN and novelty P3) in permanent vegetative or minimally conscious states. Clin Neurophysiol. 2010;121(7):1032-42 Cerca con Google

Fischer C, Dailler F, Morlet D. Novelty P3 elicited by the subject's own name in comatose patients. Clin Neurophysiol. 2008; 119(10): 2224-30. Cerca con Google

Fiset P, Paus T, Daloze T, Plourde G, Meuret P, Bonhomme V, et al. Brain mechanisms of propofol-induced loss of consciousness in humans: a positron emission tomographic study. J Neurosci 1999; 19: 5506–13. Cerca con Google

Fried I, MacDonald KA, Wilson CL. Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 1997; 18(5): 753-65. Cerca con Google

Fonseca LC, Tedrus GM, Prandi LR, Andrade AC. Quantitative electroencephalography power and coherence measurements in the diagnosis of mild and moderate Alzheimer's disease. Arq Neuropsiquiatr. 2011;69:297-303. Cerca con Google

Formaggio E, Storti SF, Bertoldo A, e coll. Integrating EEG and fMRI in epilepsy. Neuroimage 2011;54:2719-2713. Cerca con Google

Fox P, Ingham R, George MS, Mayberg H, Ingham J, Roby J, Martin C, Jerabek P. Imaging human intra-cerebral connectivity by PET during TMS. Neuroreport. 1997 18;8:2787-91. Cerca con Google

Fuggetta G, Pavone EF, Fiaschi A, e coll. Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: a combined EEG and TMS study. Hum Brain Mapp 2008; 29:1-13. Cerca con Google

Fuggetta G, Fiaschi A, Manganotti P. Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study. Neuroimage 2005;27:896-908. Cerca con Google

Gallop GG Jr. Chimpanzees: self-recognition. Science 1970; 167: 86–7. Cerca con Google

Gawryluk JR, D'Arcy RC, Connolly JF, Weaver DF. Improving the clinical assessment of consciousness with advances in electrophysiological and neuroimaging techniques. BMC Neurol. 2010; 10: 11. Cerca con Google

Giacino J, and Whyte J. The vegetative state and minimally conscious state: current knowledge and remaining questions. J. Head Trauma Rehabil 2005; 20:30-35 Cerca con Google

Giacino JT, Kalmar K, Whyte J. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch Phys Med Rehabil 2004; 85:2020-2029. Cerca con Google

Giacino JT, Ashwal S, Childs N, Cranford R, Jennett B, Katz DI, Kelly JP, Rosenberg JH, Whyte J, Zafonte RD, and Zasler ND. The minimally conscious state: Definition and diagnostic criteria. Neurology 2002; 58: 349-53. Cerca con Google

Glannon W. Neurostimulation and the minimally conscious state. Bioethics 2008; 22(6):337-45. Cerca con Google

Glass I, Sazbon L, Groswasser Z. Mapping "cognitive" event-related potentials in prolonged postcoma unawareness state. Clin Electroencephalogr. 1998; 29(1): 19-30. Cerca con Google

Greenfield S. How might the brain generate consciousness? In: Rose S, editor. From brains to consciousness. London: Allen Lane; 1998. p.210–27. Cerca con Google

Griskova I, Ruksenas O, Dapsys K, Herpertz S, Höppner J. The effects of 10 Hz repetitive transcranial magnetic stimulation on resting EEG power spectrum in healthy subjects. Neurosci Lett. 2007 29;419:162-7. Cerca con Google

Guérit JM, Verougstraete D, de Tourtchaninoff M, Debatisse D, Witdoeckt C. ERPs obtained with the auditory oddball paradigm in coma and altered states of consciousness: clinical relationships, prognostic value, and origin of components. Clin Neurophysiol. 1999;110(7):1260-9. Cerca con Google

Guse B, Falkai P, Wobrock TJ Cognitive effects of high-frequency repetitive transcranial magnetic stimulation: a systematic review. J Neural Transm. 2010;117:105-22. Cerca con Google

Hallett M. EEG coherence: an introduction. J Clin Neurophysiol. 1999;16:499-500. Cerca con Google

Hebb DO. The organization of behavior. New York: John Wiley; 1949 Cerca con Google

Heiss W-D, Pawlik G, Herholz K, Wagner R, Wienhard K. Regional cerebral glucose metabolism in man during wakefulness, sleep, and dreaming. Brain Res 1985; 327:362–6. Humphrey N. Nature's psychologists. New Scientist 1978; 78:900–3. Cerca con Google

