Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Wang, Guanglei (2013) Fluid dynamics characterization of biomedical implantable devices: experimental measurements and numerical simulation. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
14Mb

Abstract (inglese)

Mechanical heart valves, specifically bileaflet valves, are widely applied to take place of diseased native valves. These prosthetic valve replacements exhibit good long-term mechanical durability. However, mechanical loading of blood is associated to complications (hemolysis and thrombogenicity), which represent important safety requirements for this kind of valves.
In this thesis work, Particle Image Velocimetry (PIV) was applied as experimental tool for evaluating fluid dynamics characterization of biomedical implantable devices, especially for bileaflet mechanical heart valves (BMHVs). The procedures of PIV measurement of same target were repeatedly executed for multiple experimental validations of numerical data. The reproducibility of experimental data from PIV multiple measurements was proved reliable with the coefficients of variation for hemodynamic properties below 5%. These hemodynamic parameters such as velocity, turbulence shear stress (TSS) and hemolysis index (HI) did not only supply a good research basis for numerical simulation, but also directly analyze the potential risks for blood damages due to the artificial implantations. The maximum TSS captured in leakage jets of valve type 1 was around 40 Pa and that of valve type 2 was 20 Pa.
The simulations using computational fluid dynamics (CFD) were carried out based on the physical parameters of experimental conditions. Good agreements between PIV and CFD were observed according to the comparisons in near-hinge regions. Furthermore, CFD data were used to investigate the hemodynamic properties inside of hinge region, where PIV measurements cannot be carried out due to optical inaccessibility. The experimental work was carried out entirely at the Istituto Superiore di Sanita (ISS) in Rome, Italy, whereas the simulation work was based on the cooperation between ISS and the Technical University of Cluj-Napoca (TuCN) in Cluj-Napoca, Romania.
The final object of our cooperation is to take use of experimental and simulation methodologies to define a standard procedure for obtaining sufficient reliability in risk evaluation and mitigation of prosthetic heart valves.

Abstract (italiano)

Le valvole cardiache di tipo meccanico, in particolare le valvole a doppia flangia (bileaflet), sono largamente applicate nella sostituzione di valvole native affette da diverse patologie. Queste protesi valvolari presentano una buona durata a lungo termine. Tuttavia, le sollecitazioni meccaniche a carico del sangue sono associate a complicanze (emolisi e trombogenicità), che pongono importanti requisiti di sicurezza per questo tipo di valvole.
In questo lavoro di tesi, la Particle Image Velocimetry (PIV) è stata applicata come strumento sperimentale per la caratterizzazione fluidodinamica dei dispositivi biomedici impiantabili, in particolare per le valvole cardiache meccaniche a doppia flangia (BMHV). Misure PIV della stessa posizione nel campo fluidodinamico sono state eseguite ripetutamente, per ottenere affidabili convalide sperimentali di dati numerici. La riproducibilità dei dati sperimentali da misure PIV è stata dimostrata affidabile, con un coefficiente di variazione per le proprietà emodinamiche inferiore al 5%. Questi parametri emodinamici come la velocità, turbulence shear stress (TSS) e indice di emolisi (HI) non hanno solo fornito una buona base di ricerca per la simulazione numerica, ma hanno anche consentito di analizzare direttamente i potenziali rischi per il danno ematico causato dell’impianto di dispositivo. Il massimo TSS misurato per i getti di rigurgito della valvola di tipo 1 è stato di circa 40 Pa e per I getti di rigurgito della valvola di tipo 2 è stato di 20 Pa.
Le simulazioni che utilizzano la fluidodinamica computazionale (CFD) sono state eseguite in base ai parametri fisici delle condizioni sperimentali. E’ stato osservato un buon accordo tra risultati PIV e CFD, in base al confronto nella regione vicina alla cerniera della flange. Inoltre, i dati CFD sono stati utilizzati per studiare le proprietà emodinamiche all’interno della regione della cerniera, in cui le misure PIV non possono essere effettuate a causa dell’inaccessibilità ottica. Il lavoro sperimentale è stato condotto interamente presso l’Istituto Superiore di Sanità (ISS), Roma, mentre e gli studi di simulazione si basano sulla collaborazione tra l’ISS e l’Università Tecnica di Cluj-Napoca (TuCN) a Cluj-Napoca, Romania.
Lo scopo finale di tale collaborazione è quello di usare metodologie sperimentali e di simulazione per definire una procedura standard per ottenere una sufficiente affidabilità per la valutazione e la mitigazione del rischio associato all’impianto di protesi valvolari cardiache.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mauro, Grigioni
Correlatore:Castellini, Paolo
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE TECNOLOGIE E MISURE SPAZIALI > MISURE MECCANICHE PER L'INGEGNERIA E LO SPAZIO
Data di deposito della tesi:30 Gennaio 2013
Anno di Pubblicazione:30 Gennaio 2013
Parole chiave (italiano / inglese):Particle Image Velocimetry, Computational Fluid Dynamics, Bileaflet Mechanical Heart Valve, Leakage Jet, Turbulence Shear Stress, Hemolysis Index
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/08 Macchine a fluido
Area 09 - Ingegneria industriale e dell'informazione > ING-IND/34 Bioingegneria industriale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:5760
Depositato il:14 Ott 2013 13:17
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Sutera SP. Flow-Induced Trauma to Blood Cells. Circ Res. 1977 Jul;41(1):2-8. Cerca con Google

