Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Ruffino, Milena (2008) Disturbi dell'attenzione selettiva nella dislessia evolutiva: evidenze comportamentali, correlati neurobiologici, neurofisiologici e genetici. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

Reading acquisition requires not only adequate auditory-phonological skills, but also appropriate visuo-perceptual abilities. Some studies have shown that selective attention (SA) specifically affects these abilities. Although children and adults with developmental dyslexia (DD, neurodevelopmental reading deficit) show a phonological deficit, there are a number of theories supporting a non-linguistic sensory mechanisms (Dorsal-Magnocellular pathway, D-M). The non-linguistic deficit might in principal affect a general efficient processing of perceptual stimuli when spatial and temporal signal interference are induced by near noise. Some studies have shown that in individuals with DD, the deficit in reading is significantly affected by a sub-lexical damage. It is widely assumed that the sub-lexical route requires a primary graphemic parsing process (GP; i.e., the visual segmentation of a grapheme string into its constituent graphemes) provided by SA, in addition to phonological processing, memory and grapheme-phoneme correspondences.
Our studies attempted to investigate whether SA deficit, probably arised from a D-M dysfunction, could certainly have important consequences for normal reading developmental. SA deficit could selectively affect the rapid GP process necessary for an efficient phonological decoding. Precisely, a selective GP deficit might be due to a sluggish shifting of spatial (i.e., orienting and focusing processes) and temporal (i.e., engagement and disengagement processes) selective visual attention, which is a critical cognitive mechanism to support the perceptual signal processing and the noise exclusion induced by near letters.
The aim of this study is to investigate the potential neurobiologcal (i.e., D-M pathway), neurophysiological (i.e., early sensory modulation from posterior parietal cortex to occipital area) and molecular (i.e., cholinergic-nicotinic receptors) basis of the SA deficit in children with DD.
Our psychophysical and behavioral results coherently show that a specific spatial and temporal SA deficit, preventing an efficient GP (lead to all subsequent spelling-to-sound conversion processes), is specifically linked to a selective sub-lexical route damage (Experiments 1-6b). In dyslexics impaired in nonword reading (sub-lexical damage) the SA deficit might be linked to a neurodevelopmental deficit at D-M pathway (i.e., lower contrast sensitivity at frequency doubling illusion; Experiment 7a). In addition, an AS deficit seems to affect the signal discrimination ability and the perceptual lateral noise exclusion (Experiment 7b). Importantly, the study of lateral masking and text reading abilities confirms the potential predictive relation between spatial SA and the GP deficit in DD (Experiment 7c). Moreover, the results of visual event-related potential (ERP) study (Experiment 8) show a neurophysiological evidence of a sluggish shifting of visuo-spatial SA in dyslexics with a sub-lexical damage. Precisely, the facilitatory effect of visuo-spatial attention induced by a peripheral cue on the P1 (a early ERP of visual processing) is not present in dyslexics with a sub-lexical damage. Finally, the genetic study (Experiment 9) show that cholinergic-nicotinic receptors (i.e., polymorphism rs3827020 T/C, gene CHRNA4), affecting the intra-parietal lobe activity, might be linked to the visuo-spatial AS deficit and the specific reading deficit in DD.
In sum, our results provide psychophysics and behavioral evidences of spatial and temporal SA deficit in children with DD who are impaired in nonword reading. This deficit could be the result of a neurodevelopmental dysfunction of D-M pathway. Moreover, results from the lateral masking study suggest the possible causal relation between the spatial SA deficit and the specific phonological decoding damage, potentially affected by the GP process, which is requisite for the grapheme-phoneme mapping. Finally, we provide neurophysiological (P1 component) and molecular (cholinergic-nicotinic receptors) evidences that the sluggish of visuo-spatial SA might affect the efficiency of sub-lexical route, necessary to learn to read.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Mascetti, Gian Gastone
Supervisor:Facoetti, Andrea
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE PSICOLOGICHE > PSICOBIOLOGIA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Key Words:Dislessia evolutiva; Attenzione selettiva; Via sub-lessicale; Sistema Dorsale-Magnocellulare; P1; Recettori colinergici-nicotinici.
Settori scientifico-disciplinari MIUR:Area 11 - Scienze storiche, filosofiche, pedagogiche e psicologiche > M-PSI/02 Psicobiologia e psicologia fisiologica
Struttura di riferimento:Dipartimenti > Dipartimento di Psicologia Generale
Codice ID:579
Depositato il:21 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Abecasis GR, Cardon LR e Cookson WO (2000). A general test of association for quantitative traits in nuclear families. American Journal of Human Genetic, 66: 279-292. Cerca con Google

