Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Canzian, Luca (2013) On the Design of Incentive Mechanisms in Wireless Networks: a Game Theoretic Approach. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
1662Kb

Abstract (inglese)

In wireless communication networks, many protocols (e.g., IEEE 802.11 a/b/g Medium Access Control (MAC) protocols) have been designed assuming that users are compliant with the protocol rules. Unfortunately, a self-interested and strategic user might manipulate the protocol to obtain a personal advantage at the expense of the other users. This would lead to socially inefficient outcomes.
In this thesis we address the problem of designing protocols that are able to avoid or limit the inefficiencies occurring when the users act selfishly and strategically. To do so, we exploit the tools
offered by Game Theory (GT), the branch of mathematics that models and analyzes the interaction between strategic decision makers.
The dissertation covers aspects related to wireless communications at different levels. We start analyzing the downlink radio resource allocation issue of a cellular network based on Orthogonal Frequency Division Multiple Access (OFDMA). We propose a suboptimal game theoretic algorithm able to preserve the modularity of the system and to trade–off between sum–rate throughput and fairness among the users of the network.
Successively, we address the problem of promoting cooperation in wireless relay networks. To give the incentive for the users of a network to relay the packets sent by other users, we consider a dynamic scheduling in which cooperative users are rewarded with more channel access opportunities.
Infrastructure sharing is another form of cooperation that might be exploit to meet the increasing rate demands and quality of service requirements in wireless networks. We analyze a scenario where two wireless multi–hop networks are willing to share some of their nodes – acting as relays – in order to gain benefits in terms of lower packet delivery delay and reduced loss probability. Bayesian Network analysis is exploited to compute the correlation between local parameters and overall performance, whereas the selection of the nodes to share is made by means of a game theoretic approach.
Afterwards, our analysis focuses on channel access policies in wireless ad–hoc networks. We design schemes based on pricing and intervention to give incentives for the users to access the channel efficiently.
Finally, we consider another important issue that arises when the users are strategic and selfish: when asked to report relevant information, the users might lie, if it is in their individual interest to do so. For a class of environments that includes many resource allocation problems in communication networks, we provide tools to design an efficient system, in which the users have the incentive to report truthfully and to follow the instructions, despite the fact that they are self–interested. We then apply our framework and results to design a flow control management system.

Abstract (italiano)

Nelle reti di comunicazione wireless, molti protocolli (ad esempio, i protocolli di accesso al mezzo IEEE 802.11 a/b/g) sono stati progettati assumendo che gli utenti rispettino le regole. Purtroppo un utente, guidato da interessi personali, potrebbe manipolare il protocollo per ottenere un beneficio a discapito degli altri utenti. Di conseguenza, la rete wireless sarebbe sfruttata in maniera inefficiente da un punto di vista sociale.
Questa tesi si occupa della progettazione di protocolli in grado di prevenire le inefficienze dovute al comportamento egoistico e strategico degli utenti. Per raggiungere questo scopo, vengono sfruttati gli strumenti offerti dalla teoria dei giochi, la scienza matematica che modella e analizza l’interazione tra soggetti che possono prendere delle decisioni in maniera autonoma.
La tesi copre aspetti legati alla gestione delle comunicazioni wireless a differenti livelli. Si inizia analizzando l’allocazione delle risorse radio, in fase di downlink, di una rete cellulare basata sulla tecnologia di accesso al mezzo di multiplazione a divisione di frequenza ortogonale (OFDMA). Viene proposto un algoritmo sub–ottimo basato sulla teoria dei giochi che permette di preservare la modularità del sistema ed é in grado di trovare un compromesso tra la massimizzazione del throughput totale e un livello equo delle prestazioni degli utenti.
Successivamente, si analizza il problema di incentivare la cooperazione nelle reti wireless in cui gli utenti agiscono opportunisticamente da relay. Per incentivare gli utenti della rete a inoltrare i pacchetti spediti da altri utenti viene adottato uno scheduling dinamico, in cui gli utenti cooperativi sono premiati aumentando le loro opportunità di accesso al mezzo.
La condivisione dell’infrastruttura é un’altra forma di cooperazione che potrebbe essere sfruttata per soddisfare la crescente esigenza di rate e qualità di servizio nelle reti wireless. A tal fine, si considera uno scenario in cui due reti wireless multi–hop sono disposte a condividere alcuni nodi, che agiscono da relay per entrambe le reti. Un’analisi basata sulle reti Bayesiane permette di stimare le prestazioni globali da alcuni parametri locali, mentre un’analisi basata sulla teoria dei giochi permette di selezionare in modo opportuno i nodi da condividere.
In seguito, la nostra analisi si concentra sulle politiche di accesso al mezzo in reti wireless ad–hoc. Viene progettato un protocollo basato sugli schemi di pricing e intervention per incentivare gli utenti ad utilizzare il canale wireless efficientemente.
Infine, si considera un altro importante problema che sorge nel momento in cui gli utenti sono egoisti e strategici: quando viene richiesto di riportare delle informazioni rilevanti, gli utenti potrebbero mentire, se ciò fosse nel loro interesse. Partendo da uno scenario generico, comprendente molte problematiche associate all’allocazione di risorse nelle reti di comunicazione, vengono forniti degli strumenti per progettare un sistema efficiente, in cui gli utenti sono incentivati a comunicare le informazioni veritiere e seguire le istruzioni del protocollo. Tali strumenti e risultati vengono applicati per progettare un sistema di controllo della congestione in una rete di comunicazione.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zorzi, Michele
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:30 Gennaio 2013
Anno di Pubblicazione:28 Gennaio 2013
Parole chiave (italiano / inglese):Reti wireless, allocazione di risorse, teoria dei giochi, meccanismi di incentivi. Wireless networks, resource allocation, game theory, incentive schemes, mechanism design.
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:5761
Depositato il:22 Ott 2013 10:18
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Cisco, “Cisco visual networking index: Global mobile data traffic forecast update, 2011–2016,” White Paper, 2012. Cerca con Google