[2] Grigioni M., D'Avenio G., Morbiducci U., Del Gaudio C., Daniele C. Fluid dynamics studies of cardiovascular medical devices and blood damage prediction. Conf Proc IEEE Eng Med Biol Soc. 2008;2008:1419-22. Cerca con Google

[3] Murphy D.W. (2009). The application of passive flow control to bileaflet mechanical heart valve leakage jets (Master’s thesis). Georgia Institute of Technology Cerca con Google

[4] Marsh, G. W. 1964. Lancet. 2:986. Cerca con Google

[5] Saye, H. M., J. V. Dace, D. A. Hundley, S. M. Lewi, W. P. Clelan. 1961. Thorax. 16: 356. Cerca con Google

[6] Bacher, R., M. Williams (1970). "Hemolysis in capillary flow." J Lab Clin Med. 79(3): 485-96. Cerca con Google

[7] Leverett, L. B., J. D. Hellums, et al. (1972). "Red Blood Cell Damage by Shear Stress." Biophys. J. 12(3): 257-273. Cerca con Google

[8] Rooney, J. A. (1970). "Hemolysis Near an Ultrasonically Pulsating Gas Bubble." Science 169(3948): 869-871. Cerca con Google

[9] Williams, A. R., D. E. Hughes, et al. (1970). "Hemolysis Near a Transversely Oscillating Wire." Science 169(3948): 871-873. Cerca con Google

[10] Sutera, S. P., M. H. Mehrjardi (1975). "Deformation and fragmentation of human red blood cells in turbulent shear flow." Biophys. J. 15(1): 1-10. Cerca con Google

[11] Sallam A.M., Hwang N.H. Human red blood cell hemolysis in a turbulent shear flow: contribution of Reynolds shear stresses. Biorheology. 1984; 21(6):783-97. Cerca con Google

[12] Grigioni M., Daniele C., D'Avenio G., Barbaro V. A discussion on the threshold limit for hemolysis related to Reynolds shear stress, Journal of Biomechanics 32 (1999) 1107-1112. Cerca con Google

[13] Lu P.C., Lai H.C., Liu J.S. A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow. J Biomech. 2001 Oct;34(10):1361-4. Cerca con Google

[14] Conti V.R., Nishimura A., Coughlin T.R., Farrell R.W.. Indications for replacement of the Beall-103 and Beall-104 disk valves. Ann Thorac Surg. 1986 Sep; 42(3):315-20. Cerca con Google

[15] Skoularigis, J., M. R. Essop, D. Skudicky, S. J. Middlemost, and P. Sareli. Frequency and severity of intravascular hemolysis after left-sided cardiac valve replacement with Medtronic Hall and St. Jude Medical prostheses, and influence of prosthetic type, position, size and number. Am. J. Cardiol. 71:587–591, 1993. Cerca con Google

[16] Garcia M.J., Vandervoort P., Stewart W.J., Lytle B.W., Cosgrove D.M., Thomas J,D., Griffin B.P. Mechanisms of Hemolysis With Mitral Prosthetic Regurgitation: study Using Transesophageal Echocardiography and Fluid Dynamic Simulation. J Am Coll Cardiol. 1996 Feb;27(2):399-406. Cerca con Google

[17] Mecozzi G., Milano A.D., Carlo M.D., Sorrentino F., Pratali S., Nardi C., Bortolotti U.. Intravascular hemolysis in patients with new-generation prosthetic heart valves: A prospective study. J Thorac Cardiovasc Surg 2002;123:550-556 Cerca con Google

[18] Suedkamp M., Lercher A.J., Mueller-Riemenschneider F., LaRosee K., Tossios P., Mehlhorn U. Hemolysis parameters of St. Jude Medical: Hemodynamic Plus and Regent valves in aortic position. Int J Cardiol. 2004 May;95(1):89-93. Cerca con Google

[19] George J.N. Platelets. Lancet 2000; 355: 1531–9. Cerca con Google

[20] Bautista A.P., Buckler P.W., Towler H.M., Dawson A.A., Bennett B. Measurement of platelet life span in normal subjects and patients with myeloproliferative disease with indium oxine labelled-platelets. Br J Haematol 1984; 58: 679–87. Cerca con Google

[21] Felder R., Banton V., Sayre D., Costa J., Baldini M., Kim B. Direct imaging of live human platelets by flash X-ray microscopy. Science 1985; 227: 63–4. Cerca con Google

[22] Kamath S., Blann A.D., Lip G.Y.H. Platelet activation: assessment and quantification. Eur Heart J (2001) 22 (17): 1561-1571. Cerca con Google

[23] Kaushansky K. Thrombopoietin and hematopoietic stem cell development. Ann NY Acad Sci 1999; 872: 314–19. Cerca con Google

[24] Hoak J.C. Platelet and atherosclerosis. Semin Thromb Hemost 1988; 14: 202–5. Cerca con Google

[25] Rabbani L.E., Loscalzo J. Recent observations on the role of hemostatic determinants in the development of the atherothrombotic plaque. Atherosclerosis 1994; 105: 1–7. Cerca con Google

[26] Yoganathan A.P., Chandran K.B., Sotiropoulos F. Flow in Prosthetic Heart Valves: State-of-the-Art and Future Directions. Ann Biomed Eng. 2005 Dec;33(12):1689-94. Cerca con Google