2. Alkondon M, Pereira EF, Eisenberg HM e Albuquerque EX (2000). Nicotinic receptor activation in human cerebral cortical interneurons: A mechanism for inhibition and disinhibition of neuronal networks. J ournal of Neuroscience, 20: 66-75. Cerca con Google

3. Allport DA (1977). On knowing the meaning of words we are unable to report: the effects of visual masking. In Attention and Performance VI (Dornic, S., ed.), MIT Press, 505-533. Cerca con Google

4. American Psychiatric Association (1994). Diagnostic and statistical manual of mental disorders (4th Edition). DC author, Washington. Cerca con Google

5.Amitay S, Ben-Yehudah G, Banai K e Ahissar M (2002). Disabled readers suffer from visual and auditory impairments but not from a specific magnocellular deficit. Brain, 125: 2272-2285. Cerca con Google

6. Atkinson J (1991). Review of human visual development: crowding and dyslexia. In JF Stein (Ed), Vision and Visual Dyslexia. Houndmills: MacMillian Press, 1991, Ch. 3: 44-77. Cerca con Google

7. Bakker DJ (1992). Neuropsychological classification and treatment of dyslexia. Journal of Learning Disabilities, 25:102-109. Cerca con Google

8. Barrett DJK e Hall DA (2006). Response preferences for "what" and "where" in human non-primary auditory cortex. Neuroimage, 32: 968-977. Cerca con Google

9. Battelli L, Pascual-Leone A e Cavanagh P (2007). The When pathway of the right parietal lobe. Trends in Cognitive Science, 11: 204-210. Cerca con Google

10. Ben-Yehudah G, Sackett E, Malchi-Ginzberg L e Ahissar M (2001). Impaired temporal contrast sensitivity in dyslexics is specific to retain-and-compare paradigms. Brain, 124: 1381-1395. Cerca con Google

11. Boden C e Giaschi D (2007). M-stream deficits and reading-related visual processes in developmental dyslexia. Psychological Bulletin, 133: 346-366. Cerca con Google

12. Bosse M, Tainturier M e Valdois S (2007). Developmental dyslexia: The visual attention span deficit hypothesis. Cognition, 104: 198-230. Cerca con Google

13. Brannan J e Williams M (1987). Allocation of visual attention in good and poor readers. Perception and Psychophysic, 41: 23-28. Cerca con Google

14. Buchholz J e Aimola-Davies A (2007). Attentional blink deficits observed in dyslexia depend on task demand. Vision Research, 47: 1292-1302. Cerca con Google

15. Carrasco M, Ling S e Read S (2004). Attention alters appearance. Nature Neuroscience, 7: 308-313. Cerca con Google

16. Casco C, Tressoldi P e Dellantonio A (1998). Visual selective attention and reading efficiency are related in children. Cortex, 34: 531-546. Cerca con Google

17.Castiello U e Umiltà  C (1990). Size of the attentional focus and efficiency of processing. Acta Psychologica, 73: 195-209. Cerca con Google

18. Castiello U e Umiltà  C (1992). Splitting focal attentino. Journal of Experimental Psychology: Human Perception and Performance, 18: 837-848. Cerca con Google

19. Castles A e Coltheart M (1993). Varieties of developmental dyslexia. Cognition, 47: 148-180. Cerca con Google

20. Cestnick L e Coltheart M (1999). The relationship between language-processing and visual-processing deficit in developmental dyslexia. Cognition, 71: 231-255. Cerca con Google

21. Chapman NH, Igo RP, Thomson JB, Matsushita M, Brkanac Z, Holzman T et al. (2004). Linkage analyses of four regions previously implicated in dyslexia: confirmation of a locus on chromosome 15q. American Journal of Medical Genetics, 131: 67-75. Cerca con Google

22. Coltheart M, Rastle K, Perry C, Langdon R e Ziegler J (2001). The DRC model: A model of visual word recognition and reading aloud. Psychological Review, 108: 204 - 258. Cerca con Google

23. Cope N, Harold D, Hill G, Moskvina V, Stevenson J, Holmans P, Owen MJ, O'Donovan MC e Williams J (2005). Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia. American Journal of Human Genetic, 76: 581-591. Cerca con Google

24. Corbetta M e Shulman GL (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Review Neuroscience, 3: 201-215. Cerca con Google

25. Cordero-Erausquin M, Marubio LM, Klink R e Changeux JP (2000). Nicotinic receptor function: new perspectives from knockout mice. Trends in Pharmacological Sciences, 21: 211-217. Cerca con Google

26. Di Lollo V, Hanson D e McIntyre JS (1983). Initial stages of visual information processing in dyslexia. Journal of Experimental Psychology: Human Perception and Performance, 6: 623-935. Cerca con Google

