Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Sella, Francesco (2013) Typical and Atypical Development of Numerical Representation. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi Dottorato)
1419Kb

Abstract (inglese)

How numerical information is represented? Recent studies have highlighted the prominent role of preverbal core knowledge systems for representing numerical quantities: the Object Tracking System (OTS) and the Approximate Number System (ANS; or analogue magnitude system). The former is general mechanism which allows individuals to track the spatio-temporal characteristics of the objects and its capacity is limited (3-4 items). The latter is a quantitative mechanism which entails the representation of each numerosity as a distribution of activation on the mental number line. In the present work we investigated several aspects of these two systems along with numerical and non-numerical estimation ability in typical and atypical development.
In Study 1.1, we implemented an imitation task to investigate the spontaneous focusing on numerosity in 2 ½ year-old children. The results suggest that most of the children employed the analogue magnitude system when spontaneously encoding numerosity. The use of the analogue magnitude system may be related to both its low demanding of attentional resources and to the availability of other (non-numerical) quantitative cues which covariate with numerosity.
In Study 1.2, 2 ½ year-old children completed a categorization task in order to investigate their ability in estimating numerical sets. Children’s estimations were independent from the visual characteristics of the stimuli (i.e. perimeter or density) within the OTS capacity. Conversely, the estimation of larger quantities (5-9 dots) was significantly affected by stimuli characteristics: in particular, the increase of perimeter with a constant density appears as the combination of visual characteristics which strongly increases the perceived numerosity.
In Study 2, Preschoolers, Grade 1 and Grade 3 pupils had to map continuous, discrete and symbolic quantities. The results indicated that different mechanisms are involved in the estimation of continuous quantities with respect to numerical (discrete and symbolic) quantities.
In Study 3, we devised a dual-task paradigm to investigate the relation between visual short term memory (VSTM) and subitizing. We found a striking correspondence between the number of elements retained in VSTM and the number of elements that can be subitized.
In Study 4.1, children with developmental dyscalculia (DD) in comorbidity with a profile of Non-Verbal syndrome (NVS) and typically developing (TD) children completed a numerical comparison task. We found a specific deficit in the comparison of numerical quantities in DD-NVS children with respect to TD. In particular, the OTS capacity seems to be reduced in the DD-NVS group as compared to TD.
In Study 4.2, children with developmental dyscalculia (DD) and typically developing (TD) children completed two number-line tasks. Children with DD displayed a less precise estimation of symbolic quantities, thereby suggesting a specific deficit in the number representation with respect to TD children.
In Study 5, individuals with Down Syndrome (DS) and typically developing children matched for both mental (MA) and chronological age (CA) completed two numerical tasks in order to evaluate their ability to compare non-symbolic quantities (i.e. dots) and counting process. Kids with DS showed a specific deficit in comparing small quantities, within OTS capacity, with respect to both MA and CA matched kids. For the comparison of larger quantities, kids with DS displayed a performance similar to MA matched controls but lower as compared to CA matched controls. Finally, the counting ability appears similar between kids with DS and MA matched children.

Abstract (italiano)

