Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Alvarado Barrantes, Ricardo (2013) Statistical models in biogeography. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
8Mb

Abstract (inglese)

We concentrate on the statistical methods used in Biogeography for modelling the spatial distribution of bird species. Due to the difficulty of specifying a joint multivariate spatial covariance structure in environmental processes, we factor such a joint distribution into a series of conditional models linked together in a hierarchical framework. We have a process that corresponds to an unobservable map with the actual information about a bird species, and the data correspond to the observations that are connected to that process. Markov chain Monte Carlo (MCMC) simulation approaches are used for models involving multiple levels incorporating dependence structures. We use a Bayesian algorithm for drawing samples from the posterior distribution in order to obtain estimates of the parameters and reconstruct the true map based on data. We present different methods to overcome the problem of calculating the distribution of the Markov random field that is used in the MCMC algorithm. During the analysis it is desirable to delete some of the predictors from the model and only use a subset of covariates in the estimation procedure. We use the method by Kuo & Mallick (1998) (KM) for variable selection and combine it with multiple independent chains which successfully improves the mixing behaviour. In simulation studies we show the better performance of the pseudolikelihood over other likelihood approximation methods, and the good performance of the KM method with this type of data. We illustrate the application of the methods with the complete analysis of the spatial distribution of two bird species (Sturnella magna and Anas rubripes) based on a real data set. We show the advantages of using the hidden structure and the spatial interaction parameter in the spatial hidden Markov model over other simpler models, like the ordinary logistic model or the autologistic model without observation errors.

Abstract (italiano)

Ci concentriamo sui metodi statistici utilizzati in Biogeografia per modellare la distribuzione spaziale delle specie di uccelli. A causa della difficoltà nello specificare una struttura multivariata congiunta della covarianza spaziale nei processi ambientali, fattorizziamo tale distribuzione congiunta in una serie di modelli condizionati connessi asieme in un modello gerarchico. Abbiamo un processo che corrisponde ad una mappa non osservabile con le informazioni effettive su una specie di uccelli, ed i dati corrispondono alle osservazioni che sono collegate a tale processo. Vengono utilizzati gli approcci di simulazione Markov chain Monte Carlo (MCMC) per i modelli a più livelli che incorporano strutture di dipendenza. Usiamo un algoritmo Bayesiano per estrarre campioni dalla distribuzione a posteriori al fine di ottenere stime dei parametri e ricostruire la vera immagine basata sui dati. Presentiamo diversi metodi per superare il problema del calcolo della distribuzione del campo aleatorio markoviano che viene utilizzato nell’ algoritmo MCMC. Durante l’analisi, è opportuno eliminare alcuni predittori dal modello e utilizzare solo un sottoinsieme di covariate nella procedura di stima. Usiamo il metodo di Kuo & Mallick (1998) (KM) per la selezione delle variabili che, combinato all’uso dei più catene independenti, incrementa con successo il mixing delle catene. Negli studi di simulazione, presentiamo le migliori prestazioni della pseudo-verosimiglianza rispetto agli altri metodi di approssimazione e le buone prestazioni del metodo KM per queso tipo di dati. Illustriamo l’applicazione dei metodi con l’analisi completa della distribuzione spaziale di due specie di uccelli (Sturnella magna e Anas rubripes), basandoci su di un insieme di dati reale. Dimostriamo i vantaggi nell’uso della struttura latente e del parametro di interazione spaziale nel modello spaziale markoviano latente rispetto agli altri modelli più semplici, come l’ordinario modello logistico o il modello autologistico senza errori di osservazione.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Gaetan, Carlo
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE STATISTICHE
Data di deposito della tesi:30 Gennaio 2013
Anno di Pubblicazione:30 Gennaio 2013
Parole chiave (italiano / inglese):campo aleatorio markoviano latente selezione delle variabili MCMC distribuzione spaziale modello autologistico hidden Markov random field variable selection MCMC spatial distribution autologistic model
Settori scientifico-disciplinari MIUR:Area 13 - Scienze economiche e statistiche > SECS-S/01 Statistica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Statistiche
Codice ID:5784
Depositato il:15 Ott 2013 10:51
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