[2] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, and F. Gringoli, “Wireless MAC processors: Programming MAC protocols on commodity hardware,” in Proc. IEEE INFOCOM, 2012, pp. 1269–1277. Cerca con Google

[3] V. Srivastava, J. Neel, A. B. MacKenzie, R. Menon, L. A. DaSilva, J. E. Hicks, J. H. Reed, and R. P. Gilles, “Using game theory to analyze wireless ad hoc networks,” vol. 7, no. 4, pp. 46–56, 2005. Cerca con Google

[4] E. Altman, T. Boulogne, R. El-Azouzi, T. Jimenez, and L. Wynter, “A survey on networking games in telecommunications,” Computers and Operations Research, vol. 33, no. 2, pp. 286–311, 2006. Cerca con Google

[5] M. Felegyhazi and L. P. Hubaux, “Game theory in wireless networks: A tutorial,” EPFL, Tech. Rep., 2006. [Online]. Available: http://infoscience.epfl.ch/record/79715/files/FelegyhaziH06tutorial.pdf Vai! Cerca con Google

[6] A. B.MacKenzie and L. A. Dasilva, Game theory for wireless engineers. Morgan & Claypool Publishers, 2006. Cerca con Google

[7] Q. Huang, Game Theory. Sciyo, 2010. Cerca con Google

[8] A. B. MacKenzie, “Selfish users in Aloha: a game-theoretic approach,” in Proc. IEEE VTC, vol. 3, 2001, pp. 1354–1357. Cerca con Google

[9] G. Tan and J. Guttag, “The 802.11 MAC protocol leads to inefficient equilibria,” in Proc. IEEE INFOCOM, vol. 1, 2005, pp. 1–11. Cerca con Google

[10] M. Cagalj, S. Ganeriwal, I. Aad, and J. P. Hubaux, “On selfish behavior in CSMA/CA networks,” in Proc. IEEE INFOCOM, vol. 4, 2005, pp. 2513–2524. Cerca con Google

[11] R. T. B. Ma, V. Misra, and D. Rubenstein, “Modeling and analysis of generalized slotted-aloha MAC protocols in cooperative, competitive and adversarial environments,” in Proc. IEEE ICDCS, 2006. Cerca con Google

[12] J. Park and M. van der Schaar, “Stackelberg contention games in multiuser networks,” EURASIP Journal on Advances in Signal Processing, pp. 1–15, 2009. Cerca con Google