Holeckova I, Fischer C, Giard MH, Delpuech C, Morlet D. Brain responses to a subject's own name uttered by a familiar voice. Brain Res 2006; 1082(1): 142-52. Cerca con Google

Howard RS, Holmes PA, Siddiqui A, Treacher D, Tsiropoulos I, Koutroumanidis M. Hypoxic-ischaemic brain injury: imaging and neurophysiology abnormalities related to outcome. QJM. 2012;105:551-61 Cerca con Google

Hurley SL. Consciousness in action. Cambridge (MA): Harvard University Press; 1998. Cerca con Google

James W. The principles of psychology. New York: Henry Holt; 1890. Cerca con Google

Jasper HH, Descarries L, Castelucci VF, Rossignol S, editors. Consciousness at the frontiers of neuroscience. Philadelphia: Lipincott-Raven, 1998. p. 75–94. Cerca con Google

Johnson R Jr. On the neural generators of the P300 component of the event-related potential. Psychophysiology 1993; 30(1): 90-7. Cerca con Google

Jones BE. The neural basis of consciousness across the sleep-waking cycle. In: Jasper HH, Descarries L, Castelucci VF, Rossignol S, editors. Consciousness: at the frontiers of neuroscience. Advances in neurology, Vol. 77. Philadelphia: Lippincott-Raven; 1998. p. 75–94. Cerca con Google

Kampfl A, Franz G, Aichner F, Pflauser B, Haring H-P, Felber S, Luz G, Schocke M, Schmutzhard E. The persisitent vegetative state after closed head injury: clinical and magnetic resonance imaging findings in 42 patients. J Neurosurg 1998;88:809–16. Cerca con Google

Keck ME, Sillaber I, Ebner K, Welt T, Toschi N, Kaehler ST, Singewald N, Philippu A, Elbel GK, Wotjak CT, Holsboer F, Landgraf R, Engelmann M. Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. Eur J Neurosci. 2000;12:3713-20. Cerca con Google

Kilduff TS, Kushida CA. Circadian regulation of sleep. In: Chokroverty S, editor. Sleep disorders medicine. 2nd ed. Boston: Butterworth Heinemann; 1999. p. 135–47. Cerca con Google

Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev. 1999;29:169-95. Cerca con Google

Kobylarz EJ and Schiff ND. Neurophysiological correlates of persistent vegetative and minimally conscious states. Neuropsychol Rehab 2005;15: 323-332. Cerca con Google

Kotchoubey B. Event-related potential measures of consciousness: two equations with three unknowns. Prog Brain Res. 2005;150:427-44 Cerca con Google

Kotchoubey B, Lang S, Mezger G, Schmalohr D, Schneck M, Semmler A, Bostanov V, Birbaumer N. Information processing in severe disorders of consciousness: vegetative state and minimally conscious state. Clin Neurophysiol 2005; 116(10): 2441-53. Cerca con Google

Kotchoubey B, Lang S, Bostanov V, Birbaumer N. Is there a mind? Psychophysiology of unconscious patients. News Physiol Sci 2002; 17: 38-42. Cerca con Google

Kotchoubey B, Lang S, Baales R, Herb E, Maurer P; Mezger G, Schmalohr D, Bostanov V, Birbaumer N. Brain potentials in human patients with extremely severe diffuse brain damage. Neurosci Lett 2001; 301: 37-40. Cerca con Google

Kutas M, Dale A. Electrical and magnetic readings of mental functions. In: Rugg MD, editor. Cognitive neuroscience. Hove (UK): Psychology Press; 1997. p. 197–242. Cerca con Google

Lang S, Kotchoubey B. Brain responses to number sequences with and without active task requirement. Clin Neurophysiol 2002;113:1734–41. Cerca con Google

Lapitskaya N, Coleman MR, Nielsen JF,e coll. Disorders of consciousness: further pathophysiological insights using motor cortex transcranial magnetic stimulation. Prog Brain Res 2009; 177:191-200. Cerca con Google

Laureys S. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn Sci 2005; 9:556-569. Cerca con Google

Laureys S, Owen AM, and Schiff ND. Brain function in coma, vegetative state, and related disorders. Lancet Neurol 2004;3:537-46. Cerca con Google

Laureys S, Perrin F, Faymonville M-E, Schnakers C, Boly M, Bartsch V, Majerus S, Moonen G, and Maquet P. Cerebral processing in the minimally conscious state. Neurology 2004;63:916-8. Cerca con Google