AUGUSTIN, N. H., MUGGLESTONE, M. A. & BUCKLAND, S. T. (1996). An autologistic model for the spatial distribution of wildlife. Journal of Applied Ecology 36 339–347. Cerca con Google

BANERJEE, S., CARLIN, B. P. & GELFAND, A. E. (2003). Hierarchical Modeling and Analysis for Spatial Data. Chapman & Hall/CRC. Cerca con Google

BARTOLUCCI, F. & BESAG, J. E. (2002). A recursive algorithm for Markov random fields. Biometrika 89 724–730. Cerca con Google

BENT, A. C. (1989). Life histories of North American flycatchers, larks, swallows, and their allies. Dove Publications. Cerca con Google

BESAG, J. E. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Statistical Society, Ser B 36 192–236. Cerca con Google

BESAG, J. E. (1975). Statistical analysis of non-lattice data. The Statistician 24 179–195. Cerca con Google

BESAG, J. E. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Ser B 48 259–302. Cerca con Google

BESAG, J. E., YORK, J. & MOLLIE, A. (1991). Bayesian image restauration, with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics 43 1–59. Cerca con Google

BOLAND, T. (2007). The Internet Bird Collection. http://ibc.lynxeds.com/photo/american-black-duck-anas-rubripes/male-preening-showing-speculum. Accessed: 13/11/2012. Vai! Cerca con Google

CLEGG, J. & MANSELL, E. (1986). Observer’s Book of Pond Life. FrederickWarne. Cerca con Google

COOLEY, D., DAVISON, A. C. & RIBARET, M. (2012). Bayesian inference from composite likelihoods, with an application to spatial extremes. Statistica Sinica 22 813–845. Cerca con Google

COSEWIC (2011). COSEWIC assessment and status report on the Eastern Meadowlark Sturnella magna in Canada. Committee on the status of endangered wildlife in Canada. http://publications.gc.ca/collections/collection_2012/ec/CW69-14-624-2011-eng.pdf. Accessed: 07/11/2012. Vai! Cerca con Google

CRESPI, C. M. & BOSCARDIN, W. J. (2009). Bayesian model checking for multivariate outcome data. Computational Statistics and Data Analysis 53 3765–3772. Cerca con Google

CRESSIE, N. (1993). Statistics for Spatial Data. Wiley, New York. Cerca con Google

DE LEON, L. (2010). Retiring with Lisa de Leon: retiring to birdwatching and photography. http://retiringwithlisadeleon.blogspot.it/2010/10/black-duck.html. Accessed: 30/12/2012. Vai! Cerca con Google

DELLAPORTAS, P., FORSTER, J. J. & NTZOUFRAS, I. (2002). On Bayesian model and variable selection using MCMC. Statistics and Computing 12 27–36. Cerca con Google

DORMANN, C. F. (2007). Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography 16 129–138. Cerca con Google

DORMANN, C. F., MCPHERSON, J. M., ARAUJO, M. B., BIVAND, R., BOLLIGER, J., CARL, G., DAVIES, R. G., HIRZEL, A., JETZ, W., KISSLING, W. D., KUHN, I., OHLEMULLER, R., PERES-NETO, P. R., REINEKING, B., SHRODER, B., SHURR, F. M. & WILSON, R. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30 609–628. Cerca con Google

DRUGAN, M. M. & THIERENS, D. (2010). Recombination operators and selection strategies for evolutionary Markov chain Monte Carlo algorithms. Evolutionary Inteligence 3 79–101. Cerca con Google

DRYDEN, I. L., SCARR, M. R. & TAYLOR, C. C. (2003). Bayesian texture segmentation of weed and crop images using reversible jump Markov chain Monte Carlo methods. Applied Statistics 52 31–50. Cerca con Google