[13] T. Alpcan, T. Basar, R. Srikant, and E. Altman, “CDMA uplink power control as a non-cooperative game,” Wirel. Netw., vol. 8, pp. 659–670, 2002. Cerca con Google

[14] C. U. Saraydar, N. B. Mandayam, and D. J. Goodman, “Efficient power control via pricing in wireless data networks,” IEEE Trans. Commun., vol. 50, no. 2, pp. 291–303, 2002. Cerca con Google

[15] J. Huang, R. A. Berry, and M. L. Honig, “Distributed interference compensation for wireless networks,” IEEE J. Select. Areas Commun., vol. 24, no. 5, pp. 1074–1084, 2006. Cerca con Google

[16] Y. Xiao, J. Park, and M. van der Schaar, “Intervention in power control games with selfish users,” IEEE J. Sel. Topics Signal Process., Special issue on Game Theory in Signal Processing, vol. 6, pp. 165–179, 2012. Cerca con Google

[17] L. Buttyyan and J. P. Hubaux, “Stimulating cooperation in self-organizing mobile ad hoc networks,” ACM J. Mobile Networks, vol. 8, pp. 579–592, 2003. Cerca con Google

[18] L. Blazevic, L. Buttyan, S. Capkun, S. Giordano, J. P. Hubaux, and J. Y. Le Boudec, “Self organization in mobile ad hoc networks: the approach of terminodes,” IEEE Commun. Mag., vol. 39, no. 6, p. 166, 2001. Cerca con Google

[19] S. Zhong, J. Chen, and Y. R. Yang, “Sprite: a simple, cheat-proof, credit-based system for mobile ad-hoc networks,” Proceedings of the 22th Annual Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM ’03), vol. 3, p. 1987, 2003. Cerca con Google

[20] S. Marti, T. Giulli, K. Lai, and M. Baker, “Mitigating routing misbehavior in mobile ad hoc networks,” Proc. Sixth International Conference on Mobile Computing and Networking, pp. 255–265, 2000. Cerca con Google

[21] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao, “Cooperation in wireless ad hoc networks,” Proceedings of the 22th Annual Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM ’03), vol. 2, p. 808, 2003. Cerca con Google

[22] D. Zhang, R. Shinkuma, and N. B. Mandayam, “Bandwidth exchange: an energy conserving incentive mechanism for cooperation,” IEEE Trans. Wireless Commun., vol. 9, no. 6, p. 2055, 2010. Cerca con Google

[23] V. Srinivasan, P. Nuggehalli, C.-F. Chiasserini, and R. R. Rao, “An analytical approach to the study of cooperation in wireless ad hoc networks,” IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 722–733, 2005. Cerca con Google

[24] Y. Gai, H. Liu, and B. Krishnamachari, “A packet dropping-based incentive mechanism for M/M/1 queues with selfish users,” in Proc. IEEE INFOCOM, 2011, pp. 2687–2695. Cerca con Google

[25] Y. Su and M. van der Schaar, “Linearly coupled communication games,” IEEE Trans. Commun., vol. 59, pp. 2543–2553, 2011. Cerca con Google

[26] K. Bharath-Kumar and J. M. Jaffe, “A new approach to performance-oriented flow control,” IEEE Trans. Commun., vol. 29, pp. 427–435, 1981. Cerca con Google

[27] C. Douligeris and R. Mazumdar, “A game theoretic perspective to flow control in telecommunication networks,” Journal of the Franklin Institute, vol. 329, no. 2, pp. 383–402, 1992. Cerca con Google

[28] Z. Zhang and C. Douligeris, “Convergence of synchronous and asynchronous greedy algorithm in a multiclass telecommunications environment,” IEEE Trans. Commun., vol. 40, no. 8, pp. 1277–1281, 1992. Cerca con Google

[29] T. B. O. C Imer, “A global stability result in utility-based congestion control,” in Proc. IEEE CDC-ECC, 2005, pp. 6740–6743. Cerca con Google

[30] E. Altman, T. Basar, T. Jimenez, and N. Shimkin, “Competitive routing in networks with polynomial costs,” IEEE Trans. Automat. Contr., vol. 47, no. 1, pp. 92–96, 2002. Cerca con Google