[27] Harker LA, Slichter SJ. Studies of platelet and fibrinogen kinetics in patients with prosthetic heart valves. N Engl J Med. 1970 Dec 10;283(24):1302-5. Cerca con Google

[28] Steele P, Weily H, Davies H, Ppppas G, Genton E. Platelet survival time following aortic valve replacement. Circulation. 1975 Feb;51(2):358-62. Cerca con Google

[29] Neal WS, Peter PS, Bruce CP. Thromboembolism After Beall Valve Replacement of the Mitral Valve. Ann Thorac Surg 1975;19:33-39 Cerca con Google

[30] Dale J. Arterial thromboembolic complications in patients with Starr-Edwards aortic ball valve prostheses. Am Heart J. 1976 May;91(5):653-9. Cerca con Google

[31] Dale J.Arterial thromboembolic complications in patients with Björk-Shiley and Lillehei-Kaster aortic disc valve prostheses.Am Heart J. 1977 Jun;93(6):715-22. Cerca con Google

[32] Pumphrey CW, Dawes J. Elevation of plasma β-thromboglobulin in patients with prosthetic cardiac valves. Thromb Res. 1981 Apr 1-15;22(1-2):147-55. Cerca con Google

[33] Czer LS, Matloff JM, Chaux A, De Robertis M, Stewart ME, Gray RJ. The St. Jude valve: Analysis of thromboembolism, warfarin-related hemorrhage, and survival. Am Heart J. 1987 Aug;114(2):389-97. Cerca con Google

[34] Bourguignon T, Bergöend E, Mirza A, Ayegnon G, Neville P, Aupart MR, Marchand M. Risk Factors for Valve-Related Complications after Mechanical Heart Valve Replacement in 505 Patients with Long-Term Follow Up. J Heart Valve Dis. 2011 Nov;20(6):673-80. Cerca con Google

[35] Brown CH, Leverett LB, Lewis CW, Alfrey CP Jr, Hellums JD. Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J Lab Clin Med. 1975 Sep;86(3):462-71. Cerca con Google

[36] Bernstein EF, Marzec U, Johnston GG. Structural correlates of platelet functional damage by physical forces. Trans Am Soc Artif Intern Organs. 1977;23:617-25. Cerca con Google

[37] Anderson GH, Hellums JD, Moake JL, Alfrey CP Jr. Platelet lysis and aggregation in shear fields. Blood Cells. 1978;4(3):499-511. Cerca con Google

[38] Ramstacka JM, Zuckermana L, Mockros LF. Shear-induced activation of platelets. Journal of Biomechanics 1979:12(2):113–125 Cerca con Google

[39] Moake JL, Turner NA, Stathopoulos NA, Nolasco LH, Hellums JD. Involvement of large plasma von Willebrand factor (vWF) multimers and unusually large vWF forms derived from endothelial cells in shear stress-induced platelet aggregation. J Clin Invest 78:1456, 1986 Cerca con Google

[40] Travis BR, Marzec UM, Ellis JT, Davoodi P, Momin T, Hanson SR, Harker LA, Yoganathan AP. The sensitivity of indicators of thrombosis initiation to a bileaflet prosthesis leakage stimulus. J Heart Valve Dis. 2001 Mar;10(2):228-38. Cerca con Google

[41] Brown CH, Leverett LB, Lewis CW, Alfrey CP Jr, Hellums JD. Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J Lab Clin Med. 1975 Sep;86(3):462-71. Cerca con Google

[42] D. Bluestein. Research approaches for studying flow induced thromboembolic complications in blood recirculating devices. Expert Rev Med Devices. 2004 Sep; 1 (1):65-80 Cerca con Google

[43] L.J. Wurzinger, P. Blasberg and H. Schmid-Schönbein. Towards a concept of thrombosis in accelerated flow: Rheology, fluid dynamics, and biochemistry. Biorheology. 1985;22(5):437-50 Cerca con Google

[44] Yoganathan AP, Corcoran WH, Harrison EC. In vitro velocity measurements in the vicinity of aortic prostheses. Journal of Biomechanics. 1979:12(2):135–152 Cerca con Google

[45] Chandran KB, Cabell GN, Khalighi B, Chen CJ. Pulsatile flow past aortic valve bioprostheses in a model human aorta. J Biomech. 1984;17(8):609-19. Cerca con Google

[46] Chandran KB, Khalighi B, Chen CJ.Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta—I. Caged ball valves. J Biomech. 1985;18(10):763-72. Cerca con Google

[47] Chandran KB, Khalighi B, Chen CJ.Experimental study of physiological pulsatile flow past valve prostheses in a model of human aorta—II. Tilting disc valves and the effect of orientation. J Biomech. 1985;18(10):773-80. Cerca con Google

[48] Yoganathan AP, Woo Y, H. Sung. Turbulent shear stress measurements in the vicinity of aortic heart valve prostheses. J. Biomech. 19:433–442, 1986 Cerca con Google

[49] Hanle DD, Harrison EC, Yoganathan AP, Allen DT, Corcoran WH. In vitro flow dynamics of four prosthetic aortic valves: A comparative analysis. J Biomech. 1989;22(6-7):597-607. Cerca con Google

[50] Schoephoerster RT, Chandran KB.Velocity and turbulence measurements past mitrial valve prostheses in a model left ventricle. J Biomech. 1991;24(7):549-62. Cerca con Google