Come viene rappresentata l’informazione numerica? Recenti ricerche hanno evidenziato il ruolo fondamentale dei sistemi cognitive preverbali nella rappresentazione numerica: l’Object Tracking System (OTS) e l’Approximate Number System (ANS; o Analogue Magnitude System). Il primo è un meccanismo generale che permette di conservare in memoria le caratteristiche spazio-temporali degli stimoli e la sua capacità è limitata (3-4 elementi). Il secondo è un meccanismo quantitativo che rappresenta ogni numerosità come una distribuzione d’attivazione su teorica linea numerica mentale. Nella presente lavoro di tesi, presenteremo diversi studi volti ad indagare il funzionamento di questi meccanismi in interazione con processi di stima numerica e non-numerica in contesto di sviluppo tipico ed atipico.
Nello Studio 1.1, abbiamo utilizzato un compito di imitazione per indagare la capacità di concentrarsi spontaneamente sulla numerosità in bambini di 2 ½ anni. I risultati hanno evidenziato come la maggior parte dei bambini adotti un sistema analogico di quantità quando analizzano spontaneamente delle quantità numeriche. La selezione di questo meccanismo è probabilmente legata sia alla minor richiesta di risorse attentive, sia alla disponibilità di altri indizi quantitativi (non numerici) che covariano con la numerosità.
Nello Studio 1.2, bambini di 2 ½ anni hanno svolto un compito di categorizzazione per investigare la loro capacità di stimare la grandezza numerica di insiemi. Le stime dei bambini erano indipendenti dalle caratteristiche visive degli elementi dell’insieme (i.e. perimetro o densità) per le quantità dentro il range di OTS (1-4 elementi). Le stime di quantità più grandi (5-9 elementi) erano invece influenzate dalle caratteristiche visive degli stimoli: in particolare, l’aumento del perimetro con densità costante sembra essere la combinazione di caratteristiche visive degli stimoli che fa aumentare maggiormente la percezione di numerosità.
Nello Studio 2, bambini prescolari, di prima primaria e di terza primaria dovevano stimare quantità continue, discrete e simboliche. I risultati suggeriscono la presenza di differenti meccanismi coinvolti nella stima di quantità continue rispetto a quelle numeriche (discrete e simboliche).
Nello Studio 3, abbiamo utilizzato il paradigma del doppio compito per studiare la relazione tra memoria visiva a breve termine e subitizing. Dai risultati emerge una marcata corrispondenza tra il numero di elementi memorizzati ed il numero di elementi che possono essere velocemente enumerati attraverso il subitizing.
Nello Studio 4.1, bambini con diagnosi di Discalculia Evolutiva (DE) in comorbidità con sindrome non verbale (SNV) e bambini con sviluppo tipico hanno svolto un compito di confronto di quantità numeriche. Abbiamo riscontrato un deficit nella discriminazione di numerosità nel gruppo DE-SNV rispetto ai bambini a sviluppo tipico. In particolare, la capacità di OTS sembra essere ridotta nei bambini con DE-SNV rispetto ai bambini a sviluppo tipico.
Nello Studio 4.2, bambini con diagnosi di Discalculia Evolutiva (DE) e bambini con sviluppo tipico hanno completato due compiti di stima sulla linea numerica. I bambini con DE hanno mostrato minor precisione nella stima di quantità simboliche suggerendo una rappresentazione numerica deficitaria rispetto al gruppo con sviluppo tipico.
Nello Studio 5, ragazzi con sindrome di Down (SD) e bambini con sviluppo tipico pareggiati per età mentale (EM) ed età cronologica (EC) hanno svolto due compiti numerici per valutare le loro abilità di discriminazione numerica e di conteggio. I ragazzi con SD hanno mostrato un deficit nel discriminare piccole quantità, all’interno del range di OTS, rispetto ai bambini a sviluppo tipico pareggiati sia per EM che per EC. Nella comparazione di numerosità più grandi, i ragazzi con SD hanno ottenuto una performance simile ai bambini pareggiati per EM e minore rispetto ai ragazzi pareggiati per EC. Infine, l’abilità di conteggio appare simile tra i partecipanti con SD e i bambini pareggiati per EM.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Lucangeli, Daniela
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE PSICOLOGICHE > PSICOLOGIA DELLO SVILUPPO E DEI PROCESSI DI SOCIALIZZAZIONE
Data di deposito della tesi:31 Gennaio 2013
Anno di Pubblicazione:30 Gennaio 2013
Parole chiave (italiano / inglese):Numerical cognition Numerical and non-numerical estimation Child development Typical development Atypical development Subitizing Estimation Object Tracking System Approximate Number System Counting
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/04 Psicologia dello sviluppo e psicologia dell'educazione
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia dello Sviluppo e della Socializzazione
Codice ID:5772
Depositato il:11 Ott 2013 13:56
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

• Abdelahmeed, H. (2007). Do children with Down syndrome have difficulty in counting and why. International Journal of special education, 22, 1-11. Cerca con Google