[31] T. Roughgarden and Éva Tardos, “How bad is selfish routing?” J. ACM, vol. 49, no. 2, pp. 236–259, 2002. Cerca con Google

[32] T. Roughgarden, “On the severity of braess’s paradox: Designing networks for selfish users is hard,” J. Comput. Syst. Sci., vol. 72, no. 5, pp. 922–953, 2006. Cerca con Google

[33] ——, “The price of anarchy in games of incomplete information,” SIGecom Exch., vol. 11, no. 1, pp. 18–20, 2012. Cerca con Google

[34] R. Garg, A. Kamra, and V. Khurana, “A game-theoretic approach towards congestion control in communication networks,” SIGCOMM Comput. Commun. Rev., vol. 32, no. 3, 2002. Cerca con Google

[35] Y. Jin and G. Kesidis, “A pricing strategy for an aloha network of heterogeneous users with inelastic bandwidth requirements,” in Proc. IEEE CISS, 2002, pp. 1030–1033. Cerca con Google

[36] D. Wang, C. Comaniciu, and U. Tureli, “A fair and efficient pricing strategy for slotted aloha in MPR models,” in Proc. IEEE VTC, 2006, pp. 2474–2478. Cerca con Google

[37] ——, “Cooperation and fairness for slotted aloha,” Wireless Personal Communications, vol. 43, no. 1, pp. 13–27, 2007. Cerca con Google

[38] P. Nuggehalli, J. Price, and T. Javidi, “Pricing and QoS in wireless random access networks,” in Proc. IEEE GLOBECOM, 2008, pp. 1–5. Cerca con Google

[39] L. Yang, H. Kim, J. Zhang, M. Chiang, and C.W. Tan, “Pricing-based spectrum access control in cognitive radio networks with random access,” in Proc. IEEE INFOCOM, 2011, pp. 2228–2236. Cerca con Google

[40] T. Alpcan and T. Basar, “Distributed algorithms for Nash equilibria of flow control games,” Annals of Dynamic Games, vol. 7, 2003. Cerca con Google

[41] T. Basar and R. Srikant, “Revenue-maximizing pricing and capacity expansion in a many-users regime,” in Proc. IEEE INFOCOM, 2002, pp. 1556–1563. Cerca con Google

[42] J. Park and M. van der Schaar, “Designing incentive schemes based on intervention: The case of imperfect monitoring,” in Proc. GameNets, 2011. Cerca con Google

[43] Y. Hayel, S. Lasaulce, R. E. Azouzi, andM. Debbah, “Introducing hierarchy in energy-efficient power control games,” Proc. ACM GAMECOMM. Cerca con Google

[44] S. Lasaulce, Y. Hayel, R. E. Azouzi, and M. Debbah, “Introducing hierarchy in energy games,” IEEE Trans. Wireless Commun. Cerca con Google

[45] L. Lifeng and H. El Gamal, “The water-filling game in fading multiple-access channels,” IEEE Trans. Inform. Theory. Cerca con Google

[46] D. Fudenberg and J. Tirole, Game Theory. MIT Press, 1991. Cerca con Google

[47] M. J. Osborne and A. Rubinstein, A course in Game Theory. MIT Press, 1994. Cerca con Google

[48] R. B. Myerson, Game Theory: Analysis of Conflict. Harvard University Press, 1997. Cerca con Google

[49] G. Owen, Game Theory. Academic Press, 2001. Cerca con Google

[50] J. Lemaire, Cooperative Game Theory. Wiley Online, 2006. Cerca con Google

[51] S. Kakutani, “A generalization of Brouwer’s fixed point theorem,” Duke Mathematical Journal, vol. 8, no. 3, pp. 457–459, 1941. Cerca con Google

[52] W. Saad, Z. Han, M. Debbah, A. Hjorungnes, and T. Basar, “Coalitional game theory for communication networks: a tutorial,” IEEE Signal Processing Mag., vol. 26, no. 5, pp. 77–97. Cerca con Google

[53] R. Kwan, C. Leung, and J. Zhang, “Resource allocation in an LTE cellular communication system,” in Proc. IEEE ICC. Cerca con Google

[54] G. Song, Y. Li, and L. J. Cimini, “Joint channel and queue-aware scheduling for multiuser diversity in wireless OFDMA networks,” IEEE Trans. Commun., vol. 57, no. 7, pp. 2109–2121, 2009. Cerca con Google