[51] Hans N, Peter KP, Michael HJ, Erik MP, Poul ER. TURBULENT STRESSES DOWNSTREAM OF 3 MECHANICAL AORTIC-VALVE PROSTHESES IN HUMAN-BEINGS. J Thorac Cardiovasc Surg 1994;107:438-0446 Cerca con Google

[52] Maymir JC, Deutsch S, Meyer RS, Geselowitz DB, Tarbell JM. Effects of tilting disk heart valve gap width on regurgitant flow through an artificial heart mitral valve. Artif Organs. 1997 Sep;21(9):1014-25. Cerca con Google

[53] Travis, BR, Ellis, JT, Saxena, R, Yoganathan, AP. Differences in local hemodynamics of bileaflet prosthetic heart valves: The effect of increased orifice area. Proceedings of the 20th Annual International Conference of the IEEE 1998. vol.1:371 - 374 Cerca con Google

[54] J.T. Ellis, B.R. Travis and A.P. Yoganathan. An in vitro study of the hinge and near-field forward flow dynamics of the St. Jude Medical® Regent™ bileaflet mechanical heart valve. Annals of Biomedical Engineering. vol.28, no. 5 (2000), 524-532 Cerca con Google

[55] J.T. Ellis and A.P. Yoganathan. A comparison of the hinge and near-hinge flow fields of the St Jude Medical Hemodynamic Plus and Regent bileaflet mechanical heart valves. J Thorac Cardiovasc Surg. 2000;119:83-93. Cerca con Google

[56] H.L. Leo, Z.M. He, J.T. Ellis and A.P. Yoganathan. Microflow fields in the hinge region of the CarboMedics bileaflet mechanical heart valve design. J Thorac Cardiovasc Surg. 2002 Sep;124(3):561-74. Cerca con Google

[57] H.A. Simon, H.L. Leo, J. Carberry and A.P. Yoganathan. Comparison of the hinge flow fields of two bileaflet mechanical heart valves under aortic and mitral conditions. Ann Biomed Eng. 2004 Dec;32(12):1607-17. Cerca con Google

[58] H.A. Simon (2004). Influence of the implant location on the hinge and leakage flow fields through bileaflet mechanical heart valves (Master’s thesis). Georgia Institute of Technology Cerca con Google

[59] Manning KB, Herbertson LH, Fontaine AA, Deutsch S.A detailed fluid mechanics study of tilting disk mechanical heart valve closure and the implications to blood damage. J Biomech Eng. 2008 Aug;130(4):041001. Cerca con Google

[60] Lim WL, Chew YT, Chew TC, Low HT.Steady flow dynamics of prosthetic aortic heart valves: a comparative evaluation with PIV techniques. J Biomech. 1998 May;31(5):411-21. Cerca con Google

[61] Lim WL, Chew YT, Chew TC, Low HT. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J Biomech. 2001 Nov;34(11):1417-27. Cerca con Google

[62] K.B. Manning, V. Kini, A.A. Fontaine, S. Deutsch and J.M. Tarbell. Regurgitant flow field characteristics of the St.Jude bilealet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif Organs. 2003 Sep;27(9):840-6. Cerca con Google

[63] Lu PC, Liu JS, Huang RH, Lo CW, Lai HC, Hwang NH.The closing behavior of mechanical aortic heart valve prostheses. ASAIO J. 2004 Jul-Aug;50(4):294-300. Cerca con Google

[64] T. Akutsu and T. Fukuda. Time-resolved particle image velocimetry and laser doppler anemometry study of the turbulent flow field of bileaflet mechanical mitral prostheses. J Artif Organs. 2005;8(3):171-83. Cerca con Google

[65] Y.B. Shi, J.H. Yeo, Y. Zhao and H.C. Hwang. Particle image velocimetry study of pulsatile flow in bileaflet mechanical heart valves with image compensation method. J Biol Phys. 2006 December; 32(6): 531–551. Cerca con Google

[66] Kaminsky R, Morbiducci U, Rossi M, Scalise L, Verdonck P, Grigioni M.Time-resolved PIV technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics. Int J Artif Organs. 2007 Feb;30(2):153-62. Cerca con Google

[67] D.W. Murphy (2009). The application of passive flow control to bileaflet mechanical heart valve leakage jets (Master’s thesis). Georgia Institute of Technology Cerca con Google

[68] D. Amatya, D.R. Troolin and E.K. Longmire. 3D3C velocity measurements downstream of artificial heart valves. 8TH INTERNATIONAL SYMPOSIUM ON PARTICLE IMAGE VELOCIMETRY - PIV09. Melbourne, Victoria, Australia, August 25-28, 2009 Cerca con Google

[69] Li CP, Lo CW, Lu PC. Estimation of Viscous Dissipative Stresses Induced by a Mechanical Heart Valve Using PIV Data. Ann Biomed Eng. 2010 Mar; 38 (3):903-16. Epub 2009 Dec 18. Cerca con Google

[70] Akutsu T, Matsumoto A.Influence of three mechanical bileaflet prosthetic valve designs on the three-dimensional flow field inside a simulated aorta. J Artif Organs. 2010 Dec;13(4):207-17. Cerca con Google