• Agrillo, C., Piffer, L., & Bisazza, A. (2010). Large Number Discrimination by Mosquitofish. PLoS ONE, 5(12), e15232. doi:10.1371/journal.pone.0015232 Cerca con Google

• Antell, S. E., & Keating, D. P. (1983). Perception of numerical invariance in neonates. Child development, 54(3), 695–701. Cerca con Google

• Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: evidence against a representational shift. Developmental science, 14(1), 125–35. doi:10.1111/j.1467-7687.2010.00962.x Cerca con Google

• Bashash, L., Outhred, L. & Bochner, S. (2003). Counting skills and number concepts of students with moderate intellectual disabilities. International Journal of Disability, Development and Education, 50, 3, 325-345. Cerca con Google

• Beran, M. J. (2007). Rhesus monkeys (Macaca mulatta) enumerate large and small sequentially presented sets of items using analog numerical representations. Journal of experimental psychology. Animal behavior processes, 33, 42–54. Cerca con Google

• Berteletti, I., Lucangeli, D., & Zorzi, M. (2012). Representation of numerical and non-numerical order in children. Cognition, 124(3), 304–313. doi:10.1016/j.cognition.2012.05.015 Cerca con Google

• Berteletti, I., Lucangeli, D., Piazza, M., Dehaene, S., & Zorzi, M. (2010). Numerical estimation in preschoolers. Developmental psychology, 46(2), 545-51. doi:10.1037/a0017887 Cerca con Google

• Big Fish (2003), directed by T. Burton, Columbia Pictures, DVD. Cerca con Google

• Bonato, M., Sella, F., Berteletti, I., & Umilta, C. (2012). Neuropsychology is nothing without control : A potential fallacy hidden in clinical studies. Cortex, 12–14. doi:10.1016/j.cortex.2011.06.017 Cerca con Google

• Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental psychology, 42(1), 189-201. doi:1 0.1037/0012-1649.41.6.189 Cerca con Google

• Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child development, 79(4), 1016–31. doi:10.1111/j.1467-8624.2008.01173.x Cerca con Google

• Brannon, E. M. (2002). The development of ordinal numerical knowledge in infancy. Cognition, 83(3), 223–240. Cerca con Google

• Brannon, E. M., & Terrace, H. S. (1998). Ordering of the Numerosities 1 to 9 by Monkeys. Science, 282, 746–749. Cerca con Google

• Briars, D. J., & Siegler, R. S. (1984). A featural analysis of preschooler’s counting knowledge. Developmental Psychology, 20, 607-618. Cerca con Google

• Brigstocke, S., Hulme, C., & Nye, J. (2008). Number and arithmetic skills in children with Down Syndrome. Down Syndrome Research and Practice. doi10.3104/reviews2070 Cerca con Google

• Bryan, T. (1974). Peer popularity of learning disabled children. Journal of Learning Disabilities, 7, 261–268. Cerca con Google

• Buckley, S. & Sacks, B. (1987). The Adolescent with Down syndrome: Life for the teenager and for the family. Portsmouth UK: Portsmouth Polytechnic. Cerca con Google

• Bull, R., & Scerif, G. (2001). Executive functioning as a predictor of children's mathematics ability: inhibition, switching, and working memory. Developmental Neuropsychology, 19, 273-293. Cerca con Google

• Bull, R., Johnston, R.S., & Roy, J.A. (1999). Exploring the roles of the visual-spatial sketch pad and central executive in children's arithmetical skills: Views from cognition and developmental neuropsychology. Developmental Neuropsychology, 15, 421-442. Cerca con Google

• Burr, D. C., Turi, M., & Anobile, G. (2010). Subitizing but not estimation of numerosity requires attentional resources. Journal of Vision, 10, 1–10. doi:10.1167/10.6.20. Cerca con Google

• Burr, D., & Ross, J. (2008). A visual sense of number. Current biology : CB, 18(6), 425–8. doi:10.1016/j.cub.2008.02.052. Cerca con Google

• Camos, V. (2009). Numerosity discrimination in children with Down syndrome. Developmental Neuropsychology, 34, 435–447. doi:10.1080/87565640902964557. Cerca con Google

