Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Contento, Rita Lucia (2007) La costimolazione dei linfociti T alla sinapsi immunologica: CD28, rafts di membrana e recettori chemochinici. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

T lymphocytes are activated when their T-cell receptors (TCRs) recognize and interact with the specific antigenic complexes formed by antigen-derived peptides bound to proteins of the major histocompatibility complex (MHC) and exposed on the surface of an antigen-presenting cell (APC). The contact site between these two cells is referred as immunological synapse (IS) and represents a highly specialized cellular junction, where T lymphocyte receives and integrates several signals provided by cellular partner, in order to choose between tolerance and immunity. These signals, additional to TCR, are substantially provided by costimulatory molecules that are tuned by inflammatory environment, thus coding the context of antigenic presentation. The immune system has developed different strategies for such a complex function and recently new costimulatory mechanisms, different from the classical ones based on membrane receptors, have been identified, such as signal amplification by membrane rafts and costimulation through chemokines. In this thesis I have been interested in defining the molecular mechanisms underlying these new costimulatory strategies at the IS.
The cellular plasma membrane contains small, heterogeneous and highly dynamic, microdomains, enriched in sterol and sphingolipid and in selective proteins, defined as membrane rafts. In T-cell plasma membrane these microdomains are recruited into the IS, forming a platform where TCR signal is protected and amplified, and thus contribute to costimulation. In our group it has been proposed that CD28, the main costimulatory molecule for naive T lymphocytes, amplifies TCR signal by inducing membrane rafts rearrangement and recruitment into the IS.
In order to identify the molecular mechanism allowing CD28-mediated rafts recruitment into the IS, and considering the essential role played by actin cytoskeleton in molecule mobilization toward IS, we focused on interaction among CD28, cytoskeleton and rafts. In this thesis it is demonstrated that CD28 binds to filamin-A (FLNa), an actin-binding protein able to induce actin crosslinking and to stabilize the cortical cytoskeleton, and recruits FLNa into the IS. The interaction between CD28 and FLNa, as well as the recruitment of FLNa into the IS, require the same CD28 prolin-rich motif needed for membrane rafts mobilization into the IS. Moreover FLNa silencing by small interference (si)RNA inhibits CD28-induced rafts recruitment into the IS, Cdc42 activation (that regulates cytoskeletal rearrangements) and CD28 costimulation.
These results indicate that CD28 uses FLNa to integrate signalling pathways, resulting in actin crosslinking and lipid raft recruitment into the IS, thus sustaining TCR signaling and lowering the T-cell activation threshold.
The costimulatory properties of chemokines have been recently demonstrated in human T lymphocytes. In these cells, the chemokine receptor CXCR4 is constitutively expressed and regulates lymphocyte migration towards gradients of CXCL12; in contrast, CCR5 is expressed only in activated T cells and leads their migration towards gradients of CCL3, CCL4 and CCL5. These two receptors are involved in several pathological conditions, such as autoimmunity, cancer and HIV (human immunodeficiency virus). Our group has demonstrated that during T-cell stimulation both CXCR4 and CCR5 are recruited and trapped into the IS, through a mechanism that requires chemokine secretion by APC. The CXCR4 and CCR5 recruitment into the IS results in stronger interactions between T cell and APC, in reduced responsiveness to chemotactic gradients and in higher levels of T-cell proliferation and IFN-? (interferon-?) production. Interestingly, we found that during T cell activation chemokine receptors are coupled with Gq instead of Gi, the classical G protein coupled to these receptors during cell migration.
The aim of my thesis was to study the mechanism for CXCR4 and CCR5 versatility in function and signaling, and to identify the requirements for chemokine-induced T-cell costimulation.
Since chemokine receptors can form receptor complexes with specific pharmacological and signaling properties through homo- and hetero-dimerization, we hypothesized that molecular complexes between CXCR4 and CCR5 in T lymphocytes are required for their costimulation at the IS. In this thesis it is demonstrated that, in contrast with CXCR4 and CCR5 chemotactic functions, which depends on receptor homodimers, the costimulatory function of these receptors requires their functional collaboration: CXCR4 and CCR5 must be co-recruited into the IS and must be co-expressed by T cell to costimulate cytokine production. Moreover it has been demonstrated that co-expressed CXCR4 and CCR5 form constitutive complexes (hetero-dimers or hetero-oligomers), suggesting that cooperation between receptors represents one key strategy for the functional plasticity of chemokines.
In conclusion, my study on novel T-cell costimulation mechanisms highlight the complexity of the process leading to transmission of signals at the IS. This integrated and dynamic process involves soluble mediators, membrane receptors and the cell cytoskeleton, and generates micro-environments specific for signal amplification by locally modifying the cell membrane composition and its signaling complexes.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Viola, Antonella
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > BIOSCIENZE > BIOLOGIA CELLULARE
Data di deposito della tesi:2007
Anno di Pubblicazione:2007
Key Words:linfociti T, costimolazione, sinapsi immunologica, rafts, CD28, recettori chemochinici
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Scienze Biomediche Sperimentali
Codice ID:574
Depositato il:23 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abbas AK, Murphy KM & Sher A. (1996). Functional diversity of helper T lymphocytes. Nature 383, 787-793. Cerca con Google

2. Acuto O & Michel F. (2003). CD28-mediated co-stimulation: a quantitative support for TCR signalling. Nat Rev Immunol 3, 939-951. Cerca con Google

3. Anderson RG & Jacobson K. (2002). A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821-1825. Cerca con Google

4. Andres PG, Howland KC, Dresnek D, Edmondson S, Abbas AK & Krummel MF. (2004). CD28 signals in the immature immunological synapse. J Immunol 172, 5880-5886. Cerca con Google

5. Annunziato F, Cosmi L, Santarlasci V, Maggi L, Liotta F, Mazzinghi B, Parente E, Fili L, Ferri S, Frosali F, Giudici F, Romagnani P, Parronchi P, Tonelli F, Maggi E & Romagnani S. (2007). Phenotypic and functional features of human Th17 cells. J Exp Med 204, 1849-1861. Cerca con Google

6. Anton van der Merwe P, Davis SJ, Shaw AS & Dustin ML. (2000). Cytoskeletal polarization and redistribution of cell-surface molecules during T cell antigen recognition. Semin Immunol 12, 5-21. Cerca con Google

7. Babcock GJ, Farzan M & Sodroski J. (2003). Ligand-independent dimerization of CXCR4, a principal HIV-1 coreceptor. J Biol Chem 278, 3378-3385. Cerca con Google

8. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F, Glaichenhaus N & Germain RN. (2006). Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25, 989-1001. Cerca con Google

9. Bar-Sagi D & Hall A. (2000). Ras and Rho GTPases: a family reunion. Cell 103, 227-238. Cerca con Google

10. Benkirane M, Jin DY, Chun RF, Koup RA & Jeang KT. (1997). Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J Biol Chem 272, 30603-30606. Cerca con Google

11. Benvenuti F, Lagaudriere-Gesbert C, Grandjean I, Jancic C, Hivroz C, Trautmann A, Lantz O & Amigorena S. (2004). Dendritic cell maturation controls adhesion, synapse formation, and the duration of the interactions with naive T lymphocytes. J Immunol 172, 292-301. Cerca con Google

12. Bergman M, Mustelin T, Oetken C, Partanen J, Flint NA, Amrein KE, Autero M, Burn P & Alitalo K. (1992). The human p50csk tyrosine kinase phosphorylates p56lck at Tyr- 505 and down regulates its catalytic activity. Embo J 11, 2919-2924. Cerca con Google

13. Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL & Kuchroo VK. (2006). Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235-238. Cerca con Google

14. Bishop AL & Hall A. (2000). Rho GTPases and their effector proteins. Biochem J 348 Pt 2, 241-255. Cerca con Google

15. Bleul CC & Boehm T. (2000). Chemokines define distinct microenvironments in the developing thymus. Eur J Immunol 30, 3371-3379. Cerca con Google

16. Bonecchi R, Bianchi G, Bordignon PP, D'Ambrosio D, Lang R, Borsatti A, Sozzani S, Allavena P, Gray PA, Mantovani A & Sinigaglia F. (1998). Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J Exp Med 187, 129-134. Cerca con Google