[55] L. Badia, A. Baiocchi, A. Todini, S. Merlin, S. Pupolin, A. Zanella, and M. Zorzi, “On the impact of physical layer awareness on scheduling and resource allocation in broadband multicellular IEEE 802.16 systems communication system,” IEEE Trans. Wireless Commun., vol. 14, no. 1, pp. 36–43, 2007. Cerca con Google

[56] L. Hoo, B. Halder, J. Tellado, and J. Cioffi, “Multiuser transmit optimization for multi-carrier broadcast channels: asymptotic fdma capacity region and algorithms,” pp. 922–930, 2004. Cerca con Google

[57] B. Krongold, K. Ramchandran, and D. Jones, “Computationally efficient optimal power allocation algorithms for multicarrier communication systems,” IEEE Trans. Commun., vol. 48, no. 1, pp. 23–27, 2000. Cerca con Google

[58] K. Seong, M. Mohseni, and J. Cioffi, “Optimal resource allocation for OFDMA downlink systems,” in IEEE International Symposium on Information Theory. Cerca con Google

[59] C. Y. Wong, R. Cheng, K. Lataief, and R. Murch, “Multiuser OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Select. Areas Commun., vol. 17, no. 10, pp. 1747–1758, 1999. Cerca con Google

[60] W. Rhee and J. Cioffi, “Increase in capacity of multiuser OFDM system using dynamic sub-channel allocation,” in Proc. IEEE VTC, vol. 2, pp. 1085–1089. Cerca con Google

[61] LTE physical layer - general description, TS 36.201 (V8.3.0) ed., 3GPP, March 2009. Cerca con Google

[62] LTE physical layer - general description, TS 36.201 (V9.1.0) ed., 3GPP, March 2010. Cerca con Google

[63] Requirements for further advancements for Evolved Universal Terrestrial Radio Access (EUTRA), TR 36.913 (V9.0.0) ed., 3GPP, Dec. 2009. Cerca con Google

[64] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and discrimination for resource allocation in shared systems,” DEC, Tech. Rep., 1984. Cerca con Google

[65] D. Cox, Renewal Theory. Methuen & Co., 1970. Cerca con Google

[66] J. Park and M. van der Schaar, “The theory of intervention games for resource sharing in wireless communications,” IEEE J. Select. Areas Commun., vol. 30, no. 1, pp. 165–175, 2012. Cerca con Google

[67] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity theorems for relay networks,” IEEE Trans. Inform. Theory, vol. 51, no. 9, pp. 3037–3063, Sep. 2005. Cerca con Google

[68] T. Cover and A. El Gamal, “Capacity theorems for the relay channel,” IEEE Trans. Inform. Theory. Cerca con Google

[69] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and outage behavior,” IEEE Trans. Inform. Theory. Cerca con Google

[70] B. Rankov and A.Wittneben, “Achievable rate regions for the two-way relay channel,” in Proc. ISIT, Jul. 2006, pp. 1668–1672. Cerca con Google

[71] L.-L. Yang and H.-H. Chen, “Error probability of digital communications using relay diversity over nakagami-m fading channels,” IEEE Trans. Wireless Commun. Cerca con Google

[72] M. Stein, “Towards optimal schemes for the half-duplex two-way relay channel,” IEEE J. Select. Areas Commun., 2011, submitted to, available as arXiv preprint at http://arxiv.org/abs/1101.3198. Vai! Cerca con Google

[73] M. Rossi, L. Badia, and M. Zorzi, “Exact statistics of ARQ packet delivery delay over Markov channels with finite round-trip delay,” IEEE Trans. Wirel. Commun., vol. 4, no. 4, pp. 1858–1868, Jul. 2005. Cerca con Google

[74] T. E. Hunter, S. Sanayei, and A. Nosratinia, “Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks,” IEEE Trans. Inform. Theory, vol. 49, no. 10. Cerca con Google

[75] P. Liu, Z. Tao, Z. Lin, E. Erkip, and S. Panwar, “Cooperative Wireless Communications: A Cross-Layer Approach,” IEEE Trans. Commun., vol. 52, no. 8. Cerca con Google