[71] Hutchison C, Sullivan P, Ethier CR. Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV. Med Biol Eng Comput. 2011 Mar;49(3):325-35. Cerca con Google

[72] Li CP, Chen SF, Lo CW, Lu PC. Turbulence Characteristics Downstream of a New Trileaflet Mechanical Heart Valve. ASAIO J. 2011 May-Jun;57(3):188-96. Cerca con Google

[73] C. Hutchison, P. Sullivan and C.R. Ethier. Measurements of steady flow through a bileaflet mechanical heart valve using stereoscopic PIV. Med Biol Eng Comput. 2011 Mar;49(3):325-35 Cerca con Google

[74] Stühle S, Wendt D, Houl G, Wendt H, Schlamann M, Thielmann M, Jakob H, Kowalczyk W.In-Vitro Investigation of the Hemodynamics of the Edwards Sapien (TM) Transcatheter Heart Valve. J Heart Valve Dis. 2011 Jan;20(1):53-63. Cerca con Google

[75] Alessandro Bellofiore, Eilis M. Donohue and Nathan J. Quinlan. Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve. Exp. Fluids (2011) 51:161-176 Cerca con Google

[76] Williams GA, Labovitz AJ. Doppler hemodynamic evaluation of prosthetic (Starr-Edwards and Björk-Shiley) and Bioprosthetic (Hancock and Carpentier-Edwards) cardiac valves. Am J Cardiol. 1985 Aug 1;56(4):325-32. Cerca con Google

[77] Reimold SC, Yoganathan AP, Sung HW, Cohn LH, Sutton MG, Lee RT.Doppler echocardiographic study of porcine bioprosthetic heart valves in the aortic valve position in patients without evidence of cardiac dysfunction. Am J Cardiol. 1991 Mar 15;67(7):611-5. Cerca con Google

[78] Chambers J, Cross J, Deverall P, Sowton E.Echocardiographic Description of the CarboMedics Bileaflet Prosthetic Heart Valve. J Am Coll Cardiol. 1993 Feb;21(2):398-405. Cerca con Google

[79] Cape EG, Sung HW, Yoganathan AP.HEMODYNAMIC ASSESSMENT OF CARBOMEDICS BILEAFLET HEART VALVES BY ULTRASOUND: STUDIES IN THE AORTIC AND MITRAL POSITIONS. Ultrasound Med Biol. 1996;22(4):421-30. Cerca con Google

[80] Otto CM, Pearlman AS, Comess KA, Reamer RP, Janko CL, Huntsman LL.Determination of the Stenotic Aortic Valve Area in Adults Using Doppler Echocardiography. J Am Coll Cardiol. 1986 Mar;7(3):509-17. Cerca con Google

[81] Flachskampf FA, O'Shea JP, Griffin BP, Guerrero L, Weyman AE, Thomas JD. Patterns of Normal Transvalvular Regurgitant in Mechanical Valve Prostheses. J Am Coll Cardiol. 1991 Nov 15;18(6):1493-8. Cerca con Google

[82] Baumgartner H, Khan S, DeRobertis M, Czer L, Maurer G. Effect of Prosthetic Aortic Valve Design on the Doppler-Catheter Gradient Correlation: An In Vitro Study of Normal St, Jude, Medtronic-Hall, Starr-Edwards and Hancock Valves. J Am Coll Cardiol. 1992 Feb;19(2):324-32. Cerca con Google

[83] Bitar JN, Lechin ME, Salazar G, Zoghbi WA.Doppler Echocardiographic Assessment with the Continuity Equation of St. Jude Medical Mechanical Prostheses in the Mitral Valve Position. Am J Cardiol. 1995 Aug 1;76(4):287-93. Cerca con Google

[84] Bech-Hanssen O, Caidahl K, Wallentin I, Ask P, Wranne B.Assessment of effective orifice area of prosthetic aortic valves with Doppler echocardiography: An in vivo and in vitro study. J Thorac Cardiovasc Surg. 2001 Aug;122(2):287-95. Cerca con Google

[85] Hasenkam JM, Giersiepen M, Reul H.Three-dimensional visualization of velocity fields downstream of six mechanical aortic valves in a pulsatile flow model. J Biomech. 1988;21(8):647-61. Cerca con Google

[86] Nygaard H, Giersiepen M, Hasenkam JM, Reul H, Paulsen PK, Rovsing PE, Westphal D.Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro. J Biomech. 1992 Apr;25(4):429-40. Cerca con Google

[87] Fontaine AA, Heinrich RS, Walker PG, Pedersen EM, Scheidegger MB, Boesiger P, Walton SP, Yoganathan AP. Comparison of magnetic resonance imaging and laser Doppler anemometry velocity measurements downstream of replacement heart valves: Implications for in vivo assessment of prosthetic valve function. J Heart Valve Dis. 1996 Jan;5(1):66-73. Cerca con Google

[88] Ringgaard S, Botnar RM, Djurhuus C, Stodkilde-Jorgensen H, Hasenkam JM, Boesiger P, Pedersen EM.High-resolution assessment of velocity fields and shear stresses distal to prosthetic heart valves using high-field magnetic resonance imaging. J Heart Valve Dis. 1999 Jan;8(1):96-103. Cerca con Google

[89] Houlind K, Eschen O, Pedersen EM, Jensen T, Hasenkam JM, Paulsen PK. Magnetic resonance imaging of blood velocity distribution around St Jude Medical aortic valves in patients. J Heart Valve Dis. 1996 Sep;5(5):511-7. Cerca con Google