• Campbell, J.I.D. (2005). Handbook of mathematical cognition. New York: Psychology Press. Cerca con Google

• Cantlon J.F., Safford, K.E., Brannon, E.M. (2010). Spontaneous analog number representations in 3-year-old children. Developmental Science, 13, 289–297. Cerca con Google

• Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. Psychological science, 17(5), 401-6. doi:10.1111/j.1467-9280.2006.01719.x Cerca con Google

• Cantlon, J. F., & Brannon, E. M. (2007). Basic math in monkeys and college students. PLoS biology, 5(12), e328. doi:10.1371/journal.pbio.0050328 Cerca con Google

• Carey, S. (2001). Cognitive foundations of arithmetic: Evolution and ontogenesis. Mind & Language, 16, 37–55. Cerca con Google

• Carey, S. (2004). Bootstrapping and the origin of concepts. Daedalus, 59–68. Cerca con Google

• Carr, J. (1988). Six weeks to twenty-one years old: a longitudinal study of children with Down’s syndrome and their families. Journal of Child Psychology and Psychiatry, 29, 407– 431. Cerca con Google

• Carretti, B., & Lanfranchi, S. (2010). The effect of configuration on VSWM performance of Down syndrome individuals. Journal of Intellectual Disability Research, 54, 1058-1056. Cerca con Google

• Carretti, B., Lanfranchi, S., & Mammarella, I. (2013). Spatial-simultaneous and spatial-sequential working memory in individuals with Down syndrome: the effect of configuration. Research in Developmental Disability, 34, 669-675. Cerca con Google

• Carroll, L. (1865). Alice’s Adventures in Wonderland. Cerca con Google

• Caycho, L., Gunn, P., & Siegal, M. (1991). Counting by children with Down syndrome. American Journal on mental retardation, 95(5), 575-583. Cerca con Google

• Clearfield, M. W., & Mix, K. S. (2001). Infant use continuous quantity – not number – to discriminate small visual sets. Journal of Cognition and Development, 2(3), 243–260. Cerca con Google

• Clearfield, M.W., & Mix, K.S. (1999). Number versus contour length in infants’ discrimination of small visual sets. Psychological Science, 10, 408–411. Cerca con Google

• Cordes, S., & Brannon, E. M. (2008). The difficulties of representing continuous extent in infancy: Using number is just easier. Child Development, 79(2), 476–489. Cerca con Google

• Cordes, S., & Brannon, E. M. (2009). The relative salience of discrete and continuous quantity in young infants. Developmental science, 12(3), 453–63. doi:10.1111/j.1467-7687.2008.00781.x Cerca con Google

• Cordes, S., Gelman, R., Gallistel, C. R., & Whalen, J. (2001). Variability signatures distinguish verbal from nonverbal counting for both large and small numbers. Psychonomic bulletin & review, 8, 698–707. Cerca con Google

• Cornoldi, C., Lucangeli, D., & Bellina, M. (2002). AC-MT: test di valutazione delle abilità di calcolo [AC-MT : assessment for calculation abilities]. Trento: Erickson Cerca con Google

• counts? Influence of perceptual variables. Journal of Experimental Child Psychology, 87(1), 57-84. Cerca con Google

• Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and brain sciences, 24, 114–85. Cerca con Google

• Cutini, S., & Bonato, M. (2012) Subitizing and visual short-term memory in human and non-human species: a common shared system? Frontiers in Comparative Psychology, 3:469. doi: 10.3389/fpsyg.2012.00469. Cerca con Google

• Dehaene, S. (1997). The number sense: How the mind creates mathematics. New York, NY: Oxford University Press. Cerca con Google

• Dehaene, S., Izard, V., Spelke, E., & Pica, P. (2008). Log or linear? Distinct intuitions of the number scale in Western and Amazonian indigene cultures. Science, 320(5880), 1217-20. doi:10.1126/science.1156540 Cerca con Google

• Dehaene, S., Piazza, M., Pinel, P., & Cohen, L. (2003). Three parietal circuits for number processing. Cognitive Neuropsychology, 20, 487-506. doi:10.1162/jocn.1993.5.4.39010.1080/02643290244000239 Cerca con Google