17. Bono MR, Elgueta R, Sauma D, Pino K, Osorio F, Michea P, Fierro A & Rosemblatt M. (2007). The essential role of chemokines in the selective regulation of lymphocyte homing. Cytokine Growth Factor Rev 18, 33-43. Cerca con Google

18. Boring L, Gosling J, Chensue SW, Kunkel SL, Farese RV, Jr., Broxmeyer HE & Charo IF. (1997). Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice. J Clin Invest 100, 2552-2561. Cerca con Google

19. Boss V, Talpade DJ & Murphy TJ. (1996). Induction of NFAT-mediated transcription by Gqcoupled receptors in lymphoid and non-lymphoid cells. J Biol Chem 271, 10429- 10432. Cerca con Google

20. Braun MC, Lahey E & Kelsall BL. (2000). Selective suppression of IL-12 production by chemoattractants. J Immunol 164, 3009-3017. Cerca con Google

21. Brdicka T, Cerny J & Horejsi V. (1998). T cell receptor signalling results in rapid tyrosine phosphorylation of the linker protein LAT present in detergent-resistant membrane microdomains. Biochem Biophys Res Commun 248, 356-360. Cerca con Google

22. Bretscher PA. (1999). A two-step, two-signal model for the primary activation of precursor helper T cells. Proc Natl Acad Sci U S A 96, 185-190. Cerca con Google

23. Bromley SK, Iaboni A, Davis SJ, Whitty A, Green JM, Shaw AS, Weiss A & Dustin ML. (2001). The immunological synapse and CD28-CD80 interactions. Nat Immunol 2, 1159-1166. Cerca con Google

24. Bromley SK, Peterson DA, Gunn MD & Dustin ML. (2000). Cutting edge: hierarchy of chemokine receptor and TCR signals regulating T cell migration and proliferation. J Immunol 165, 15-19. Cerca con Google

25. Brossard C, Feuillet V, Schmitt A, Randriamampita C, Romao M, Raposo G & Trautmann A. (2005). Multifocal structure of the T cell - dendritic cell synapse. Eur J Immunol 35, 1741-1753. Cerca con Google

26. Brown DA & London E. (1998). Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164, 103-114. Cerca con Google

27. Brown DA & Rose JK. (1992). Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68, 533-544. Cerca con Google

28. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC & Srour EF. (2005). Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201, 1307-1318. Cerca con Google

29. Bulenger S, Marullo S & Bouvier M. (2005). Emerging role of homo- and heterodimerization in G-protein-coupled receptor biosynthesis and maturation. Trends Pharmacol Sci 26, 131-137. Cerca con Google

30. Bunnell SC, Diehn M, Yaffe MB, Findell PR, Cantley LC & Berg LJ. (2000). Biochemical interactions integrating Itk with the T cell receptor-initiated signaling cascade. J Biol Chem 275, 2219-2230. Cerca con Google

31. Burack WR, Lee KH, Holdorf AD, Dustin ML & Shaw AS. (2002). Cutting edge: quantitative imaging of raft accumulation in the immunological synapse. J Immunol 169, 2837-2841. Cerca con Google

32. Calderwood DA, Huttenlocher A, Kiosses WB, Rose DM, Woodside DG, Schwartz MA & Ginsberg MH. (2001). Increased filamin binding to beta-integrin cytoplasmic domains inhibits cell migration. Nat Cell Biol 3, 1060-1068. Cerca con Google

33. Casey PJ. (1995). Protein lipidation in cell signaling. Science 268, 221-225. Cerca con Google

34. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C & Germain RN. (2006). Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440, 890-895. Cerca con Google

35. Chen Y, Thelin WR, Yang B, Milgram SL & Jacobson K. (2006). Transient anchorage of cross-linked glycosyl-phosphatidylinositol-anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides. J Cell Biol 175, 169-178. Cerca con Google

36. Cicala C, Arthos J, Martinelli E, Censoplano N, Cruz CC, Chung E, Selig SM, Van Ryk D, Yang J, Jagannatha S, Chun TW, Ren P, Lempicki RA & Fauci AS. (2006). R5 and X4 HIV envelopes induce distinct gene expression profiles in primary peripheral blood mononuclear cells. Proc Natl Acad Sci U S A 103, 3746-3751. Cerca con Google

37. Cinek T & Horejsi V. (1992). The nature of large noncovalent complexes containing glycosyl-phosphatidylinositol-anchored membrane glycoproteins and protein tyrosine kinases. J Immunol 149, 2262-2270. Cerca con Google

38. Constantin G, Majeed M, Giagulli C, Piccio L, Kim JY, Butcher EC & Laudanna C. (2000). Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13, 759- 769. Cerca con Google

39. Croft M. (1994). Activation of naive, memory and effector T cells. Curr Opin Immunol 6, 431-437. Cerca con Google

40. D'Ambrosio D, Iellem A, Bonecchi R, Mazzeo D, Sozzani S, Mantovani A & Sinigaglia F. (1998). Selective up-regulation of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J Immunol 161, 5111-5115. Cerca con Google

41. de Roda Husman AM & Schuitemaker H. (1998). Chemokine receptors and the clinical course of HIV-1 infection. Trends Microbiol 6, 244-249. Cerca con Google

42. del Pozo MA, Nieto M, Serrador JM, Sancho D, Vicente-Manzanares M, Martinez C & Sanchez-Madrid F. (1998). The two poles of the lymphocyte: specialized cell compartments for migration and recruitment. Cell Adhes Commun 6, 125-133. Cerca con Google

43. Dietrich C, Yang B, Fujiwara T, Kusumi A & Jacobson K. (2002). Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys J 82, 274- 284. Cerca con Google

44. Douglass AD & Vale RD. (2005). Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937-950. Cerca con Google

45. Dower NA, Stang SL, Bottorff DA, Ebinu JO, Dickie P, Ostergaard HL & Stone JC. (2000). RasGRP is essential for mouse thymocyte differentiation and TCR signaling. Nat Immunol 1, 317-321. Cerca con Google

46. Dupre L, Aiuti A, Trifari S, Martino S, Saracco P, Bordignon C & Roncarolo MG. (2002). Wiskott-Aldrich syndrome protein regulates lipid raft dynamics during immunological synapse formation. Immunity 17, 157-166. Cerca con Google

47. Dustin ML. (2004). Stop and go traffic to tune T cell responses. Immunity 21, 305-314. Cerca con Google

48. Dustin ML & Cooper JA. (2000). The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nat Immunol 1, 23-29. Cerca con Google

49. Dustin ML & Shaw AS. (1999). Costimulation: building an immunological synapse. Science 283, 649-650. Cerca con Google

50. Dustin ML, Tseng SY, Varma R & Campi G. (2006). T cell-dendritic cell immunological synapses. Curr Opin Immunol 18, 512-516. Cerca con Google

51. Dykstra M, Cherukuri A, Sohn HW, Tzeng SJ & Pierce SK. (2003). Location is everything: lipid rafts and immune cell signaling. Annu Rev Immunol 21, 457-481. Cerca con Google

52. Edidin M. (2003). The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct 32, 257-283. Cerca con Google

53. El-Asmar L, Springael JY, Ballet S, Andrieu EU, Vassart G & Parmentier M. (2005). Evidence for negative binding cooperativity within CCR5-CCR2b heterodimers. Mol Pharmacol 67, 460-469. Cerca con Google

54. Faroudi M, Zaru R, Paulet P, Muller S & Valitutti S. (2003). Cutting edge: T lymphocyte activation by repeated immunological synapse formation and intermittent signaling. J Immunol 171, 1128-1132. Cerca con Google

55. Feng Y & Walsh CA. (2004). The many faces of filamin: a versatile molecular scaffold for cell motility and signalling. Nat Cell Biol 6, 1034-1038. Cerca con Google

56. Fischer KD, Kong YY, Nishina H, Tedford K, Marengere LE, Kozieradzki I, Sasaki T, Starr M, Chan G, Gardener S, Nghiem MP, Bouchard D, Barbacid M, Bernstein A & Penninger JM. (1998). Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr Biol 8, 554-562. Cerca con Google

57. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I, Wolf E & Lipp M. (1999). CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23-33. Cerca con Google

58. Freiberg BA, Kupfer H, Maslanik W, Delli J, Kappler J, Zaller DM & Kupfer A. (2002). Staging and resetting T cell activation in SMACs. Nat Immunol 3, 911-917. Cerca con Google