Laureys S, Perrin F, Schnakers C, Boly M, Majerus S. Residual cognitive function in comatose, vegetative and minimally conscious states. Curr Opin Neuro. 2005; 18: 726-33. Cerca con Google

Laureys S, Faymonville ME, Peigneux P, e coll. Cortical processing of noxious somatosensory stimuli in the persistent vegetative state. Neuroimage 2002; 17:732-41. Cerca con Google

Laureys S, Faymonville ME, Degueldre C, Fiore GD, Damas P, Lambermont B, Janssens N, Aerts J, Franck G, Luxen A, Moonen G, Lamy M, Maquet P. Auditory processing in the vegetative state. Brain 2000;123:1589-601. Cerca con Google

Leon-Carrion J, Martin-Rodriguez JF, Damas-Lopez J, Barroso y Martin JM, Dominguez-Morales MR. Brain function in the minimally conscious state: a quantitative neurophysiological study. Clin Neurophysiol. 2008;119:1506-14. Cerca con Google

Llinas R, Ribary U. Coherent 40-Hz oscillation characterizes dream state in humans.Proc Natl Acad Sci USA 1993; 90: 2078–81. Cerca con Google

Lombardi F, Taricco M, De Tanti A, Telaro E, Liberati A. Sensory stimulation ofm brain-injured individuals in coma or vegetative state: results of a Cochrane systematic review. Clin Rehabil.2002;16:464-72. Cerca con Google

Louise-Bender Pape T, Rosenow J, Lewis G, e coll. Repetitive transcranial magnetic stimulation-associated neurobehavioral gains during coma recovery. Brain Stimul 2009; 2:22-35. Cerca con Google

Macquet P, Degueldre C, Delfiore G, Aerts J, Peters JM, Luxen A, et al. Functional neuroanatomy of human slow wave sleep. J Neurosci 1997; 17: 2807–12. Cerca con Google

Maguire MJ, Brier MR, Moore PS, Ferree TC, Ray D, Mostofsky S, Hart J Jr, Kraut MA. The influence of perceptual and semantic categorization on inhibitory processing as measured by the N2-P3 response. Brain Cogn 2009; 71(3): 196-203. Cerca con Google

Mancuso M. Commissione epidemiologica C.N.A.T.C. Presidente Associazione A.Tra.C.To. Toscana. Il trauma cranio encefalico: epidemiologia, esiti, percorso riabilitativo (2009). Cerca con Google

Manganotti P, Formaggio E, Storti SF, e coll. Time-frequency analysis of short-lasting modulation of EEG induced by intracortical and transcallosal paired TMS over motor areas. J Neurophysiol 2012; 107:2475-2484. Cerca con Google

Manshanden I, De Munck JC, Simon NR, Lopes da Silva FH. Source localization of MEG sleep spindles and the relation to sources of alpha band rhythms. Clin Neurophysiol. 2002;113:1937-47. Cerca con Google

Markowitsch HJ, Kessler J. Massive impairment in executive functions with partial preservation of other cognitive functions: the case of a young patient with severe degeneration of the prefrontal cortex. Exp Brain Res 2000;133: 94-102. Cerca con Google

Marrocco RT, Witte EA, Davidson MC. Arousal systems. Curr Opin Neurobiol 1994; 4: 166–70. Cerca con Google

Massimini M, Ferrarelli F, Murphy M, e coll. Cortical reactivity and effective connectivity during REM sleep in humans. Cogn Neurosci 2010;1:176-183. Cerca con Google

Massimini M, Boly M, Casali A, e coll. A perturbational approach for evaluating the brain’s capacity for consciousness. Prog Brain Res 2009; 177:201-214. Cerca con Google

Massimini M., Ferrarelli F, Huber R, e coll. Breakdown of cortical effective connectivity during sleep. Science 2005; 309: 2228-32. Cerca con Google

Mataro M, Jurado MA, Garcia-Sanchez C, e coll. Long-term effects of bilateral frontal brain lesion: 60 years after injury with an iron bar. Arch Neurol 2001;58:1139-1142. Cerca con Google

McCarley RW. Sleep neurophysiology: basic mechanisms underlying control of wakefulness and sleep. In: Chokroverty S, editor. Sleep disorders medicine. Boston: Butterworth Heinemann; 1999. p. 21–50. Cerca con Google