• development of cardinality. In M. Panhuizen-Van Heuvel (Ed.), Proceedings of 25th conference of the international group for the psychology of mathematics education, Vol. 3 (pp. 113–120). Amersfoort, TheNetherlands: Drukkerij Wilco. Cerca con Google

• Dunn, L. M., & Dunn, L. M. (1997). Peabody Picture Vocabulary Test (3rd ed.). Circle Pines, MN: American Guidance Service. Cerca con Google

• Dykens, E. M., Hodapp, R. M., & Finucane, B. M. (2000). Genetics and mental retardation syndromes. New York: Paulh Brookes. Cerca con Google

• Feigenson, L., & Carey, S. (2003). Tracking individuals via object-files : evidence from infants ’ manual search. Developmental Science, 5, 568 – 584. Cerca con Google

• Feigenson, L., Carey, S., & Hauser, M. (2002). The representations underlying infants’ choice of more: object files versus analog magnitudes. Psychological Science, 13(2), 150–156. Cerca con Google

• Feigenson, L., Carey, S.,& Spelke, E. (2002). Infants’ discrimination of number vs. continuous extent. Cognitive Psychology, 44(1), 33–66. Cerca con Google

• Feigenson, L., Dehaene, S., & Spelke, E. (2004). Core systems of number. Trends in Cognitive Sciences, 8(7), 307-314. doi:10.1016/j.tics.2004.05.002 Cerca con Google

• for cognitive science. Course notes available at http://users.fmg.uva.nl/ewagenmakers/BayesCourse/BayesBook.pdf. Vai! Cerca con Google

• Fuson, K. C. (1988). Children’s counting and concepts of number. London: Springer-Verlag. Cerca con Google

• Gallistel, C.R., & Gelman, R. (1992). Preverbal and verbal counting and computation. Cognition, 44, 43–74. Cerca con Google

• Geary, D.C. (1994). Children’s mathematical development. Washington: American Psychological Association. Cerca con Google

• Geary, D.C., Brown, S.C., & Samaranayake, V.A. (1991). Cognitive addition: A short longitudinal study of strategy choice and speed-of-processing differences in normal and mathematically disabled children. Developmental Psychology, 27, 787-797. Cerca con Google

• Geary, D.C., Hoard, M.K., Byrd-Craven, J., Nugent, L., & Numtee, C. (2007). Cognitive mechanisms underlying achievement deficits in children with mathematical learning disability. Child Development, 78, 1343–1359. Cerca con Google

• Gebuis, T., & Reynvoet, B. (2012a). The interplay between nonsymbolic number and its continuous visual properties. Journal of Experimental Psychology: General, 141, 642–648. Cerca con Google

• Gebuis, T., & Reynvoet, B. (2012b). The role of visual information in numerosity estimation. PLoS ONE,7(5), doi:10.1371/journal.pone.0037426. Cerca con Google

• Gelman, R., & Cohen, M. (1988). Qualitative differences in the way Down syndrome and normal children solve a novel counting problem. In L. Nadel (ed.), The Psychobiology of Down’s syndrome. Cambridge, MA: MIT Press. Cerca con Google

• Gelman, R., & Gallistel, C. R. (1978). The child’s understanding of number. Cambridge, MA: Harvard University Press. Cerca con Google

• Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental psychology, 44(5), 1457–65. doi:10.1037/a0012682 Cerca con Google

• Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences of the United States of America, 109(28), 11116–20. doi:10.1073/pnas.1200196109 Cerca con Google

• Halberda, J., Mazzocco, M. M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665–8. doi:10.1038/nature07246. Cerca con Google

• Hannula, M. M., & Lehtinen, E. (2001). Spontaneous tendency to focus on numerosities in the Cerca con Google

• Hannula, M. M., & Lehtinen, E. (2003). Spontaneous focusing on numersoity in the development of early mathematical skills. Paper Presented in EARLI 2003, Padova, Italy. Cerca con Google