59. Friedl P, den Boer AT & Gunzer M. (2005). Tuning immune responses: diversity and adaptation of the immunological synapse. Nat Rev Immunol 5, 532-545. Cerca con Google

60. Friedman RS, Jacobelli J & Krummel MF. (2006). Surface-bound chemokines capture and prime T cells for synapse formation. Nat Immunol 7, 1101-1108. Cerca con Google

61. Fukada K, Sobao Y, Tomiyama H, Oka S & Takiguchi M. (2002). Functional expression of the chemokine receptor CCR5 on virus epitope-specific memory and effector CD8+ T cells. J Immunol 168, 2225-2232. Cerca con Google

62. Garnett D, Barclay AN, Carmo AM & Beyers AD. (1993). The association of the protein tyrosine kinases p56lck and p60fyn with the glycosyl phosphatidylinositol-anchored proteins Thy-1 and CD48 in rat thymocytes is dependent on the state of cellular activation. Eur J Immunol 23, 2540-2544. Cerca con Google

63. Gaus K, Chklovskaia E, Fazekas de St Groth B, Jessup W & Harder T. (2005). Condensation of the plasma membrane at the site of T lymphocyte activation. J Cell Biol 171, 121- 131. Cerca con Google

64. Gaus K, Gratton E, Kable EP, Jones AS, Gelissen I, Kritharides L & Jessup W. (2003). Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc Natl Acad Sci U S A 100, 15554-15559. Cerca con Google

65. Gaus K, Le Lay S, Balasubramanian N & Schwartz MA. (2006). Integrin-mediated adhesion regulates membrane order. J Cell Biol 174, 725-734. Cerca con Google

66. Gil D, Schamel WW, Montoya M, Sanchez-Madrid F & Alarcon B. (2002). Recruitment of Nck by CD3 epsilon reveals a ligand-induced conformational change essential for T cell receptor signaling and synapse formation. Cell 109, 901-912. Cerca con Google

67. Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL & Murphy PM. (2005). Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. J Exp Med 202, 1087-1098. Cerca con Google

68. Glebov OO & Nichols BJ. (2004). Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat Cell Biol 6, 238-243. Cerca con Google

69. Goldman DW, Chang FH, Gifford LA, Goetzl EJ & Bourne HR. (1985). Pertussis toxin inhibition of chemotactic factor-induced calcium mobilization and function in human polymorphonuclear leukocytes. J Exp Med 162, 145-156. Cerca con Google

70. Goldmann WH. (2001). Phosphorylation of filamin (ABP-280) regulates the binding to the lipid membrane, integrin, and actin. Cell Biol Int 25, 805-808. Cerca con Google

71. Golub T & Pico C. (2005). Spatial control of actin-based motility through plasmalemmal PtdIns(4,5)P2-rich raft assemblies. Biochem Soc Symp, 119-127. Cerca con Google

72. Gomez-Mouton C, Abad JL, Mira E, Lacalle RA, Gallardo E, Jimenez-Baranda S, Illa I, Bernad A, Manes S & Martinez AC. (2001). Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc Natl Acad Sci U S A 98, 9642-9647. Cerca con Google

73. Gomez-Mouton C, Lacalle RA, Mira E, Jimenez-Baranda S, Barber DF, Carrera AC, Martinez AC & Manes S. (2004). Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J Cell Biol 164, 759-768. Cerca con Google

74. Graf B, Bushnell T & Miller J. (2007). LFA-1-mediated T cell costimulation through increased localization of TCR/class II complexes to the central supramolecular activation cluster and exclusion of CD45 from the immunological synapse. J Immunol 179, 1616-1624. Cerca con Google

75. Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM & Dustin ML. (1999). The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221-227. Cerca con Google

76. Grewal IS & Flavell RA. (1996). The role of CD40 ligand in costimulation and T-cell activation. Immunol Rev 153, 85-106. Cerca con Google

77. Gri G, Molon B, Manes S, Pozzan T & Viola A. (2004). The inner side of T cell lipid rafts. Immunol Lett 94, 247-252. Cerca con Google

78. Groves JT & Dustin ML. (2003). Supported planar bilayers in studies on immune cell adhesion and communication. J Immunol Methods 278, 19-32. Cerca con Google

79. Gu L, Tseng S, Horner RM, Tam C, Loda M & Rollins BJ. (2000). Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404, 407- 411. Cerca con Google

80. Guiet C & Vito P. (2000). Caspase recruitment domain (CARD)-dependent cytoplasmic filaments mediate bcl10-induced NF-kappaB activation. J Cell Biol 148, 1131-1140. Cerca con Google

81. Gulbins E, Coggeshall KM, Baier G, Katzav S, Burn P & Altman A. (1993). Tyrosine kinasestimulated guanine nucleotide exchange activity of Vav in T cell activation. Science 260, 822-825. Cerca con Google

82. Hailman E, Burack WR, Shaw AS, Dustin ML & Allen PM. (2002). Immature CD4(+)CD8(+) thymocytes form a multifocal immunological synapse with sustained tyrosine phosphorylation. Immunity 16, 839-848. Cerca con Google

83. Harder T & Engelhardt KR. (2004). Membrane domains in lymphocytes - from lipid rafts to protein scaffolds. Traffic 5, 265-275. Cerca con Google

84. Harder T, Rentero C, Zech T & Gaus K. (2007). Plasma membrane segregation during T cell activation: probing the order of domains. Curr Opin Immunol 19, 470-475. Cerca con Google

85. Harder T, Scheiffele P, Verkade P & Simons K. (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141, 929-942. Cerca con Google

86. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM & Weaver CT. (2005). Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat Immunol 6, 1123-1132. Cerca con Google

87. Heerklotz H. (2002). Triton promotes domain formation in lipid raft mixtures. Biophys J 83, 2693-2701. Cerca con Google

88. Heerklotz H, Szadkowska H, Anderson T & Seelig J. (2003). The sensitivity of lipid domains to small perturbations demonstrated by the effect of Triton. J Mol Biol 329, 793-799. Cerca con Google

89. Hernanz-Falcon P, Rodriguez-Frade JM, Serrano A, Juan D, del Sol A, Soriano SF, Roncal F, Gomez L, Valencia A, Martinez AC & Mellado M. (2004). Identification of amino acid residues crucial for chemokine receptor dimerization. Nat Immunol 5, 216-223. Cerca con Google

90. Heyeck SD, Wilcox HM, Bunnell SC & Berg LJ. (1997). Lck phosphorylates the activation loop tyrosine of the Itk kinase domain and activates Itk kinase activity. J Biol Chem 272, 25401-25408. Cerca con Google

91. Hiltbold EM, Poloso NJ & Roche PA. (2003). MHC class II-peptide complexes and APC lipid rafts accumulate at the immunological synapse. J Immunol 170, 1329-1338. Cerca con Google

92. Hoebe K, Janssen E & Beutler B. (2004). The interface between innate and adaptive immunity. Nat Immunol 5, 971-974. Cerca con Google

93. Holdorf AD, Green JM, Levin SD, Denny MF, Straus DB, Link V, Changelian PS, Allen PM & Shaw AS. (1999). Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J Exp Med 190, 375-384. Cerca con Google

94. Holdorf AD, Lee KH, Burack WR, Allen PM & Shaw AS. (2002). Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat Immunol 3, 259-264. Cerca con Google

95. Holsinger LJ, Graef IA, Swat W, Chi T, Bautista DM, Davidson L, Lewis RS, Alt FW & Crabtree GR. (1998). Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr Biol 8, 563-572. Cerca con Google

96. Horejsi V. (2003). The roles of membrane microdomains (rafts) in T cell activation. Immunol Rev 191, 148-164. Cerca con Google

97. Huang J, Lo PF, Zal T, Gascoigne NR, Smith BA, Levin SD & Grey HM. (2002). CD28 plays a critical role in the segregation of PKC theta within the immunologic synapse. Proc Natl Acad Sci U S A 99, 9369-9373. Cerca con Google

98. Hugues S, Fetler L, Bonifaz L, Helft J, Amblard F & Amigorena S. (2004). Distinct T cell dynamics in lymph nodes during the induction of tolerance and immunity. Nat Immunol 5, 1235-1242. Cerca con Google

99. Huppa JB & Davis MM. (2003). T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol 3, 973-983. Cerca con Google

100. Huse M, Lillemeier BF, Kuhns MS, Chen DS & Davis MM. (2006). T cells use two directionally distinct pathways for cytokine secretion. Nat Immunol 7, 247-255. Cerca con Google