ELLIOTT, P., WAKEFIELD, J. C., BEST, N. G. & BRIGGS, D. J. (2000). Spatial Epidemiology: Methods and Applications. Oxford University Press. Cerca con Google

FRANCQ, G. E. (1972). Parental care of the Eastern Meadowlark (Sturnella magna). Master’s thesis, Kansas State Teachers College, Emporia, Kansas. Cerca con Google

FRIEL, N., PETTITT, A. N., REEVES, R. & WIT, E. (2009). Bayesian inference in hidden Markov random fields for binary data defined on large lattices. Journal of Computational and Graphical Statistics 18 243–261. Cerca con Google

FRUHWIRTH-SCHNATTER (2001). Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. Journal of the American Statisistical Association 96 194–209. Cerca con Google

FRY, J., XIAN, G., JIN, J., S. ADN DEWITZ, HOMER, C., YANG, L., BARNES, C., HEROLD, N. & WICKHAM, J. (2011). Completion of the 2006 National Land Cover Database for the Conterminous United States. Photogrammetric Engineering and Remote Sensing 77 858–864. Cerca con Google

FURRER , R., NYCHKA , D. & SAIN , S. (2012). fields: Tools for spatial data. R package version 6.6.3. http://CRAN.R-project.org/package=fields. Accessed: 07/10/2012. Vai! Cerca con Google

GASTON, K. J. (1994). Rarity. Springer. Cerca con Google

GELMAN, A. (2002). Posterior distribution. Encyclopedia of Environmetrics 3 1627–1628. Cerca con Google

GELMAN, A., CARLIN, J., STERN, H. & RUBIN, D. (2003). Bayesian Data Analysis. Chapman & Hall/CRC. Cerca con Google

GELMAN, A. & MENG, X. L. (1998). Simulating normalizing constants: From importance sampling to bridge sampling to path sampling. Statistical Science 13 163–185. Cerca con Google

GELMAN, A., MENG, X. L. & STERN, H. (1996). Posterior predictive assessment of model fitness via realized discrepancies. Statistica Sinica 6 733–807. Cerca con Google

GEORGE, E. L. & MCCULLOCH, R. E. (1993). Variable selection via Gibbs sampling. Journal of the American Statisistical Association 88 881–889. Cerca con Google

GEORGE, E. L. &MCCULLOCH, R. E. (1997). Approaches for Bayesian variable selection. Statisistica Sinica 7 339–373. Cerca con Google

GEYER, C. J. & THOMPSON, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data. Journal of the Royal Statistical Society, Ser. B 54 657–699. Cerca con Google

GODSILL, S. J. (2001). On the relationship between MCMC model uncertainty methods. Journal of Computational and Graphical Statistics 10 230–248. Cerca con Google

GREEN, P. (1995a). MCMC in image analysis. Markov chain Monte Carlo in practice 381–399. Cerca con Google

GREEN, P. J. (1995b). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 711–732. Cerca con Google

GREEN, P. J. & RICHARDSON, S. (2002). Hidden Markov models and disease mapping. Journal of the American Statisistical Association 97 1055–1070. Cerca con Google

GU, M. G. & ZHU, H. T. (2001). Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation. Journal of the Royal Statistical Society, Ser. B 63 339–355. Cerca con Google

GUMPERTZ, M., WU, C.-T. & PYE, J. (2000). Logistic regression for southern pine beetle outbreaks with spatial and temporal autocorrelation. Forest Science 46 95–107. Cerca con Google

GUYON, X. & HARDOUIN, C. (2002). Markov chain markov field dynamics: models and statistics. Statistics: A Journal of Theoretical and Applied Statistics 36 339–363. Cerca con Google

HAINING, R. (2003). Spatial Data Analysis - Theory and Practice. Cambridge University Press. Cerca con Google

HARDOUIN, C. & GUYON, X. (2009). Exact marginals and normalizing constant for gibbs distributions. C. R. Acad. Sci. Paris, Ser. I 348 199–201. Cerca con Google