[90] Kvitting JP, Dyverfeldt P, Sigfridsson A, Franzén S, Wigström L, Bolger AF, Ebbers T.In Vitro Assessment of Flow Patterns and Turbulence Intensity in Prosthetic Heart Valves Using Generalized Phase-Contrast MRI. J Magn Reson Imaging. 2010 May;31(5):1075-80. Cerca con Google

[91] T.M. Healy, A.A. Fontaine, J.T. Ellis, S.P. Walton and A.P. Yoganathan. Visualization of the hinge flow in a 5:1 scaled model of the Medtronic parallel bileaflet heart valve prosthesis. Experiments in Fluids. vol. 25, no. 5-6 (1998), 512-518 Cerca con Google

[92] Kleine P, Scherer M, Abdel-Rahman U, Klesius AA, Ackermann H, Moritz A.Effect of mechanical aortic valve orientation on coronary artery flow: Comparison of tilting disc versus bileaflet prostheses in pigs. J Thorac Cardiovasc Surg. 2002 Nov;124(5):925-32. Cerca con Google

[93] Nyboe C, Funder JA, Smerup MH, Nygaard H, Hasenkam JM.Turbulent stress measurements downstream of threebileaflet heart valve designs in pigs. Eur J Cardiothorac Surg. 2006 Jun;29(6):1008-13. Cerca con Google

[94] M. Grigioni, C. Daniele, U. Morbiducci, C. Del Gaudio, G. D’Avenio, A. Balducci, D. Di Meo and V. Barbaro. Laser Vibrometry as investigational tool for mechanical heart valves kinematics: preliminary investigation, 2003 Cerca con Google

[95] Malvern, L E. Introduction to the mechnics of a continous medium. Transport Research Laboratory. 1969 Cerca con Google

[96] RD Keane, RJ Adrian. The PIV rules of thumb were developed by Keane and Adrian in Optimization of particle image velocimeters. Part 1: Double pulsed systems Measurement Science and Technology 1.Measurement Science and Technology, 1999 Cerca con Google

[97] Batchelor, G. (2000). Introduction to Fluid Mechanics. Cerca con Google

[98] Geankoplis, Christie John (2003). Transport Processes and Separation Process Principles. Prentice Hall Professional Technical Reference. ISBN 0-13-101367-X. Cerca con Google

[99] Turbulence theory gets a bit choppy. USA Today. September 10, 2006. Cerca con Google

[100] Multilaboratory Particle Image Velocimetry Analysis of the FDA Benchmark Nozzle Model to Support Validation of Computational Fluid Dynamics Simulations Cerca con Google

[101] Glauert, M.B., 1956. The wall jet. J. Fluid Mech. 1, 625–643. Cerca con Google

[102] Reddy, Gorla, R.S., Jeng, D.R., 1971. Laminar plane wall jet. In: Proceedings of the 12th Midwestern Mechanics Conference, Paris, France, pp. 137–151. Cerca con Google

[103] Schwarz, W.H., Cosart, W.P., 1961. The two-dimensional turbulent wall jet. J. Fluid Mech. 10, 481–495. Cerca con Google

[104] Rajaratnam, N., 1976. Turbulent Jets. Elsevier, Amsterdam, The Netherlands. pp. 214–216. Cerca con Google

[105] Grigioni, M., C. Daniele, G. D’Avenio, and V. Barbaro. Evaluation of the surface-averaged load exerted on a blood element by the Reynolds shear stress field provided by artificial cardiovascular devices. J. Biomech. 35(12): 1613–1622, 2002. Cerca con Google

[106] Travis, B. R., H. L. Leo, P. A. Shah, D. H. Frakes, and A. P. Yoganathan. An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J. Biomech. Eng. 124:155, 2002. Cerca con Google

[107] Hellums, J. D., and C. H. Brown. Blood cell damage by mechanical forces. In: Cardiovascular Flow Dynamics and Measurements, edited by N. H. C. Hwang and N. A. Normann. Baltimore: University Park Press, 1977, pp. 799–823. Cerca con Google

[108] Manning KB, Kini V, Fontaine AA, Deutsch S, Tarbell JM. Regurgitant Flow Field Characteristics of the St. Jude Bileaflet Mechanical Heart Valve under Physiologic Pulsatile Flow Using Particle Image Velocimetry. Artificial Organs, 2003;27(9):840-846. Cerca con Google

[109] Leo HL, Simon HA, Dasi LP, Yoganathan AP. Effect of hinge gap width on the microflow structures in 27-mm bileaflet mechanical heart valves. J Heart Valve Dis. 2006 Nov; 15(6):800-8. Cerca con Google

[110] Nallamothu R. K., Li Y., Rafiroiu D., Diaz V., Narracott A., Lawford P. et al. Multi-physics and multi-scale computational evaluation of the thrombogenic and cavitational potential of a bileaflet mechanical heart valve. 2011 IFMBE Proc. 36(4)/298-305. Cerca con Google

[111] Morse D, Steiner RM, Fernandez J. Cardiac valve identification atlas and guide. In: Dryden Morse RM, Sa JF, editors. Guide to prosthetic cardiac valves. New York: Springer-Verlag, 1985. pp. 257– 346. Cerca con Google