McKay DR, Ridding MC, Thompson PD, Miles TS. Induction of persistent changes in the organization of the human motor cortex. Exp Brain Res 2002;143:342–349. Cerca con Google

Metzinger T, editor. Conscious experience. Schoningh: Imprint Academic; 1995. Cerca con Google

Ministero della Salute. Direzione Generale della Programmazione Sanitaria dei Livelli Essenziali di Assistenza e dei Principi Etici di Sistema. Sintesi documento stato vegetativo e stato di minima coscienza; 15 ottobre 2008 Cerca con Google

Moriya T, Takahashi S, Ikeda M, Suzuki-Yamashita K, Asai M, Kadotani H, Okamura H, Yoshioka T, Shibata S. N-methyl-D-aspartate receptor subtype 2C is not involved in circadian oscillation or photoic entrainment of the biological clock in mice. J Neurosci Res. 2000 15;61:663-73 Cerca con Google

Moruzzi G, Magoun HW. Brain stem reticular formation and the activation of the EEG. Electroencephalogr Clin Neurophysiol 1949;1: 455–73. Cerca con Google

Müller HM, Kutas M. What's in a name? Electrophysiological differences between spoken nouns, proper names and one's own name. Neuroreport. 1996; 8(1): 221-5. Cerca con Google

Multi-Society Task Force on PSV Medical Aspects of the Persistent Vegetative State—Second of Two Parts. New England Journal of Medicine 1994;333:1572-1579. Cerca con Google

Munglani R, Andrade J, Sapsford DJ, Baddeley A, Jones JG. A measure of consciousness and memory during isoflurane administration: the coherent frequency. Br J Anaesth 1993; 71: 633–41. Cerca con Google

Muthuswamy J, Thakor NV. Spectral analysis methods for neurological signals. J Neurosci Methods 1998 31;83:1-14. Cerca con Google

Näätänen R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measured of cognitive function. Behav Brain Sci 1990; 13: 201-88. Cerca con Google

Nagel T. What is it like to be a bat? In: Nagel T. Mortal questions. Cambridge: Cambridge University Press; 1979. p. 165–80 Cerca con Google

Nikouline V, Ruohonen J, Ilmoniemi RJ. The role of the coil click in TMS assessed with simultaneous EEG. Clin Neurophysiol 1999;110:1325-1328 Cerca con Google

Ofek E, Pratt H. Neurophysiological correlates of subjective significance. Clin Neurophysiol 2005; 116: 2354-62. Cerca con Google

Okamura H, Jing H, Takigawa M. EEG modification induced by repetitive transcranial magnetic stimulation. J Clin Neurophysiol. 2001;18:318-25. Cerca con Google

Pallis C, Harley DH. ABC of brainstem death. 2nd ed. London: BMJ Publishing Group; 1996. Cerca con Google

Pascual-Leone A, Tormos JM, Keenan J, Tarazona F, Cañete C, Catalá MD. Study and modulation of human cortical excitability with transcranial magnetic stimulation. J Clin Neurophysiol. 1998;15:333-43. Cerca con Google

Paulus,W. Outlasting excitability shifts induced by direct current stimulation of thehumanbrain.Suppl. Clin.Neurophysiol. 2004 57, 708–714 Cerca con Google

Penrose R. Shadows of the mind. Oxford: Oxford University Press; 1994. Cerca con Google

Perrin F, Schnakers C, Schabus M, Degueldre C, Goldman S, Brédart S, Faymonville ME, Lamy M, Moonen G, Luxen A, Maquet P, Laureys S. Brain Response to One's Own Name in Vegetative State, Minimally Conscious State, and Locked-in Syndrome. Arch Neurol 2006; 63: 562-9. Cerca con Google

Perrin F, García-Larrea L, Mauguière F, Bastuji H. A differential brain response to the subject's own name persists during sleep. Clin Neurophysiol. 1999 Dec;110(12):2153-64. Cerca con Google

Pfurtscheller G, Lopes da Silva FH. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110:1842-57 Cerca con Google

Piccione F, Cavinato M, Manganotti P, e coll. Behavioral and neurophysiological effects of ripetitive transcranial magnetic stimulation on the minimally conscious state: a case study. Neurorehabil Neural Repair 2011;25:98-102. Cerca con Google

Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol 1992; 9(4): 456-79. Cerca con Google

Plewnia C, Rilk AJ, Soekadar SR, e coll. Enhancement of long-range EEG coherence by synchronous bifocal transcranial magnetic stimulation. The European Journal of Neuroscience 2008; 27:1577-1583. Cerca con Google