HASTIE, T. J. & TIBSHIRANI, R. J. (1990). Generalized Additive Models. Chapman & Hall/CRC. Cerca con Google

HEAGERTY, P. J. & LUMLEY, T. (2000). Window subsampling of estimating functions with application to regression models. Journal of the American Statisistical Association 95 197–211. Cerca con Google

HEIKKINEN, J. & HOGMANDER, H. (1994). Fully Bayesian approach to image restoration with an application in Biogeography. Applied Statistics 43 569–582. Cerca con Google

HEIKKINEN, J. & HOGMANDER, H. (1997). Statistics in Biogeography. In: Kotz, S., Read, C. B. & Banks, D. L. (eds.). Encyclopedia of Statistical Sciences, Update volume 1. JohnWiley & Sons, Inc., New York. p. 56-61. Cerca con Google

HERKERT, J. R. (1991). Prairie birds of Illinois: population response to two centuries of habitat change. Illinois Natural History Survey Bulletin 34 393–399. Cerca con Google

HERKERT, J. R. (1994). The effects of habitat fragmentation on midwestern grassland bird communities. Ecological Applications 4 461–471. Cerca con Google

HO GMANDER, H. & MØLLER, J. (1993). Classification of atlas maps using statistical methods of image analysis. Research Report 263. Department of Theoretical Statistics, University of Aarhus, Aarhus. Cerca con Google

HORN, D. J., FLETCHER, R. J. & KOFORD, R. R. (2000). Detecting area sensitivity: a comment on previous studies. American Midland Naturalist 144 28–35. Cerca con Google

HUGHES, J., HARAN, M. & CARAGEA, P. (2010). Autologistic models for binary data on a lattice. Environmetrics 22 857–871. Cerca con Google

HULL, S. D. (2000, revised 2002). Effects of management practices on grassland birds: Eastern Meadowlark. Northern PrairieWildlife Research Center, Jamestown, ND. Cerca con Google

JOHNSGARD, P. A. (1967). Sympatry changes and hybridization incidence in Mallards and Black Ducks. American Midland Naturalist 77 51–63. Cerca con Google

KAMINSKI, R. M. (2007). Waterfowl fall migration. Why, when, and where? http://www.ducks.org/hunting/migration/waterfowl-fall-migration. Typeset. Accessed: 30/12/2012. Vai! Cerca con Google

KNAPP, R., M ATTHEWS , K., P REISLER , H. & J ELLISON , R. (2003). Developing probabilistic models to predict amphibian site occupancy in a patchy landscape. Ecological Applications 13 1069–1082. Cerca con Google

KUO, L. & MALLICK, B. (1998). Variable selection for regression models. Sankhya 60 65–81. Cerca con Google

LANYON, W. E. (1957). The comparative biology of the meadowlarks (Sturnella) in Wisconsin. Publications of the Nuttall Ornithological Club 1. Cambridge, Massachusetts. Cerca con Google

LANYON, W. E. (1995). Eastern Meadowlark (Sturnella magna). A. Poole and F. Gill, editors. The Birds of North America 160. The Academy of Natural Sciences, Philadelphia, PA. Cerca con Google

LEWIS, J. C. & GARRISON, R. L. (1984). Habitat suitability index models: American black duck (wintering). USFWS. FWS/OBS-82/10.68. 16 pp. Cerca con Google

LI, S. Z. (1995). Markov Random Field Modeling in Computer Vision. Springer-Verlag New York, Inc. Cerca con Google

LIANG, F. (2007). Continuous contour Monte Carlo for marginal density estimation with an application to a spatial statistical model. Journal of Computational and Graphical Statistics 16 608–632. Cerca con Google

LIANG, F. & WONG, W. H. (2000). Evolutionary Monte Carlo: applications to Cp model sampling and change point problem. Statistics Sinica 10 317–342. Cerca con Google

LINDSAY, B. G. (1988). Composite likelihood methods. Contemporary Mathematics 80 221–239. Cerca con Google