• Hannula, M. M., & Lehtinen, E. (2005). Spontaneous focusing on numerosity and mathematical skills of young children. Learning and Instruction, 15(3), 237–256. doi:10.1016/j.learninstruc.2005.04.005 Cerca con Google

• Hannula, M. M., Lepola, J., & Lehtinen, E. (2010). Spontaneous focusing on numerosity as a domain-specific predictor of arithmetical skills. Journal of experimental child psychology, 107(4), 394–406. doi:10.1016/j.jecp.2010.06.004 Cerca con Google

• Hannula, M. M., Rasanen, P., & Lehtinen, E. (2007). Development of Counting Skills: Role of Spontaneous Focusing on Numerosity and Subitizing-Based Enumeration. Mathematical Thinking and Learning, 9(1), 51–57. doi:10.1207/s15327833mtl0901_4 Cerca con Google

• Hitch, G. J. (1978). The role of short-term working memory in mental arithmetic. Cognitive Psychology, 10, 302–323. Cerca con Google

• Hyde, D. C. (2011). Two systems of non-symbolic numerical cognition. Frontiers in human neuroscience, 5, 150. Cerca con Google

• Kahneman, D., Treisman, A., & Gibbs, B. (1992). The reviewing of object-files: object specific integration of information. Cognitive Psychology, 24, 175–219. Cerca con Google

• Kail, R.V., & Hall, L.K. (1999). Sources of developmental change in children’s word-problem performance. Journal of Educational Psychology, 91, 660-668. Cerca con Google

• Kaufman, E. L., Lord, M. W., & Volkmann, J. (1949). The discrimination of visual number. American Journal of Psychology, 62, 498–525. Cerca con Google

• Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: A study of 8–9-year-old students. Cognition, 93, 99–125. Cerca con Google

• Landerl, K., Fussenegger, B., Moll, K., & Willburger, E. (2009). Dyslexia and dyscalculia: two learning disorders with different cognitive profiles. Journal of experimental child psychology, 103(3), 309–24. doi:10.1016/j.jecp.2009.03.006 Cerca con Google

• Lanfranchi, S., Carretti, B., Spanò, G., & Cornoldi, C. (2009). A specific deficit in visuospatial simultaneous working memory in Down syndrome. Journal of Intellectual Disability Research, 53, 474-483. Cerca con Google

• Le Corre, M., & Carey, S. (2007). One, two, three, four, nothing more: an investigation of the conceptual sources of the verbal counting principles. Cognition, 105(2), 395–438. doi:10.1016/j.cognition.2006.10.005. Cerca con Google

• Lee, M. D., & Wagenmakers, E.-J. (2009). A course in Bayesian graphical modeling Cerca con Google

• LeFevre, J.A., DeStefano, D., Coleman, B., & Shanahan, T. (2005). Mathematical cognition and working memory. In Handbook of mathematical cognition, Campbell, J.I.D. (Ed.), 361-378. New York: Psychology Press. Cerca con Google

• Lemaire, P., Abdi, H., & Fayol, M. (1996). The role of working memory resources in simple cognitive arithmetic. European Journal of Cognitive Psychology, 8(1), 73−103. Cerca con Google

• Lepola, J., Niemi, P., Kuikka, M., & Hannula, M. M. (2005). Cognitive–linguistic skills and motivation as longitudinal predictors of reading and arithmetical achievement: A follow-up study from kindergarten to Grade 2. International Journal of Educational Research, 43, 250–271. Cerca con Google

• Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense. Large-number discrimination in human infants. Psychological science : a journal of the American Psychological Society / APS, 14(5), 396–401. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12930467 Vai! Cerca con Google

• Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 18737–18742. doi:10.1073/pnas.1207212109 Cerca con Google

• Lucangeli, D., & Cabrele, S. (2006). Mathematical Difficulties and ADHD. Exceptionality, 14(1), 53-6. Cerca con Google

• Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–81. Cerca con Google

• Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its component processes. Journal of Experimental Psychology: General, 111, 1–22. Cerca con Google

• Mazza, V., & Caramazza, A. (2011). Temporal brain dynamics of multiple object processing: the flexibility of individuation. PloS one, 6, e17453. Cerca con Google