[112] St. Jude Medical Products. St. Jude Medical. 2002. Ref type: Electronic Citation Cerca con Google

[113] Rashtian MY, Stevenson DM, Allen DT, Yoganathan AP, Harrison EC, Edmiston WA, Faughan P, Rahimtoola SH. Flow characteristics of four commonly used mechanical heart valves. Am J Cardiol 58: 743– 52. Cerca con Google

[114] Akins CW. Results with mechanical cardiac valvular prostheses. Ann Thorac Surg 60:1836– 44. Cerca con Google

[115] Butany J, Ahluwalia MS, Munroe C, Fayet C, Ahn C, Blit P, Kepron C, Cusimano RJ, Leask RL. “Mechanical heart valve prostheses: identification and evaluation”. Cardiovasc Pathol. 2003 Nov-Dec; 12(6):322-44. Cerca con Google

[116] Rizzoli G, Guglielmi C, Toscano G, Pistorio V, Vendramin I, Bottio T, Thiene G, Casarotto D. Reoperations for acute prosthetic thrombosis and pannus: an assessment of rates, relationship and risk. Eur J Cardiothorac Surg 16:74– 80. Cerca con Google

[117] de Brux JL, Subayi JB, Binuani P, Laporte J. Doppler-echocardio- graphic assessment of the carbomedics supra-annular ‘‘Top-Hat’’ prosthetic heart valve in the aortic position. J Heart Valve Dis 5(Suppl 3): S336–8. Cerca con Google

[118] cts.net website. Cardiothoracic Surgery website. 2002. Ref type: Electronic Citation. Cerca con Google

[119] Fiane AE, Geiran OR, Svennevig JL. Up to eight years’ follow-up of 997 patients receiving the CarboMedics prosthetic heart valve. Ann Thorac Surg 66:443– 8 Cerca con Google

[120] Jamieson WR, Fradet GJ, Miyagishima RT, Henderson C, Brownlee RT, Zhang J, Germann E. CarboMedics mechanical prosthesis: performance at eight years. J Heart Valve Dis 96:78-87. Cerca con Google

[121] Dalrymple-Hay MJ, Pearce RK, Dawkins S, Alexiou C, Haw MP, Livesey SA, Monro JL. Mid-term results with 1,503 CarboMedics mechanical valve implants. J Heart Valve Dis 9:389-95. Cerca con Google

[122] M. Grigioni, C. Daniele, G. D'Avenio, V. Barbaro, A discussion on the threshold limit for hemolysis related to Reynolds shear stress. Journal of Biomechanics, 1999; 32; 1107-1112. Cerca con Google

[123] J. D. Hellums. 1993 Whitaker lecture: Biorheology in thrombosis research. Ann. Biomed. Eng. 22(5):445–455, 1994. Cerca con Google

[124] S. P Sutera. Flow-induced trauma to blood cells. Circ. Res. 41(1):2–8, 1977. Cerca con Google

[125] K. Fraser, M. Taskin, T. Zhang, B. Griffths, and Z. Wu. Comparison of shear stress, residence time and lagrangian estimates of hemolysis in different ventricular assist devices. In 26th Southern Biomedical Engineering Conference, SBEC 2010, April 30 - May 2, volume 32, pages 548-551, 2010. Cerca con Google

[126] M. Lieber and T. Steck. A description of the holes in human erythrocyte membrane ghosts. The Journal of Biological Chemistry, 257(19):11651-11659, 1982 Cerca con Google

[127] S. S. Lee, K. Ahn, S. J. Lee, K. Sun, P. Goedhart, and M. Hardeman. Shear induced damage of red blood cells monitored by the decrease of their deformability. Korea-Australia Rheology Journal, 16(3):141-146, 2004. Cerca con Google

[128] P. Blackshear, F. Dorman, and J. Steinbach. Some mechanical effects that influence haemolysis. Transactions of the American Society of Artificial Internal Organs, 11(112), 1965. Cerca con Google

[129] Giersiepen M, Wurzinger L.J, Opitz R, Reul H. Estimation of shear stress related blood damage in heart valve prostheses: in vitro comparision of 25 aortic valves. Int J Artif Org, 1990; 13(5): 300-306. Cerca con Google

[130] G. Heuser and R. Opitz. A couette viscometer for short time shearing in blood. Biorheology, 17:17-24, 1980. Cerca con Google

[131] M. Taskin, K. Fraser, T. Zhang, B. Gellman, A. Fleischli, K. Dasse, B. Grifth, and Z. Wu. Computational characterization of flow and hemolytic performance of the UltraMag blood pump for circulatory support. Artificial Organs, 34(12):1099-1113, 2010. Cerca con Google

[132] Pinotti, M., and Rosa, E. S., 1995, “Computational Prediction of Hemolysis in a Centrifugal Ventricular Assist Device,” Artif. Organs, 19(3), pp. 267–273. Cerca con Google

[133] Grigioni, M., Daniele, C., D’Avenio, G., and Barbaro, V. A., 1999, “Discussion on the Threshold Limit for Hemolysis Related to Reynolds Shear Stress,” J. Biomech., 32, pp. 1107–1112. Cerca con Google

[134] Burgreen, G. W., Antaki, J. F., Wu, Z. J., and Holmes, A. J., 2001, “Computational Fluid Dynamics as a Development Tool for Rotary Blood Pumps,” Artif. Organs, 255, pp. 336–340. Cerca con Google