LONGCORE, J. R., MCAULEY, D. G., HEPP, G. R. & RHYMER, J. M. (2000). American Black Duck (Anas rubripes), The birds of North America online (A. Poole, ed.). Ithaca: Cornell Lab of Ornitology. http://bna.birds.cornell.edu/bna/species/481. Accessed: 23/11/2012. Vai! Cerca con Google

MANEL, S., WILLIAMS, H. C. & ORMEROD, S. J. (2002). Evaluating presenceabsence models in ecology: the need to account for prevalence. Journal of Applied Ecology 38 921–931. Cerca con Google

MCGRORY, C. & TITTERINGTON, D. (2009). Variational bayesian analysis for hidden markov models. Australian & New Zealand Journal of Statistics 51 227–244. Cerca con Google

MILLER, J. A. (2012). Species distribution models: spatial autocorrelation and non-stationarity. Progress in Physical Geography 36 681–692. Cerca con Google

MITCHELL, T. J. & BEAUCHAMP, J. J. (1988). Bayesian variable selection in linear regression (with discussion). Journal of the American Statistical Association 83 1023–1032. Cerca con Google

MØLLER, J., PETTITT, A., REEVES, R. & BERTHELSEN, K. (2006). An efficient Markov chain Monte Carlo method for distributions with intractable normilizing constants. Biometrika 93 451–458. Cerca con Google

MUNSON, M. A., WEBB, K., SHELDON, D., FINK, D., HOCHACHKA, W. M., ILIFF, M., RIEDWALD, M., SOROKINA, D., SULLIVAN, B., WOOD, C. & KELLING, S. (2011). The eBird reference dataset, version 3.0. Ithaca: Cornell Lab of Ornitology and National Audubon Society. http://www.ebird.org/. Accessed: 30/07/2012. Vai! Cerca con Google

MURRAY, I. (2007). Advances in Markov chain Monte Carlo methods. Ph.D. Thesis, Gatsby Computational Neuroscience Unit, University College London, U.K. Cerca con Google

NATURESERVE (2012). All About Birds. http://www.allaboutbirds.org/. Accessed: 12/11/2012. Vai! Cerca con Google

O’HARA, R. B. & SILLANPA A, M. J. (2009). A review of Bayesian variable selection methods: what, how and which. Bayesian Analysis 4 85–118. Cerca con Google

OSBORNE, P. E., ALONSO, J. & BRYANT, R. (2001). Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. Journal of Applied Ecology 38 458–471. Cerca con Google

OSBORNE, P. E. & TIGAR, B. J. (1992). Interpreting bird atlas data using logistic models: an example from Lesotho, Southern Africa. Journal of Applied Ecology 29 55–62. Cerca con Google

PACIOREK, C. J. (2007). Bayesian smoothing with Gaussian processes using Fourier basis functions in the spectralGP library. Journal of Statistical Software 19 nihpa22751. Cerca con Google

PAROLI, R. & SPEZIA, L. (2008). Bayesian variable selection in Markov mixture models. Communications in Statistics-Simulation and Computation 37 25–47. Cerca con Google

PETTITT, A. N., N, F. & REEVES, R. (2003). Efficient calculation of the normalising constant of the autologistic and related models on the cylinder and lattice. Journal of the Royal Statistical Society, Ser. B 65 235–247. Cerca con Google

PIELOU, E. (1979). Biogeography. 351 pp. New York: Wiley4nterscience . Cerca con Google

REEVES, R. & PETTITT, A. N. (2004). Efficient recursions for general factorisable models. Biometrika 91 751–757. Cerca con Google

RINGELMAN, J. K., LONGCORE, J. R. & OWEN, R. B. J. (1982). Breeding habitat selection and home range of radio-marked black ducks (anas rubripes) in Maine. Canadian Journal of Zoology 60 241–248. Cerca con Google