Plum F. Coma and related global disturbances of the human conscious state. In: Peters A, Jones EG, editors. Cerebral cortex. New York: Plenum Press; 1991. p. 359–425 Cerca con Google

Plum F, Posner JB. The diagnosis of stupor and coma. 3rd ed. Philadelphia: F.A. Davis; 1982. Cerca con Google

Polanía R, Paulus W, Nitsche MA. Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp. 2012;33:2499-508 Cerca con Google

Polich J. Updating P3: An integrative theory of P3a and P3b. Clin Neurophysiol 2007; 118: 2128-48. Cerca con Google

Polich J. Task difficulty, probability, and inter-stimulus interval as determinants of P300 from auditory stimuli. Electroencephalogr Clin Neurophysiol 1987; 68(4): 311-20. Cerca con Google

Praamstra P, Kleine BU, Schnitzler A. Magnetic stimulation of the dorsal premotor cortex modulates the Simon effect. Neuroreport 1999;10:3671-3674. Cerca con Google

Rappaport M, Hall KM, Hopkins K, Belleza T, Cope DN. Disability rating scale for severe head trauma: coma to community. Arch Phys Med Rehabil 1982; 63(3): 118-23. Cerca con Google

Ridding MC, and Rothwell JC. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci 2007; 8:559-567. Cerca con Google

Robbins TW, Everitt BJ. Arousal systems and attention. In: Gazzaniga MS, editor. The cognitive neurosciences. Cambridge (MA): MIT Press; 1995. p. 703–20. Cerca con Google

Roizenblatt S, Fregni F, Gimenez R, Wetzel T, Rigonatti SP, Tufik S, Boggio PS, Valle AC. Site-specific effects of transcranial direct current stimulation on sleep and pain in fibromyalgia: a randomized, sham-controlled study. Pain Pract. 2007;7:297-306 Cerca con Google

Rose S, editor. From brains to consciousness? Princeton (NJ): Princeton University Press; 1998 Cerca con Google

Rossi S, Hallett M, Rossini PM, Pascual-Leone A, and the Safety of TMS Consensus Group. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clinical Neurophysiol 2009;120:2008-39. Cerca con Google

Rossini PM, Barker AT, Berardelli A, e coll. Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. Report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1994;91:79-92 Cerca con Google

Schiff ND. Recovery of consciousness after brain injury: a mesocircuit hypothesis. Trends Neurosci 2010;33:1-9. Cerca con Google

Schiff ND, Giacino JT, Kalmar K, e coll. Behavioural improvements with thalamic stimulation after severe traumatic brain injury. Nature 2007;448(7153):600-603. Cerca con Google

Schiff ND, Rodriguez-Moreno D, Kamal A, e coll. fMRI reveals large-scale network activation in minimally conscious patients. Neurology 2005; 64:514-523. Cerca con Google

Schiff ND, Ribary U, Moreno DR, Beattie B, Kronberg E, Blasberg R, Giacino J, McCagg C, Fins JJ, Llinás R, Plum F. Residual cerebral activity and behavioural fragments can remain in the persistently vegetative brain. Brain 2002; 125: 1210-34. Cerca con Google

Schiff ND, Plum F. The role of arousal and "gating" systems in the neurology of impaired consciousness. J Clin Neurophysiol. 2000;17:438-52. Cerca con Google

Schnakers C, Perrin F, Schabus M, Majerus S, Ledoux D, Damas P, Boly M, Vanhaudenhuyse A, Bruno MA, Moonen G, Laureys S. Voluntary brain processing in disorders of consciousness. Neurology. 2008; 71(20): 1614-20. Cerca con Google

Schoenle PW, Witzke W. How vegetative is the vegetative state? Preserved semantic processing in SV patients--evidence from N 400 event-related potentials. NeuroRehabilitation. 2004; 19(4): 329-34. Cerca con Google

Sharova EV, Mel'nikov AV, Novikova MR, Kulikov MA, Grechenko TN, Shekhter ED, Zaslavskii AY. Changes in spontaneous brain bioelectrical activity during transcranial electrical and electromagnetic stimulation. Neurosci Behav Physiol 2007;37:451-7 Cerca con Google

Shallice T. Information-processing models of consciousness. In: Marcel AJ, Bisiach E, editors. Consciousness in contemporary science. Oxford: Clarendon Press; 1988. p. 305–33. Cerca con Google