[135] De Wachter, D., and Verdonck, P., 2002, “Numerical Calculation of Hemolysis Levels in Peripheral Hemodialysis Cannulas,” Artif. Organs, 26(7), pp. 576-582. Cerca con Google

[136] Yano, T., Sekine, K., Mitoh, A., Mitamura, Y., Okamoto, E., Kim, D. W., Nishimura, I., Murabayashi, S., and Yozu, R., 2003, “An Estimation Method of Hemolysis Within an Axial Flow Blood Pump by Computational Fluid Dynamics Analysis,” Artif. Organs, 27(10), pp. 920–925. Cerca con Google

[137] Arvand, A., Hormes, M., and Reul, H., 2005, “A Validated Computational Fluid Dynamics Model to Estimate Hemolysis in a Rotary Blood Pump,” Artif. Organs, 29(7), pp. 531–540. Cerca con Google

[138] Behbahani, M., Behr, M., Hormes, M., Steinseifer, U., Arora, D., Coronado, O., and Pasquali, M., 2009, “A Review of Computational Fluid Dynamics Analysis of Blood Pumps,” Eur. J. Appl. Math., 20(04), pp. 363–397. Cerca con Google

[139] Wootton, D. M., Markou, C. P., Hanson, S. R., and Ku, D. N., 2001, “A Mechanistic Model of Acute Platelet Accumulation in Thrombogenic Stenoses,” Ann. Biomed. Eng., 29(4), pp. 321–329. Cerca con Google

[140] Goodman, P. D., Barlow, E. T., Crapo, P. M., Mohammad, S. F., and Solen, K. A., 2005, “Computational Model of Device-Induced Thrombosis and Thromboembolism,” Ann. Biomed. Eng., 33(6), pp. 780–797. Cerca con Google

[141] Sorensen, E. N., Burgreen, G. W., Wagner, W. R., and Antaki, J. F., 1999,“Computational Simulation of Platelet Deposition and Activation: I. Model Development and Properties,” Ann. Biomed. Eng., 27, pp. 436–448. Cerca con Google

[142] Fallon, A. M., Dasi, L. P., Marzec, U. M., Hanson, S. R., and Yoganathan, A. P., 2008, “Procoagulant Properties of Flow Fields in Stenotic and Expansive Orifices,” Ann. Biomed. Eng., 36(1), pp. 1–13. Cerca con Google

[143] Tamagawa, M., Kaneda, H., Hiramoto, M., and Nagahama, S., 2009, “Simulation of Thrombus Formation in Shear Flows Using Lattice Boltzmann Method,” Artif. Organs, 33(8), pp. 604–610. Cerca con Google

[144] Richardson, E., 1975, “Applications of a Theoretical Model for Haemolysis in Shear Flow,” Biorheology, 12(1), pp. 27–37. Cerca con Google

[145] Giersiepen, M., Wurzinger, L. J., Opitz, R., and Reul, H., 1990, “Estimation of Shear Stress-Related Blood Damage in Heart Valve Prostheses—In Vitro Comparison of 25 Aortic Valves,” Int. J. Artif. Organs, 13(5), pp. 300–306. Cerca con Google

[146] Bludszuweit, C., 1995, “Model for a General Mechanical Blood Damage Prediction,” Artif. Organs, 19(7), pp. 583–589. Cerca con Google

[147] Gu, L., and Smith, W., 2005, “Evaluation of Computational Models for Hemolysis Estimation,” ASAIO J., 51(3), pp. 202–207. Cerca con Google

[148] Hentschel, B., Tedjo, I., Probst, M., Wolter, M., Behr, M., Bischof, C., and Kuhlen, T., 2008, “Interactive Blood Damage Analysis for Ventricular Assist Devices,” IEEE Trans. Vis. Comput. Graph., 14(6), pp. 1515–1522. Cerca con Google

[149] Hariharan P, Giarra M, Reddy V, Day SW, Manning KB, Deutsch S, Stewart SF, Myers MR, Berman MR, Burgreen GW, Paterson EG, Malinauskas RA. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations. J Biomech Eng. 2011 Apr; 133(4):041002. doi: 10.1115/1.4003440. Cerca con Google

[150] Rafiroiu D, Ciupa R (2009) Medical devices design in cardiovascular applications. Current and future trends at Cluj Napoca Technical University. Journal of Nonlinear Optics, Quantum Optics, 39 (2-3) 101-115. Cerca con Google

[151] www.ansys.com Vai! Cerca con Google

[152] Wilcox, David C (1998). "Turbulence Modeling for CFD". Second edition. Anaheim: DCW Industries, 1998. pp. 174. Cerca con Google

[153] Jones, W. P., and Launder, B. E. (1972), "The Prediction of Laminarization with a Two-Equation Model of Turbulence", International Journal of Heat and Mass Transfer, vol. 15, 1972, pp. 301-314. Cerca con Google

[154] Launder, B. E., and Sharma, B. I. (1974), "Application of the Energy Dissipation Model of Turbulence to the Calculation of Flow Near a Spinning Disc", Letters in Heat and Mass Transfer, vol. 1, no. 2, pp. 131-138. Cerca con Google

[155] Reichardt H., Gesetzmassigkeiten der freien Turbulenz, VDI-Forschungsheft 414 (1942), 2nd ed. 1951 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record