[76] Z. Lin, E. Erkip, and A. Stefanov, “Cooperative regions and partner choice in coded cooperative systems,” IEEE Trans. Commun., vol. 54, no. 7. Cerca con Google

[77] M. Levorato, S. Tomasin, and M. Zorzi, “Cooperative spatial Multiplexing for Ad Hoc Networks with Hybrid ARQ: Design and Performance Analysis,” IEEE Trans. Commun., vol. 56, no. 9. Cerca con Google

[78] S. Zhu and K. Leung, “Distributed Cooperative Routing for UWB Ad-Hoc Networks,” in Proc. IEEE ICC. Cerca con Google

[79] Z. Yang, J. Liu, and A. Host-Madsen, “Cooperative routing and power allocation in ad-hoc networks,” in Proc. IEEE GLOBECOM. Cerca con Google

[80] M. Levorato, F. Librino, and M. Zorzi, “Integrated Cooperative Opportunistic Packet Forwarding and Distributed Error Control inMIMO Ad Hoc Networks,” IEEE Trans. Commun., vol. 59, no. 8. Cerca con Google

[81] J. Lee, J. Andrews, and D. Hong, “Spectrum-Sharing Transmission Capacity,” IEEE Trans. Wireless Commun., vol. 10, no. 9, pp. 3053 – 3063, Sep. 2011. Cerca con Google

[82] K. Huang, V. Lau, and Y. Chen, “Spectrum-Sharing between Cellular and Mobile Ad Hoc Networks: Transmission-Capacity Trade-Off,” IEEE J. Select. Areas Commun., vol. 27, no. 7, pp. 1256 – 1267, Sep. 2009. Cerca con Google

[83] D. Kang, K. Sung, and J. Zander, “Cooperation and Competition between Wireless Networks in Shared Spectrum,” in Proc. IEEE PIMRC. Cerca con Google

[84] T. Frisanco, P. Tafertshofer, and R. Ang, “Infrastructure Sharing and Shared Operations for Mobile Network Operators: from a Deployment and Operations View,” in Proc. IEEE ICC. Cerca con Google

[85] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Techniques. The MIT Press, 2009. Cerca con Google

[86] G. Quer, H. Meenakshisundaram, B. Tamma, B. S. Manoj, R. Rao, and M. Zorzi, “Using Bayesian Networks for Cognitive Control of Multi-hop Wireless Networks,” in Proc. IEEE MILCOM, 2010. Cerca con Google

[87] K. Akkarajitsakul, E. Hossain, and D. Niyato, “Distributed resource allocation in wireless networks under uncertainty and application of Bayesian game,” IEEE Commun. Mag., vol. 49, no. 8. Cerca con Google

[88] F. V. Jensen and T. D. Nielsen, Bayesian Networks and Decision Graphs. Springer, 2007. Cerca con Google

[89] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics, vol. 6, no. 2, pp. 461–464, 1978. Cerca con Google

[90] J. P. K. T. Phan andM. van der Schaar, “Design and analysis of defection-proof MAC protocols using a repeated game framework,” in Proc. IEEE GLOBECOM, 2010, pp. 1–6. Cerca con Google

[91] D. J. Thuente and M. Acharya, “Intelligent jamming in wireless networks with applications to 802.11b and other networks,” in Proc. IEEE MILCOM, 2006, pp. 1075–1081. Cerca con Google

[92] E. Bayraktaroglu, C. King, X. Liu, G. Noubir, R. Rajaraman, and B. Thapa, “On the performance of IEEE 802.11 under jamming,” in Proc. IEEE INFOCOM, pp. 1265–1273. Cerca con Google

[93] A. Proano and L. Lazos, “Packet-hiding methods for preventing selective jamming attacks,” vol. 9, no. 1, pp. 101–114, 2012. Cerca con Google

[94] L. Hurwicz, “Game theory,” Decision and Organization: a Volume in Honor of Jacob Marshak, pp. 297–336, 1972. Cerca con Google

[95] P. Dasgupta, P. Hammond, and E. Maskin, “The implementation of social choice rules: some results on incentive compatibility,” Review of Economic Studies, vol. 46, pp. 185–216, 1979. Cerca con Google