101. Iijima W, Ohtani H, Nakayama T, Sugawara Y, Sato E, Nagura H, Yoshie O & Sasano T. (2003). Infiltrating CD8+ T cells in oral lichen planus predominantly express CCR5 and CXCR3 and carry respective chemokine ligands RANTES/CCL5 and IP- 10/CXCL10 in their cytolytic granules: a potential self-recruiting mechanism. Am J Pathol 163, 261-268. Cerca con Google

102. Iivanainen AV, Lindqvist C, Mustelin T & Andersson LC. (1990). Phosphotyrosine phosphatases are involved in reversion of T lymphoblastic proliferation. Eur J Immunol 20, 2509-2512. Cerca con Google

103. Inaba K & Inaba M. (2005). Antigen recognition and presentation by dendritic cells. Int J Hematol 81, 181-187. Cerca con Google

104. Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, Griffiths E, Krawczyk C, Richardson CD, Aitken K, Iscove N, Koretzky G, Johnson P, Liu P, Rothstein DM & Penninger JM. (2001). CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409, 349-354. Cerca con Google

105. Irles C, Symons A, Michel F, Bakker TR, van der Merwe PA & Acuto O. (2003). CD45 ectodomain controls interaction with GEMs and Lck activity for optimal TCR signaling. Nat Immunol 4, 189-197. Cerca con Google

106. Issafras H, Angers S, Bulenger S, Blanpain C, Parmentier M, Labbe-Jullie C, Bouvier M & Marullo S. (2002). Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem 277, 34666-34673. Cerca con Google

107. Iwakura Y & Ishigame H. (2006). The IL-23/IL-17 axis in inflammation. J Clin Invest 116, 1218-1222. Cerca con Google

108. Iwashima M, Irving BA, van Oers NS, Chan AC & Weiss A. (1994). Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science 263, 1136-1139. Cerca con Google

109. Jacobelli J, Andres PG, Boisvert J & Krummel MF. (2004). New views of the immunological synapse: variations in assembly and function. Curr Opin Immunol 16, 345-352. Cerca con Google

110. Jacobson K, Mouritsen OG & Anderson RG. (2007). Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9, 7-14. Cerca con Google

111. Janes PW, Ley SC, Magee AI & Kabouridis PS. (2000). The role of lipid rafts in T cell antigen receptor (TCR) signalling. Semin Immunol 12, 23-34. Cerca con Google

112. Janeway C. (2001). Immunobiology 5 : the immune system in health and disease. Garland Pub., New York. Cerca con Google

113. Jordan MS, Singer AL & Koretzky GA. (2003). Adaptors as central mediators of signal transduction in immune cells. Nat Immunol 4, 110-116. Cerca con Google

114. Kaga S, Ragg S, Rogers KA & Ochi A. (1998). Stimulation of CD28 with B7-2 promotes focal adhesion-like cell contacts where Rho family small G proteins accumulate in T cells. J Immunol 160, 24-27. Cerca con Google

115. Kaiser A, Donnadieu E, Abastado JP, Trautmann A & Nardin A. (2005). CC chemokine ligand 19 secreted by mature dendritic cells increases naive T cell scanning behavior and their response to rare cognate antigen. J Immunol 175, 2349-2356. Cerca con Google

116. Karin M & Ben-Neriah Y. (2000). Phosphorylation meets ubiquitination: the control of NF- [kappa]B activity. Annu Rev Immunol 18, 621-663. Cerca con Google

117. Karpus WJ, Lukacs NW, Kennedy KJ, Smith WS, Hurst SD & Barrett TA. (1997). Differential CC chemokine-induced enhancement of T helper cell cytokine production. J Immunol 158, 4129-4136. Cerca con Google

118. Kenakin T. (2003). Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol Sci 24, 346-354. Cerca con Google

119. Khosravi-Far R, Chrzanowska-Wodnicka M, Solski PA, Eva A, Burridge K & Der CJ. (1994). Dbl and Vav mediate transformation via mitogen-activated protein kinase pathways that are distinct from those activated by oncogenic Ras. Mol Cell Biol 14, 6848-6857. Cerca con Google

120. Kim CH, Rott L, Kunkel EJ, Genovese MC, Andrew DP, Wu L & Butcher EC. (2001). Rules of chemokine receptor association with T cell polarization in vivo. J Clin Invest 108, 1331-1339. Cerca con Google

121. Kindzelskii AL, Sitrin RG & Petty HR. (2004). Cutting edge: optical microspectrophotometry supports the existence of gel phase lipid rafts at the lamellipodium of neutrophils: apparent role in calcium signaling. J Immunol 172, 4681-4685. Cerca con Google

122. Klasen S, Pages F, Peyron JF, Cantrell DA & Olive D. (1998). Two distinct regions of the CD28 intracytoplasmic domain are involved in the tyrosine phosphorylation of Vav and GTPase activating protein-associated p62 protein. Int Immunol 10, 481-489. Cerca con Google

123. Kohlmeier JE, Rumsey LM, Chan MA & Benedict SH. (2003). The outcome of T-cell costimulation through intercellular adhesion molecule-1 differs from costimulation through leucocyte function-associated antigen-1. Immunology 108, 152-157. Cerca con Google

124. Koretzky GA & Myung PS. (2001). Positive and negative regulation of T-cell activation by adaptor proteins. Nat Rev Immunol 1, 95-107. Cerca con Google

125. Koretzky GA, Picus J, Thomas ML & Weiss A. (1990). Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature 346, 66-68. Cerca con Google

126. Kroeger KM, Pfleger KD & Eidne KA. (2003). G-protein coupled receptor oligomerization in neuroendocrine pathways. Front Neuroendocrinol 24, 254-278. Cerca con Google

127. Kropshofer H, Spindeldreher S, Rohn TA, Platania N, Grygar C, Daniel N, Wolpl A, Langen H, Horejsi V & Vogt AB. (2002). Tetraspan microdomains distinct from lipid rafts enrich select peptide-MHC class II complexes. Nat Immunol 3, 61-68. Cerca con Google

128. Kumar A, Humphreys TD, Kremer KN, Bramati PS, Bradfield L, Edgar CE & Hedin KE. (2006). CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 25, 213-224. Cerca con Google

129. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J & Fujiwara T. (2005). Paradigm shift of the plasma membrane concept from the twodimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34, 351-378. Cerca con Google

130. Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP & Edidin M. (2003). Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc Natl Acad Sci U S A 100, 13964-13969. Cerca con Google

131. Lang T, Bruns D, Wenzel D, Riedel D, Holroyd P, Thiele C & Jahn R. (2001). SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. Embo J 20, 2202-2213. Cerca con Google

132. Langrish CL, Chen Y, Blumenschein WM, Mattson J, Basham B, Sedgwick JD, McClanahan T, Kastelein RA & Cua DJ. (2005). IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201, 233-240. Cerca con Google

133. Lanzavecchia A, Lezzi G & Viola A. (1999). From TCR engagement to T cell activation: a kinetic view of T cell behavior. Cell 96, 1-4. Cerca con Google

134. Lee JW, Epardaud M, Sun J, Becker JE, Cheng AC, Yonekura AR, Heath JK & Turley SJ. (2007). Peripheral antigen display by lymph node stroma promotes T cell tolerance to intestinal self. Nat Immunol 8, 181-190. Cerca con Google

135. Lee KH, Dinner AR, Tu C, Campi G, Raychaudhuri S, Varma R, Sims TN, Burack WR, Wu H, Wang J, Kanagawa O, Markiewicz M, Allen PM, Dustin ML, Chakraborty AK & Shaw AS. (2003). The immunological synapse balances T cell receptor signaling and degradation. Science 302, 1218-1222. Cerca con Google

136. Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M & Fouser LA. (2006). Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203, 2271- 2279. Cerca con Google

137. Lillemeier BF, Pfeiffer JR, Surviladze Z, Wilson BS & Davis MM. (2006). Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc Natl Acad Sci U S A 103, 18992-18997. Cerca con Google

138. Lim HW, Hillsamer P & Kim CH. (2004). Regulatory T cells can migrate to follicles upon T cell activation and suppress GC-Th cells and GC-Th cell-driven B cell responses. J Clin Invest 114, 1640-1649. Cerca con Google

139. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA & Landau NR. (1996). Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367- 377. Cerca con Google

140. Locati M, Deuschle U, Massardi ML, Martinez FO, Sironi M, Sozzani S, Bartfai T & Mantovani A. (2002). Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. J Immunol 168, 3557-3562. Cerca con Google

141. Locher CP, Witt SA, Kassel R, Dowell NL, Fujimura S & Levy JA. (2005). Differential effects of R5 and X4 human immunodeficiency virus type 1 infection on CD4+ cell proliferation and activation. J Gen Virol 86, 1171-1179. Cerca con Google

142. Loo DT, Kanner SB & Aruffo A. (1998). Filamin binds to the cytoplasmic domain of the beta1-integrin. Identification of amino acids responsible for this interaction. J Biol Chem 273, 23304-23312. Cerca con Google

143. Macian F, Im SH, Garcia-Cozar FJ & Rao A. (2004). T-cell anergy. Curr Opin Immunol 16, 209-216. Cerca con Google

144. Manickasingham SP, Anderton SM, Burkhart C & Wraith DC. (1998). Qualitative and quantitative effects of CD28/B7-mediated costimulation on naive T cells in vitro. J Immunol 161, 3827-3835. Cerca con Google

145. Marinari B, Costanzo A, Viola A, Michel F, Mangino G, Acuto O, Levrero M, Piccolella E & Tuosto L. (2002). Vav cooperates with CD28 to induce NF-kappaB activation via a pathway involving Rac-1 and mitogen-activated kinase kinase 1. Eur J Immunol 32, 447-456. Cerca con Google

146. Marshak-Rothstein A & Ohashi PS. (2007). Intricate connections between innate and adaptive autoimmunity. Curr Opin Immunol 19, 603-605. Cerca con Google

147. Marsland BJ, Battig P, Bauer M, Ruedl C, Lassing U, Beerli RR, Dietmeier K, Ivanova L, Pfister T, Vogt L, Nakano H, Nembrini C, Saudan P, Kopf M & Bachmann MF. (2005). CCL19 and CCL21 induce a potent proinflammatory differentiation program in licensed dendritic cells. Immunity 22, 493-505. Cerca con Google

148. Martin M, Schneider H, Azouz A & Rudd CE. (2001). Cytotoxic T lymphocyte antigen 4 and CD28 modulate cell surface raft expression in their regulation of T cell function. J Exp Med 194, 1675-1681. Cerca con Google

149. Marullo S & Bouvier M. (2007). Resonance energy transfer approaches in molecular pharmacology and beyond. Trends Pharmacol Sci 28, 362-365. Cerca con Google

150. Matloubian M, Lo CG, Cinamon G, Lesneski MJ, Xu Y, Brinkmann V, Allende ML, Proia RL & Cyster JG. (2004). Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355-360. Cerca con Google

151. Mellado M, Rodriguez-Frade JM, Manes S & Martinez AC. (2001a). Chemokine signaling and functional responses: the role of receptor dimerization and TK pathway activation. Annu Rev Immunol 19, 397-421. Cerca con Google

152. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, de Ana AM & Martinez AC. (1999). Chemokine control of HIV-1 infection. Nature 400, 723-724. Cerca con Google

153. Mellado M, Rodriguez-Frade JM, Vila-Coro AJ, Fernandez S, Martin de Ana A, Jones DR, Toran JL & Martinez AC. (2001b). Chemokine receptor homo- or heterodimerization activates distinct signaling pathways. Embo J 20, 2497-2507. Cerca con Google

154. Mempel TR, Henrickson SE & Von Andrian UH. (2004). T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases. Nature 427, 154-159. Cerca con Google

155. Mempel TR, Pittet MJ, Khazaie K, Weninger W, Weissleder R, von Boehmer H & von Andrian UH. (2006). Regulatory T cells reversibly suppress cytotoxic T cell function independent of effector differentiation. Immunity 25, 129-141. Cerca con Google

156. Mesturini R, Nicola S, Chiocchetti A, Bernardone IS, Castelli L, Bensi T, Ferretti M, Comi C, Dong C, Rojo JM, Yagi J & Dianzani U. (2006). ICOS cooperates with CD28, IL-2, and IFN-gamma and modulates activation of human naive CD4+ T cells. Eur J Immunol 36, 2601-2612. Cerca con Google

157. Michel F, Grimaud L, Tuosto L & Acuto O. (1998). Fyn and ZAP-70 are required for Vav phosphorylation in T cells stimulated by antigen-presenting cells. J Biol Chem 273, 31932-31938. Cerca con Google

158. Millan J, Montoya MC, Sancho D, Sanchez-Madrid F & Alonso MA. (2002). Lipid rafts mediate biosynthetic transport to the T lymphocyte uropod subdomain and are necessary for uropod integrity and function. Blood 99, 978-984. Cerca con Google

159. Millard TH, Sharp SJ & Machesky LM. (2004). Signalling to actin assembly via the WASP (Wiskott-Aldrich syndrome protein)-family proteins and the Arp2/3 complex. Biochem J 380, 1-17. Cerca con Google

160. Miller MJ, Hejazi AS, Wei SH, Cahalan MD & Parker I. (2004a). T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node. Proc Natl Acad Sci U S A 101, 998-1003. Cerca con Google

161. Miller MJ, Safrina O, Parker I & Cahalan MD. (2004b). Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes. J Exp Med 200, 847-856. Cerca con Google

162. Miller MJ, Wei SH, Cahalan MD & Parker I. (2003). Autonomous T cell trafficking examined in vivo with intravital two-photon microscopy. Proc Natl Acad Sci U S A 100, 2604-2609. Cerca con Google

163. Mills KH. (2004). Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 4, 841-855. Cerca con Google

164. Minguet S, Swamy M, Alarcon B, Luescher IF & Schamel WW. (2007). Full activation of the T cell receptor requires both clustering and conformational changes at CD3. Immunity 26, 43-54. Cerca con Google

165. Molon B, Gri G, Bettella M, Gomez-Mouton C, Lanzavecchia A, Martinez AC, Manes S & Viola A. (2005). T cell costimulation by chemokine receptors. Nat Immunol 6, 465- 471. Cerca con Google

166. Monks CR, Freiberg BA, Kupfer H, Sciaky N & Kupfer A. (1998). Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82-86. Cerca con Google

167. Montixi C, Langlet C, Bernard AM, Thimonier J, Dubois C, Wurbel MA, Chauvin JP, Pierres M & He HT. (1998). Engagement of T cell receptor triggers its recruitment to lowdensity detergent-insoluble membrane domains. Embo J 17, 5334-5348. Cerca con Google

168. Mossman KD, Campi G, Groves JT & Dustin ML. (2005). Altered TCR signaling from geometrically repatterned immunological synapses. Science 310, 1191-1193. Cerca con Google

169. Munro S. (2003). Lipid rafts: elusive or illusive? Cell 115, 377-388. Cerca con Google

170. Murphy PM. (1994). The molecular biology of leukocyte chemoattractant receptors. Annu Rev Immunol 12, 593-633. Cerca con Google

171. Musgrave BL, Watson CL, Haeryfar SM, Barnes CA & Hoskin DW. (2004). CD2-CD48 interactions promote interleukin-2 and interferon-gamma synthesis by stabilizing cytokine mRNA. Cell Immunol 229, 1-12. Cerca con Google

172. Mustelin T & Tasken K. (2003). Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 371, 15-27. Cerca con Google

173. Negulescu PA, Krasieva TB, Khan A, Kerschbaum HH & Cahalan MD. (1996). Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421-430. Cerca con Google

174. Nishimura M, Umehara H, Nakayama T, Yoneda O, Hieshima K, Kakizaki M, Dohmae N, Yoshie O & Imai T. (2002). Dual functions of fractalkine/CX3C ligand 1 in trafficking of perforin+/granzyme B+ cytotoxic effector lymphocytes that are defined by CX3CR1 expression. J Immunol 168, 6173-6180. Cerca con Google

175. Niv H, Gutman O, Kloog Y & Henis YI. (2002). Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J Cell Biol 157, 865-872. Cerca con Google

176. Nobes CD & Hall A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53-62. Cerca con Google

177. Nurmi SM, Gahmberg CG & Fagerholm SC. (2006). 14-3-3 proteins bind both filamin and alphaLbeta2 integrin in activated T cells. Ann N Y Acad Sci 1090, 318-325. Cerca con Google