Shaw JC. The EEG, brain function, and Thomson's sampling theory. Biol Psychol. 1978;6:139-45. Cerca con Google

Schürmann M, Başar E. Topography of alpha and theta oscillatory responses upon auditory and visual stimuli in humans. Biol Cybern. 1994;72:161-74. Cerca con Google

Srinivasan N. Cognitive neuroscience of creativity: EEG based approaches. Methods. 2007;42:109-16. Cerca con Google

Steriade M. Neurophysiologic mechanisms of non-rapid eye movement (resting) sleep. In: Chokroverty S, editor. Sleep disorders medicine. 2nd ed. Boston: Butterworth Heinemann; 1999. Cerca con Google

Storti SF, Formaggio E, Franchini E, e coll. A multimodal imaging approach to the evaluation of post-traumatic epilepsy. Magn Reson Mater Phy 2012; 25:345-360. Cerca con Google

Strafella AP, Paus T, Fraraccio M, Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain 2003; 126:2609-2615. Cerca con Google

Tamura Y, Hoshiyama M, Nakata H, Hiroe N, Inui K, Kaneoke Y, Inoue K, Kakigi R. Functional relationship between human rolandic oscillations and motor cortical excitability: an MEG study. Eur J Neurosci. 2005;21:2555-62. Cerca con Google

Teasdale G, Jennett B. Assessment of coma and impaired consciousness: a practical scale. Lancet 1974; 2: 81–4. Cerca con Google

Tiitinen H, Virtanen J, Ilmoniemi RJ, e coll. Separation of contamination caused by coil clicks from responses elicited by transcranial magnetic stimulation. Clin Neurophysiol 1999;110:982-985. Cerca con Google

Tononi G, Koch C. The neural correlates of consciousness: an update. Ann N Y Acad Sci 2008; 1124: 239–61 Cerca con Google

Tononi G, Edelman GM. Consciousness and the integration of information in the brain. In: Jasper HH, Descarries L, Castelucci VF, Rossignol S, editors. Consciousness: at the frontiers of neuroscience. Avances in neurology, Vol. 77. Philadelphia: Lippincott-Raven1998:245–80 Cerca con Google

Valero-Cabré A & Pascual-Leone. A Impact of TMS on the primary motor cortex and associated spinal systems. IEEE Eng Med Biol 2005.24:29–36. Cerca con Google

van der Hiele K, Vein AA, Reijntjes RH, Westendorp RG, Bollen EL, van Buchem MA, van Dijk JG, Middelkoop HA. EEG correlates in the spectrum of cognitive decline. Clin Neurophysiol. 2007;118:1931-9. Cerca con Google

Van Der Werf YD, Paus T. The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions. Exp Brain Res. 2006;175:231-45. Cerca con Google

Vanderwolf CH. Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol. 1969;26:407-18. Cerca con Google

Vanhaudenhuyse A, Laureys S, Perrin F. Cognitive event-related potentials in comatose and post-comatose states. Neurocritical Care 2008;8:262-270. Cerca con Google

Velmans M. Understanding consciousness. London: Routledge; 2000. Cerca con Google

Verlicchi A, Zanotti B. Coma e stato vegetativo: ricerca dei metodi di risveglio. Unità operativa di neurochirurgia, azienda ospedaliera s. maria dellamisericordia, Udine, 2000 Cerca con Google

von Stein A, Sarnthein J. Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol. 2000;38:301-13. Cerca con Google

Wassermann EM. Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation. Electroencephalogr Clin Neurophysiol 1998; 108:1-16. Cerca con Google

Weiskrantz L. Consciousness lost and found. Oxford: Oxford University Press; 1997. Cerca con Google

Wijnen VJ, van Boxtel GJ, Eilander HJ, de Gelder B. Mismatch negativity predicts recovery from the vegetative state. Clin Neurophysiol. 2007; 118(3): 597-605. Cerca con Google

Wu T, Sommer M, Tergau F, Paulus W. Lasting influence of repetitive transcranial magnetic stimulation on intracortical excitability in human subjects Neurosci. Lett 2000; 287:37–40. Cerca con Google

Yamaguchi S, Knight RT. Gating of somatosensory input by human prefrontal cortex. Brain Res. 1990 25;521:281-8. Cerca con Google

Zeman A. Consciousness. Brain 2001; 124(7): 1263-89. Cerca con Google

Zeman A. Persistent vegetative state. Lancet 1997; 350: 795–9. Cerca con Google

Versioni disponibili di questo documento

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record