[96] B. Holmstrom, “Moral hazard and observability,” Bell Journal of Economics, vol. 10, pp. 74–91, 1979. Cerca con Google

[97] R. B. Myerson, “Incentive-compatibility and the bargaining problem,” Econometrica, vol. 47, pp. 61–73, 1979. Cerca con Google

[98] ——, “Optimal auction design,” Mathematics of Operations Research, vol. 6, pp. 58–73, 1981. Cerca con Google

[99] ——, “Optimal coordination mechanism in generalized principal-agent problems,” Journal of Mathematical Economics, vol. 10, pp. 67–81, 1982. Cerca con Google

[100] H. Shen and T. Basar, “Optimal nonlinear pricing for a monopolistic network service provider with complete and incomplete information,” IEEE J. Select. Areas Commun., vol. 25, pp. 1216–1223, 2007. Cerca con Google

[101] D. A. Schmidt, C. Shi, R. A. Berry, M. L. Honig, and W. Utschick, “Distributed resource allocation schemes,” IEEE Signal Processing Magazine, vol. 26, no. 5, pp. 53–63, 2009. Cerca con Google

[102] J. Huang, R. A. Berry, and M. L. Honig, “Auction-based spectrum sharing,” Mobile Networks and Applications, vol. 11, pp. 405–418, 2006. Cerca con Google

[103] T. Alpcan, H. Boche, and S. Naik, “A unified mechanism design framework for networked systems,” CoRR, vol. abs/1009.0377, 2010. Cerca con Google

[104] W. Vickrey, “Counterspeculation, auctions, and competitive sealed tenders,” The Journal of Finance, vol. 16, pp. 8–37, 1961. Cerca con Google

[105] J. Park and M. van der Schaar, “A note on the intervention framework,” UCLA University, Electrical Engineering Department, Tech. Rep., 2011. [Online]. Available: Cerca con Google

http://medianetlab.ee.ucla.edu/papers/note\_intervention.pdf Vai! Cerca con Google

[106] A. Giessler, J. Hanle, A. Konig, and E. Pade, “Free buffer allocation - an investigation by simulation,” Comput. Networks, vol. 1, pp. 199–204, 1978. Cerca con Google

[107] L. Kleinrock, “Power and deterministic rules of thumb for probabilistic problems in computer communications,” Conference Record, International Conference on Communications, vol. 2, Cerca con Google

no. 4, pp. 43.1.1–43.1.10, 1979. Cerca con Google

[108] F. P. Kelly, “Charging and rate control for elastic traffic,” European Transactions on Telecommunications, vol. 8, no. 1, pp. 33–37, 1997. Cerca con Google

[109] F. P. Kelly and A. K. Maulloo, “Rate control for communication networks: shadow prices, proportional fairness and stability,” Journal of the Operational Research Society, vol. 49, no. 3, pp. 237–252, 1998. Cerca con Google

[110] S. H. Low and D. E. Lapsley, “Optimization flow control-I: basic algorithm and convergence,” IEEE/ACM Trans. Networking, vol. 7, no. 6, pp. 861–874, 1999. Cerca con Google

[111] E. Altman, T. Basar, and R. Srikant, “Nash equilibria for combined flow control and routing in networks: Asymptotic behavior for a large number of users,” IEEE Trans. Automat. Contr., vol. 47, no. 6, pp. 917–930, 2002. Cerca con Google

[112] H. Shen and T. Basar, “Optimal nonlinear pricing for a monopolistic network service provider with complete and incomplete information,” IEEE J. Select. Areas Commun., vol. 25, no. 6, pp. 1216–1223, 2007. Cerca con Google

[113] ——, “Incentive-based pricing for network games with complete and incomplete information,” Annals of Dynamic Games, vol. 9, pp. 431–458, 2007. Cerca con Google

[114] B. Holmstrom, “On the theory of delegation,” Northwestern University, Center for Mathematical Studies in Economics and Management Science, Tech. Rep., 1980. Cerca con Google

[115] V. P. Crawford and J. Sobel, “Strategic information transmission,” Econometrica, vol. 50, no. 6, pp. 1431–1451, 1982. Cerca con Google

[116] H. Tembine, R. Tempone, and P. Vilanova, “Mean-field learning: a survey,” CoRR, vol. abs/1210.4657, 2012. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record