178. O'Keefe JP & Gajewski TF. (2005). Cutting edge: cytotoxic granule polarization and cytolysis can occur without central supramolecular activation cluster formation in CD8+ effector T cells. J Immunol 175, 5581-5585. Cerca con Google

179. O'Shea JJ, McVicar DW, Bailey TL, Burns C & Smyth MJ. (1992). Activation of human peripheral blood T lymphocytes by pharmacological induction of protein-tyrosine phosphorylation. Proc Natl Acad Sci U S A 89, 10306-10310. Cerca con Google

180. Oh P & Schnitzer JE. (2001). Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell 12, 685-698. Cerca con Google

181. Ohta Y, Stossel TP & Hartwig JH. (1991). Ligand-sensitive binding of actin-binding protein to immunoglobulin G Fc receptor I (Fc gamma RI). Cell 67, 275-282. Cerca con Google

182. Ohta Y, Suzuki N, Nakamura S, Hartwig JH & Stossel TP. (1999). The small GTPase RalA targets filamin to induce filopodia. Proc Natl Acad Sci U S A 96, 2122-2128. Cerca con Google

183. Pal Sharma C & Goldmann WH. (2004). Phosphorylation of actin-binding protein (ABP-280; filamin) by tyrosine kinase p56lck modulates actin filament cross-linking. Cell Biol Int 28, 935-941. Cerca con Google

184. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q & Dong C. (2005). A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6, 1133-1141. Cerca con Google

185. Peacock JW & Jirik FR. (1999). TCR activation inhibits chemotaxis toward stromal cellderived factor-1: evidence for reciprocal regulation between CXCR4 and the TCR. J Immunol 162, 215-223. Cerca con Google

186. Percherancier Y, Berchiche YA, Slight I, Volkmer-Engert R, Tamamura H, Fujii N, Bouvier M & Heveker N. (2005). Bioluminescence resonance energy transfer reveals ligandinduced conformational changes in CXCR4 homo- and heterodimers. J Biol Chem 280, 9895-9903. Cerca con Google

187. Perez-Villar JJ & Kanner SB. (1999). Regulated association between the tyrosine kinase Emt/Itk/Tsk and phospholipase-C gamma 1 in human T lymphocytes. J Immunol 163, 6435-6441. Cerca con Google

188. Pike LJ. (2006). Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J Lipid Res 47, 1597-1598. Cerca con Google

189. Pitcher LA & van Oers NS. (2003). T-cell receptor signal transmission: who gives an ITAM? Trends Immunol 24, 554-560. Cerca con Google

190. Pizzo P, Giurisato E, Bigsten A, Tassi M, Tavano R, Shaw A & Viola A. (2004). Physiological T cell activation starts and propagates in lipid rafts. Immunol Lett 91, 3- 9. Cerca con Google

191. Pizzo P, Giurisato E, Tassi M, Benedetti A, Pozzan T & Viola A. (2002). Lipid rafts and T cell receptor signaling: a critical re-evaluation. Eur J Immunol 32, 3082-3091. Cerca con Google

192. Pizzo P & Viola A. (2003). Lymphocyte lipid rafts: structure and function. Curr Opin Immunol 15, 255-260. Cerca con Google

193. Pizzo P & Viola A. (2004). Lipid rafts in lymphocyte activation. Microbes Infect 6, 686-692. Cerca con Google

194. Poznansky MC, Olszak IT, Evans RH, Wang Z, Foxall RB, Olson DP, Weibrecht K, Luster AD & Scadden DT. (2002). Thymocyte emigration is mediated by active movement away from stroma-derived factors. J Clin Invest 109, 1101-1110. Cerca con Google

195. Pralle A, Keller P, Florin EL, Simons K & Horber JK. (2000). Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148, 997-1008. Cerca con Google

196. Prinster SC, Hague C & Hall RA. (2005). Heterodimerization of g protein-coupled receptors: specificity and functional significance. Pharmacol Rev 57, 289-298. Cerca con Google

197. Proszynski TJ, Klemm R, Bagnat M, Gaus K & Simons K. (2006). Plasma membrane polarization during mating in yeast cells. J Cell Biol 173, 861-866. Cerca con Google

198. Purbhoo MA, Irvine DJ, Huppa JB & Davis MM. (2004). T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol 5, 524-530. Cerca con Google

199. Quinn P, Griffiths G & Warren G. (1984). Density of newly synthesized plasma membrane proteins in intracellular membranes II. Biochemical studies. J Cell Biol 98, 2142- 2147. Cerca con Google

200. Raab M, Cai YC, Bunnell SC, Heyeck SD, Berg LJ & Rudd CE. (1995). p56Lck and p59Fyn regulate CD28 binding to phosphatidylinositol 3-kinase, growth factor receptor-bound protein GRB-2, and T cell-specific protein-tyrosine kinase ITK: implications for T-cell costimulation. Proc Natl Acad Sci U S A 92, 8891-8895. Cerca con Google

201. Rachmilewitz J & Lanzavecchia A. (2002). A temporal and spatial summation model for Tcell activation: signal integration and antigen decoding. Trends Immunol 23, 592-595. Cerca con Google

202. Rao A, Luo C & Hogan PG. (1997). Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 15, 707-747. Cerca con Google

203. Reichert P, Reinhardt RL, Ingulli E & Jenkins MK. (2001). Cutting edge: in vivo identification of TCR redistribution and polarized IL-2 production by naive CD4 T cells. J Immunol 166, 4278-4281. Cerca con Google

204. Reis e Sousa C. (2006). Dendritic cells in a mature age. Nat Rev Immunol 6, 476-483. Cerca con Google

205. Richie LI, Ebert PJ, Wu LC, Krummel MF, Owen JJ & Davis MM. (2002). Imaging synapse formation during thymocyte selection: inability of CD3zeta to form a stable central accumulation during negative selection. Immunity 16, 595-606. Cerca con Google

206. Ridley AJ. (2001). Rho proteins: linking signaling with membrane trafficking. Traffic 2, 303- 310. Cerca con Google

207. Rimoldi V, Reversi A, Taverna E, Rosa P, Francolini M, Cassoni P, Parenti M & Chini B. (2003). Oxytocin receptor elicits different EGFR/MAPK activation patterns depending on its localization in caveolin-1 enriched domains. Oncogene 22, 6054-6060. Cerca con Google

208. Rivero-Lezcano OM, Marcilla A, Sameshima JH & Robbins KC. (1995). Wiskott-Aldrich syndrome protein physically associates with Nck through Src homology 3 domains. Mol Cell Biol 15, 5725-5731. Cerca con Google

209. Rodgers W, Crise B & Rose JK. (1994). Signals determining protein tyrosine kinase and glycosyl-phosphatidylinositol-anchored protein targeting to a glycolipid-enriched membrane fraction. Mol Cell Biol 14, 5384-5391. Cerca con Google

210. Rodgers W, Farris D & Mishra S. (2005). Merging complexes: properties of membrane raft assembly during lymphocyte signaling. Trends Immunol 26, 97-103. Cerca con Google

211. Rodriguez-Boulan E & Nelson WJ. (1989). Morphogenesis of the polarized epithelial cell phenotype. Science 245, 718-725. Cerca con Google

212. Rodriguez-Frade JM, Mellado M & Martinez AC. (2001). Chemokine receptor dimerization: two are better than one. Trends Immunol 22, 612-617. Cerca con Google

213. Rodriguez-Frade JM, Vila-Coro AJ, Martin A, Nieto M, Sanchez-Madrid F, Proudfoot AE, Wells TN, Martinez AC & Mellado M. (1999). Similarities and differences in RANTES- and (AOP)-RANTES-triggered signals: implications for chemotaxis. J Cell Biol 144, 755-765. Cerca con Google

214. Round JL, Tomassian T, Zhang M, Patel V, Schoenberger SP & Miceli MC. (2005). Dlgh1 coordinates actin polymerization, synaptic T cell receptor and lipid raft aggregation, and effector function in T cells. J Exp Med 201, 419-430. Cerca con Google

215. Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A & Yin HL. (2000). Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASP-Arp2/3. Curr Biol 10, 311-320. Cerca con Google

216. Rudd CE & Schneider H. (2003). Unifying concepts in CD28, ICOS and CTLA4 co-receptor signalling. Nat Rev Immunol 3, 544-556. Cerca con Google