• Meck, W. H., & Church, R. M. (1983). A mode control model of counting and timing processes. Journal of Experimental Psychology: Animal Behavior Processes, 9, 320-334. Cerca con Google

• Melcher, D., & Piazza, M. (2011). The role of attentional priority and saliency in determining capacity limits in enumeration and visual working memory. PloS one, 6, e29296. Cerca con Google

• Mix, K. S., Huttenlocher, J., & Levine, S. C. (2002). Multiple Cues for Quantification in Infancy : Is Number One of Them ? Psychological Bulletin, 128(2), 278 –294. doi:10.1037//0033-2909.128.2.278 Cerca con Google

• Moeller, K., Neuburger, S., Kaufmann, L., Landerl, K., & Nuerk, H.-C. (2009). Basic number processing deficits in developmental dyscalculia. Evidence from eye-tracking. Cognitive Development, 24, 371-386. Cerca con Google

• Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H.-C. (2009). Children’s early mental number line: logarithmic or decomposed linear? Journal of Experimental Child Psychology, 103, 503–515. Cerca con Google

• Molin, A., Poli, S., Lucangeli, D. (2007). Batteria Intelligenza Numerica [Battery for Numerical Intelligence]. Trento: Ed. Erickson. Cerca con Google

• Nye, J., Fluck, M. and Buckley, S. (2001). Counting and cardinal understanding in children with Down syndrome and typically developing children. Down Syndrome: Research and Practice, 7(2), 68-78. Cerca con Google

• Odic, D., Libertus, M. E., Feigenson, L., & Halberda, J. (2012). Developmental Change in the Acuity of Approximate Number and Area Representations. Developmental psychology. doi:10.1037/a0029472 Cerca con Google

• Opfer, J., & Siegler, S. (2007). Representational change and children’s numerical estimation. Cognitive Psychology, 55, 169–195. Cerca con Google

• Passolunghi, M.C., Vercelloni, B., & Schadee, H. (2006). The precursors of mathematics learning: Working memory, phonological ability and numerical competence. Cognitive Development, 22, 165–184. Cerca con Google

• Paterson, S. (2001). Language and number in Down syndrome: The complex development trajectory from infancy to adulthood. Down Syndrome Research and Practice, 7(2), 79-86. Cerca con Google

• Paterson, S. J., Girelli, L., Butterworth, B., & Karmiloff-Smith, A. (2006). Are numerical impairments syndrome specific? Evidence from Williams syndrome and Down’s syndrome. Journal of Child Psychology and Psychiatry, 47, 190–204. Cerca con Google

• Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in cognitive sciences, 14(12), 542–51. doi:10.1016/j.tics.2010.09.008 Cerca con Google

• Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., Dehaene, S., & Zorzi. M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33–41. doi:10.1016/j.cognition.2010.03.012 Cerca con Google

• Piazza, M., Fumarola, A., Chinello, A., & Melcher, D. (2011). Subitizing reflects visuo-spatial object individuation capacity. Cognition, 121(1), 147–53. doi:10.1016/j.cognition.2011.05.007 Cerca con Google

• Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503. doi:10.1126/science.1102085 Cerca con Google

• Porter, J. (1999). Learning to count: a difficult task? Down Syndrome Research and Practice, 6(2), 85-94. Cerca con Google

• Raven, J., Raven, J. C., & Court, J. H. (1998). Coloured Progressive Matrices. Oxford Psychologists Press, Oxford. Cerca con Google

• Revkin, S. K., Piazza, M., Izard, V., Cohen, L., & Dehaene, S. (2008). Does subitizing reflect numerical estimation? Psychological science : a journal of the American Psychological Society / APS, 19(6), 607–14. doi:10.1111/j.1467-9280.2008.02130.x Cerca con Google

• Ross-Sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child development, 74(6), 1807–22. Cerca con Google

• Rourke, B. (1989). Nonverbal learning disabilities. The syndrome and the model. New York: Guilford Press Cerca con Google

• Rousselle, L., & Noel, M.P. (2007). Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs. non-symbolic number magnitude processing. Cognition, 102 (3), 361–395. Cerca con Google