RYDEN, T. & TITTERINGTON, D. M. (1998). Computational Bayesian analysis of hidden Markov models. Journal of Computational and Graphical Statistics 7 194–211. Cerca con Google

SALAROLI, B. (2011). The Internet Bird Collection. http://ibc.lynxeds.com/photo/eastern-meadowlark-sturnella-magna/individual-adult-male/. Accessed: 12/11/2012. Vai! Cerca con Google

SARGEANT , G. A., SOVADA , M. A., SLIVINSKI , C. C. & JOHNSON , D. H. (2005). Markov chain Monte Carlo estimation of species distributions: a case study of the Swift Fox in western Kansas. Journal of Wildlife Management 69 483–497. Cerca con Google

SEYMOUR, N. R. & MITCHELL, S. C. (2006). Mallard A. platyrhynchos abundance, occurrence of heterospecific pairing and wetland use between 1976 and 2003 in Northeastern Nova Scotia, Canada. Wildfowl 56 79–93. Cerca con Google

SIMONS, T., POLLOCK, K., WETTROTH, J., ALLDREDGE, M., PACIFICI, K. & BREWSTER, J. (2009). Sources of measurement error, misclassification error, and bias in auditory avian point count data. Modeling demographic processes in marked populations 237–254. Cerca con Google

SMITH, E. & STEPHENSON, A. (2009). An extended gaussian max-stable process model for spatial extremes. Journal of Statistical Planning and Inference 139 1266–1275. Cerca con Google

SPEZIA, L. (2010). Bayesian analysis of multivariate Gaussian hidden Markov models with an unknown number of regimes. Journal of Time Series Analysis 31 1–11. Cerca con Google

TETERUKOVSKY, A. & EDENIUS, L. (2003). Effective field sampling for predicting the spatial distribution of Reindeer (Rangifer tarandus) with help of the Gibbs sampler. Ambio 32 568–572. Cerca con Google

TOBLER, W. R. (1970). A computer movie simultaing urban growth in the Detroit region. Economic Geography 46 234–240. Cerca con Google

WALK, J. W. & WARNER, R. E. (1999). Effects of habitat area on the occurrence of grassland birds in Illinois. American Midland Naturalist 141 339–344. Cerca con Google

WALKER, P. A. (1990). Modelling wildlife distributions using a geographic information system: kangaroos in relation to climate. Journal of Biogeography 17 279–289. Cerca con Google

WIKLE, C. K. (2003). Hierarchical models in environmental science. International Statistical Review 71 181–199. Cerca con Google

WINTER, M. (1998). Effect of habitat fragmentation on grassland-nesting birds in southwestern Missouri. Ph.D. thesis, University of Missouri, Columbia, MI. 215 pp. Cerca con Google

WRIGHT, B. S. & WYNDHAM, M. (2005). American Black Duck. Hinterland Who’s Who bird fact sheets. Canadian Wildlife Service and Canadian Wildlife Federation. http://www.hww.ca/en/species/birds/american-black-duck-1-2.html. Accessed: 30/12/2012. Vai! Cerca con Google

WU, H. & HUFFER, F. W. (1997). Modelling the distribution of plant species using the autologistic regression model. Environmental and Ecological Statistics 4 49–64. Cerca con Google

YANO, Y., BEAL, S. & SHEINER, L. (2001). Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. Journal of pharmacokinetics and pharmacodynamics 28 171–192. Cerca con Google

ZHOU, X. & SCHMIDLER, S. C. (2009). Bayesian parameter estimation in Ising and Potts models: A comparative study with applications to protein modeling. Technical Report. Duke University.(a). Cerca con Google

ZHU , H. T., GU , M. G. & PETERSON , B. (2007). Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation. Technical Report. Department of Statistical Science, Duke University, Durham. Cerca con Google

ZHU, J., ZHENG, Y., CARROLL, A. & AUKEMA, B. (2008). Autologistic regression analysis of spatial-temporal binary data via monte carlo maximum likelihood. Journal of agricultural, biological, and environmental statistics 13 84–98. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record