217. Sad S, Marcotte R & Mosmann TR. (1995). Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity 2, 271-279. Cerca con Google

218. Sadra A, Cinek T & Imboden JB. (2004). Translocation of CD28 to lipid rafts and costimulation of IL-2. Proc Natl Acad Sci U S A 101, 11422-11427. Cerca con Google

219. Saint-Ruf C, Panigada M, Azogui O, Debey P, von Boehmer H & Grassi F. (2000). Different initiation of pre-TCR and gammadeltaTCR signalling. Nature 406, 524-527. Cerca con Google

220. Saito T & Yokosuka T. (2006). Immunological synapse and microclusters: the site for recognition and activation of T cells. Curr Opin Immunol 18, 305-313. Cerca con Google

221. Salazar-Fontana LI, Barr V, Samelson LE & Bierer BE. (2003). CD28 engagement promotes actin polymerization through the activation of the small Rho GTPase Cdc42 in human T cells. J Immunol 171, 2225-2232. Cerca con Google

222. Salgame P, Abrams JS, Clayberger C, Goldstein H, Convit J, Modlin RL & Bloom BR. (1991). Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254, 279-282. Cerca con Google

223. Sallusto F, Lenig D, Mackay CR & Lanzavecchia A. (1998). Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J Exp Med 187, 875-883. Cerca con Google

224. Samstag Y, Eibert SM, Klemke M & Wabnitz GH. (2003). Actin cytoskeletal dynamics in T lymphocyte activation and migration. J Leukoc Biol 73, 30-48. Cerca con Google

225. Sato W, Aranami T & Yamamura T. (2007). Cutting edge: Human Th17 cells are identified as bearing CCR2+CCR5- phenotype. J Immunol 178, 7525-7529. Cerca con Google

226. Schmitz ML, Bacher S & Dienz O. (2003). NF-kappaB activation pathways induced by T cell costimulation. Faseb J 17, 2187-2193. Cerca con Google

227. Schutz GJ, Kada G, Pastushenko VP & Schindler H. (2000). Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. Embo J 19, 892-901. Cerca con Google

228. Sechi AS & Wehland J. (2004). Interplay between TCR signalling and actin cytoskeleton dynamics. Trends Immunol 25, 257-265. Cerca con Google

229. Seveau S, Eddy RJ, Maxfield FR & Pierini LM. (2001). Cytoskeleton-dependent membrane domain segregation during neutrophil polarization. Mol Biol Cell 12, 3550-3562. Cerca con Google

230. Shakhar G, Lindquist RL, Skokos D, Dudziak D, Huang JH, Nussenzweig MC & Dustin ML. (2005). Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo. Nat Immunol 6, 707-714. Cerca con Google

231. Shamri R, Grabovsky V, Gauguet JM, Feigelson S, Manevich E, Kolanus W, Robinson MK, Staunton DE, von Andrian UH & Alon R. (2005). Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6, 497-506. Cerca con Google

232. Sharma P, Varma R, Sarasij RC, Ira, Gousset K, Krishnamoorthy G, Rao M & Mayor S. (2004). Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577-589. Cerca con Google

233. Sharpe AH & Freeman GJ. (2002). The B7-CD28 superfamily. Nat Rev Immunol 2, 116-126. Cerca con Google

234. Shaw AS & Dustin ML. (1997). Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6, 361-369. Cerca con Google

235. Shefcyk J, Yassin R, Volpi M, Molski TF, Naccache PH, Munoz JJ, Becker EL, Feinstein MB & Sha'afi RI. (1985). Pertussis but not cholera toxin inhibits the stimulated increase in actin association with the cytoskeleton in rabbit neutrophils: role of the "G proteins" in stimulus-response coupling. Biochem Biophys Res Commun 126, 1174-1181. Cerca con Google

236. Siegmund K, Feuerer M, Siewert C, Ghani S, Haubold U, Dankof A, Krenn V, Schon MP, Scheffold A, Lowe JB, Hamann A, Syrbe U & Huehn J. (2005). Migration matters: regulatory T-cell compartmentalization determines suppressive activity in vivo. Blood 106, 3097-3104. Cerca con Google

237. Silvius JR. (2003). Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim Biophys Acta 1610, 174-183. Cerca con Google

238. Simons K & Ikonen E. (1997). Functional rafts in cell membranes. Nature 387, 569-572. Cerca con Google

239. Simons K & van Meer G. (1988). Lipid sorting in epithelial cells. Biochemistry 27, 6197- 6202. Cerca con Google

240. Singleton K, Parvaze N, Dama KR, Chen KS, Jennings P, Purtic B, Sjaastad MD, Gilpin C, Davis MM & Wulfing C. (2006). A large T cell invagination with CD2 enrichment resets receptor engagement in the immunological synapse. J Immunol 177, 4402-4413. Cerca con Google

241. Sloan-Lancaster J & Allen PM. (1996). Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu Rev Immunol 14, 1-27. Cerca con Google

242. Sohy D, Parmentier M & Springael JY. (2007). Allosteric transinhibition by specific antagonists in CCR2/CXCR4 heterodimers. J Biol Chem 282, 30062-30069. Cerca con Google

243. Sozzani S, Allavena P, D'Amico G, Luini W, Bianchi G, Kataura M, Imai T, Yoshie O, Bonecchi R & Mantovani A. (1998). Differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161, 1083-1086. Cerca con Google

244. Springael JY, Le Minh PN, Urizar E, Costagliola S, Vassart G & Parmentier M. (2006). Allosteric modulation of binding properties between units of chemokine receptor homo- and hetero-oligomers. Mol Pharmacol 69, 1652-1661. Cerca con Google

245. Springael JY, Urizar E & Parmentier M. (2005). Dimerization of chemokine receptors and its functional consequences. Cytokine Growth Factor Rev 16, 611-623. Cerca con Google

246. Stefanova I, Horejsi V, Ansotegui IJ, Knapp W & Stockinger H. (1991). GPI-anchored cellsurface molecules complexed to protein tyrosine kinases. Science 254, 1016-1019. Cerca con Google

247. Steinman RM, Hawiger D & Nussenzweig MC. (2003). Tolerogenic dendritic cells. Annu Rev Immunol 21, 685-711. Cerca con Google

248. Stinchcombe JC, Majorovits E, Bossi G, Fuller S & Griffiths GM. (2006). Centrosome polarization delivers secretory granules to the immunological synapse. Nature 443, 462-465. Cerca con Google

249. Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M & Shapiro SS. (2001). Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2, 138-145. Cerca con Google

250. Stowers L, Yelon D, Berg LJ & Chant J. (1995). Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc Natl Acad Sci U S A 92, 5027-5031. Cerca con Google

251. Subczynski WK & Kusumi A. (2003). Dynamics of raft molecules in the cell and artificial membranes: approaches by pulse EPR spin labeling and single molecule optical microscopy. Biochim Biophys Acta 1610, 231-243. Cerca con Google

252. Suzuki KG, Fujiwara TK, Edidin M & Kusumi A. (2007a). Dynamic recruitment of phospholipase C gamma at transiently immobilized GPI-anchored receptor clusters induces IP3-Ca2+ signaling: single-molecule tracking study 2. J Cell Biol 177, 731- 742. Cerca con Google

253. Suzuki KG, Fujiwara TK, Sanematsu F, Iino R, Edidin M & Kusumi A. (2007b). GPIanchored receptor clusters transiently recruit Lyn and G alpha for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. J Cell Biol 177, 717-730. Cerca con Google

254. Tai X, Cowan M, Feigenbaum L & Singer A. (2005). CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6, 152-162. Cerca con Google

255. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M, Riedel D, Urlaub H, Schenck S, Brugger B, Ringler P, Muller SA, Rammner B, Grater F, Hub JS, De Groot BL, Mieskes G, Moriyama Y, Klingauf J, Grubmuller H, Heuser J, Wieland F & Jahn R. (2006). Molecular anatomy of a trafficking organelle. Cell 127, 831-846. Cerca con Google

256. Taub DD, Turcovski-Corrales SM, Key ML, Longo DL & Murphy WJ. (1996). Chemokines and T lymphocyte activation: I. Beta chemokines costimulate human T lymphocyte activation in vitro. J Immunol 156, 2095-2103. Cerca con Google