• Rousselle, L., Palmers, E., & Noel, M-P. (2004). Magnitude comparison in preschoolers: What Cerca con Google

• Sartori, G., Job, R., Tressoldi, P.E. (1995). Batteria per la valutazione della dislessia e della disortografia evolutiva. Florence: Organizzazioni Speciali. Cerca con Google

• Schleifer, P., & Landerl, K. (2011). Subitizing and counting in typical and atypical development. Developmental Science, 14, 280–291. doi: 10.1111/j.1467-7687.2010.00976.x Cerca con Google

• Scholl, B. (2001). Objects and attention: the state of the art. Cognition, 80, 1–46. Cerca con Google

• Sherman S. L., Allen E. G., Bean L. H. & Freeman S. B. (2007). Epidemiology of Down syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 13, 221–7. Cerca con Google

• Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child development, 75(2), 428-44. doi:10.1111/j.1467-8624.2004.00684.x Cerca con Google

• Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: evidence for multiple representations of numerical quantity. Psychological science, 14(3), 237-43. Cerca con Google

• Siegler, R.S. (1996). Emerging minds: The process of change in children’s thinking. New York: Oxford University Press. Cerca con Google

• Siegler, R.S. (2007). Cognitive variability. Developmental Science, 10, 104-209. Cerca con Google

• Siegler, R.S., & Arraya, R. (2005). A computational model of conscious and unconscious strategy discovery. In R.V. Kail (Ed.), Advances in child development and behaviour (pp. 1-42). Oxford: Elsevier. Cerca con Google

• Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental science, 10(1), 89–96. doi:10.1111/j.1467-7687.2007.00569.x Cerca con Google

• Starkey, P., & Cooper, R. G., Jr. (1980). Perception of numbers by human infants. Science, 210, 1033–1035.1980. Cerca con Google

• Stoianov, I., & Zorzi, M. (2012). Emergence of a “ visual number sense ” in hierarchical generative models. Nature Neuroscience, 15(2), 194–196. Cerca con Google

• Thompson, C. a, & Siegler, R. S. (2010). Linear numerical-magnitude representations aid children’s memory for numbers. Psychological science, 21(9), 1274–81. doi:10.1177/0956797610378309 Cerca con Google

• Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large numbers enumerated differently—A limited-capacity preattentive stage in vision. Psychology Review, 101, 80–102. Cerca con Google

• vanMarle, K., & Wynn, K. (2009). Infants’ auditory enumeration: Evidence for analog magnitudes in the small number range. Cognition, 111, 302–316. Cerca con Google

• Verguts, T., Fias, W., & Stevens, M. (2005). A model of exact small-number representation. Psychonomic bulletin & review, 12(1), 66–80. Cerca con Google

• Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488. doi:10.1016/j.tics.2003.09.002 Cerca con Google

• Wechsler, D. (1991). WISC-III: Wechsler Intelligence Scale for children. New York: The Psychological Corporation, 1991 [Italian edition Scala di Intelligenza Wechsler per Bambini-Terza Edizione - WISC III, Firenze, Organizzazioni Speciali 2006]. Cerca con Google

• Wood, J. N., & Spelke, E. S. (2005). Infants’ enumeration of actions: numerical discrimination and its signature limits. Developmental science, 8(2), 173–81. doi:10.1111/j.1467-7687.2005.00404.x Cerca con Google

• Wynn, K. (1990). Children’s understanding of counting. Cognition, 36, 155–193. Cerca con Google

• Wynn, K. (1992). Addition and subtraction by 5-month-old human infants. Nature, 348, 749-750. Cerca con Google

• Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1–B11. Cerca con Google

• Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental science, 8(1), 88–101. doi:10.1111/j.1467-7687.2005.00395.x Cerca con Google

• Zorzi, M., & Butterworth, B. (1999). A computational model of number comparison. In M. Hahn & S. C. Stoness (Eds.), Proceedings of the Twenty-First Annual Conference of the Cognitive Science Society (pp. 778–783). Mahwah, NJ: Erlbaum. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record