257. Tavano R, Gri G, Molon B, Marinari B, Rudd CE, Tuosto L & Viola A. (2004). CD28 and lipid rafts coordinate recruitment of Lck to the immunological synapse of human T lymphocytes. J Immunol 173, 5392-5397. Cerca con Google

258. Terrillon S & Bouvier M. (2004). Roles of G-protein-coupled receptor dimerization. EMBO Rep 5, 30-34. Cerca con Google

259. Thrasher AJ. (2002). WASp in immune-system organization and function. Nat Rev Immunol 2, 635-646. Cerca con Google

260. Toth PT, Ren D & Miller RJ. (2004). Regulation of CXCR4 receptor dimerization by the chemokine SDF-1alpha and the HIV-1 coat protein gp120: a fluorescence resonance energy transfer (FRET) study. J Pharmacol Exp Ther 310, 8-17. Cerca con Google

261. Trautmann A. (2005). Chemokines as immunotransmitters? Nat Immunol 6, 427-428. Cerca con Google

262. Tuosto L & Acuto O. (1998). CD28 affects the earliest signaling events generated by TCR engagement. Eur J Immunol 28, 2131-2142. Cerca con Google

263. Tuosto L, Michel F & Acuto O. (1996). p95vav associates with tyrosine-phosphorylated SLP- 76 in antigen-stimulated T cells. J Exp Med 184, 1161-1166. Cerca con Google

264. Tuosto L, Parolini I, Schroder S, Sargiacomo M, Lanzavecchia A & Viola A. (2001). Organization of plasma membrane functional rafts upon T cell activation. Eur J Immunol 31, 345-349. Cerca con Google

265. Tybulewicz VL. (2002). Chemokines and the immunological synapse. Immunology 106, 287- 288. Cerca con Google

266. Valitutti S, Muller S, Cella M, Padovan E & Lanzavecchia A. (1995). Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148-151.ù Cerca con Google

267. van der Flier A & Sonnenberg A. (2001). Structural and functional aspects of filamins. Biochim Biophys Acta 1538, 99-117. Cerca con Google

268. van der Merwe PA & Davis SJ. (2003). Molecular interactions mediating T cell antigen recognition. Annu Rev Immunol 21, 659-684. Cerca con Google

269. Varma R, Campi G, Yokosuka T, Saito T & Dustin ML. (2006). T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117-127. Cerca con Google

270. Varma R & Mayor S. (1998). GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394, 798-801. Cerca con Google

271. Veillette A, Bookman MA, Horak EM & Bolen JB. (1988). The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55, 301-308. Cerca con Google

272. Vila-Coro AJ, Rodriguez-Frade JM, Martin De Ana A, Moreno-Ortiz MC, Martinez AC & Mellado M. (1999). The chemokine SDF-1alpha triggers CXCR4 receptor dimerization and activates the JAK/STAT pathway. Faseb J 13, 1699-1710. Cerca con Google

273. Villalba M, Bi K, Rodriguez F, Tanaka Y, Schoenberger S & Altman A. (2001). Vav1/Racdependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J Cell Biol 155, 331-338. Cerca con Google

274. Viola A. (2001). The amplification of TCR signaling by dynamic membrane microdomains. Trends Immunol 22, 322-327. Cerca con Google

275. Viola A, Contento RL & Molon B. (2006). T cells and their partners: The chemokine dating agency. Trends Immunol 27, 421-427. Cerca con Google

276. Viola A & Gupta N. (2007). Tether and trap: regulation of membrane-raft dynamics by actinbinding proteins. Nat Rev Immunol 7, 889-896. Cerca con Google

277. Viola A & Lanzavecchia A. (1996). T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104-106. Cerca con Google

278. Viola A & Luster AD. (2008). Chemokines and Their Receptors: Drug Targets in Immunity and Inflammation. Annu Rev Pharmacol Toxicol 48, 171-197. Cerca con Google

279. Viola A, Schroeder S, Sakakibara Y & Lanzavecchia A. (1999). T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680-682. Cerca con Google

280. Wang J, Alvarez R, Roderiquez G, Guan E & Norcross MA. (2004). Constitutive association of cell surface CCR5 and CXCR4 in the presence of CD4. J Cell Biochem 93, 753- 760. Cerca con Google

281. Wange RL & Samelson LE. (1996). Complex complexes: signaling at the TCR. Immunity 5, 197-205. Cerca con Google

282. Ward SG. (2004). Do phosphoinositide 3-kinases direct lymphocyte navigation? Trends Immunol 25, 67-74. Cerca con Google

283. Watts TH. (2005). TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol 23, 23-68. Cerca con Google

284. Wei S, Kryczek I & Zou W. (2006). Regulatory T-cell compartmentalization and trafficking. Blood 108, 426-431. Cerca con Google

285. Wiedemann A, Depoil D, Faroudi M & Valitutti S. (2006). Cytotoxic T lymphocytes kill multiple targets simultaneously via spatiotemporal uncoupling of lytic and stimulatory synapses. Proc Natl Acad Sci U S A 103, 10985-10990. Cerca con Google

286. Wulfing C, Bauch A, Crabtree GR & Davis MM. (2000). The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyteantigen- presenting cell interface. Proc Natl Acad Sci U S A 97, 10150-10155. Cerca con Google

287. Wulfing C & Davis MM. (1998). A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266-2269. Cerca con Google

288. Wurbel MA, Malissen M, Guy-Grand D, Meffre E, Nussenzweig MC, Richelme M, Carrier A & Malissen B. (2001). Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor gammadelta(+) gut intraepithelial lymphocytes. Blood 98, 2626-2632. Cerca con Google

289. Xu J, Wang F, Van Keymeulen A, Herzmark P, Straight A, Kelly K, Takuwa Y, Sugimoto N, Mitchison T & Bourne HR. (2003). Divergent signals and cytoskeletal assemblies regulate self-organizing polarity in neutrophils. Cell 114, 201-214. Cerca con Google

290. Yashiro-Ohtani Y, Zhou XY, Toyo-Oka K, Tai XG, Park CS, Hamaoka T, Abe R, Miyake K & Fujiwara H. (2000). Non-CD28 costimulatory molecules present in T cell rafts induce T cell costimulation by enhancing the association of TCR with rafts. J Immunol 164, 1251-1259. Cerca con Google

291. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ & Kolls JK. (2001). Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 194, 519-527. Cerca con Google

292. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML & Saito T. (2005). Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat Immunol 6, 1253-1262. Cerca con Google

293. Zapico I, Coto E, Rodriguez A, Alvarez C, Torre JC & Alvarez V. (2000). CCR5 (chemokine receptor-5) DNA-polymorphism influences the severity of rheumatoid arthritis. Genes Immun 1, 288-289. Cerca con Google

294. Zeng R, Cannon JL, Abraham RT, Way M, Billadeau DD, Bubeck-Wardenberg J & Burkhardt JK. (2003). SLP-76 coordinates Nck-dependent Wiskott-Aldrich syndrome protein recruitment with Vav-1/Cdc42-dependent Wiskott-Aldrich syndrome protein activation at the T cell-APC contact site. J Immunol 171, 1360-1368. Cerca con Google

295. Zhang J, Shehabeldin A, da Cruz LA, Butler J, Somani AK, McGavin M, Kozieradzki I, dos Santos AO, Nagy A, Grinstein S, Penninger JM & Siminovitch KA. (1999). Antigen receptor-induced activation and cytoskeletal rearrangement are impaired in Wiskott- Aldrich syndrome protein-deficient lymphocytes. J Exp Med 190, 1329-1342. Cerca con Google

296. Zinselmeyer BH, Dempster J, Gurney AM, Wokosin D, Miller M, Ho H, Millington OR, Smith KM, Rush CM, Parker I, Cahalan M, Brewer JM & Garside P. (2005). In situ characterization of CD4+ T cell behavior in mucosal and systemic lymphoid tissues during the induction of oral priming and tolerance. J Exp Med 201, 1815-1823. Cerca con Google

297. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, Wei S, David O, Curiel TJ & Zou W. (2004). Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64, 8451-8455. Cerca con Google

298. Zou W, Borvak J, Marches F, Wei S, Galanaud P, Emilie D & Curiel TJ. (2000). Macrophage-derived dendritic cells have strong Th1-polarizing potential mediated by beta-chemokines rather than IL-12. J Immunol 165, 4388-4396. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record