27. Dosher B e Lu Z (2000). Noise exclusion in spatial attention. Psychological Science, 11: 139-146. Cerca con Google

28. Duncan J, Ward R e Shapiro K (1994). Direct measurement of attentional dwell time in human vision. Nature, 369: 313-315. Cerca con Google

29. Eckert MA, Leonard CM, Richards TL, Aylward EH, Thomson J e Berninger VW (2003). Anatomical correlates of dyslexia: frontal and cerebellar findings. Brain, 126: 482-494. Cerca con Google

30. Eimer M (1994). An ERP study on visual spatial priming with peripheral onsets. Psuchophysiology, 21: 154-163. Cerca con Google

31. Enns JT (2004). Object substitution and its relation to other forms of visual masking. Vision Research 44: 1321-1331. Cerca con Google

32. Enns JT e Di Lollo V (2000). What's new in visual masking? Trends in Cognitive Science, 4: 345-352. Cerca con Google

33. Everitt BJ e Robbins TW (1997). Central cholinergic systems and cognition. Annual Review of Psychology, 48: 649-684. Cerca con Google

34. Facoetti A (2004). Reading and selective spatial attention: Evidence from behavioral studies in dyslexic children. In H. D. Tobias (Ed.), Trends in dyslexia research, New York: Nova Science Publishers, 35-71. Cerca con Google

35. Facoetti A e Molteni M (2000). Is attentional focusing an inhibitory process at distractor location? Cognitive Brain Research, 10: 185-188. Cerca con Google

36. Facoetti A e Molteni M (2001). The gradient of visual attentino in developmental dyslexia. Neuropsychologia, 39: 352-357. Cerca con Google

37. Facoetti A e Turatto M (2000). Asymmetrical visual fields distribution of visual attention in dyslexic children: a neuropsychological study. Neuroscience Letters, 290: 216-218. Cerca con Google

38. Facoetti A, Lorusso ML, Cattaneo C, Galli R e Molteni M (2005). Visual and auditory attentional capture are both sluggish in children with developmental dyslexia. Acta Neurobiologiae Experimentalis, 65: 61-72. Cerca con Google

39. Facoetti A, Lorusso ML, Paganoni P, Cattaneo C, Galli R e Mascetti GG (2003a). The time course of attentional focusing in dyslexic and normally reading children. Brain and Cognition, 53: 181-184. Cerca con Google

40. Facoetti A, Lorusso ML, Paganoni P, Cattaneo C, Galli R, Umiltà  C e Mascetti GG (2003b). Auditory and visual automatic attention deficit in developmental dyslexia. Cognitive Brain Research, 16: 185-191. Cerca con Google

41. Facoetti A, Paganoni P e Lorusso ML (2000a). The spatial distribution of visual attention in developmental dyslexia. Experimental Brain Research, 132: 531-538. Cerca con Google

42. Facoetti A, Paganoni P, Turatto M, Marzola V e Mascetti GG (2000b). Visuo-spatial attention in developmental dyslexia. Cortex, 36: 109-123. Cerca con Google

43. Facoetti A, Ruffino M, Peru A, Paganoni P e Chelazzi L (2008). Sluggish engagement and disengagement of non-spatial attention in dyslexic children. Cortex, In Press. Cerca con Google

44. Facoetti A, Turatto M, Lorusso M e Mascetti G (2001). Orienting of visual attention in dyslexia: evidence for asymmetric hemispheric control of attention. Experimental Brain Research, 138: 46-53. Cerca con Google

45. Facoetti A, Zorzi M, Cestnick L, Lorusso ML, Molteni M, Paganoni P, Umiltà  C e Mascetti GG (2006). The relationship between visuospatial attention and non-word reading in developmental dyslexia. Cognitive Neuropsychology, 23: 841-855. Cerca con Google

46. Farmer ME e Klein RM (1995). The evidence for a temporal processing deficitlinked to dyslexia. Psychonomic Bulletin Review, 2: 469-493. Cerca con Google

47. Fisher SE e Francks C (2006). Genes, cognition and dyslexia: learning to read the genome. Trends in Cognitive Science, 10: 250-257. Cerca con Google

48. Francks C, Paracchini S, Smith SD, Richardson AJ, Scerri TS e Cardon LR (2004). A 77- kilobase region of chromosome 6p222 is associated with dyslexia in families from the United Kingdom and from the United States. American Journal of Human Genetic, 75: 1046-1058. Cerca con Google

49. Frith U (1986). A developmental framework for developmental dyslexia. Annals of Dyslexia, 36: 69-81. Cerca con Google

50. Fulker DW, Cardon LR, Defries JC, Kimberling WJ, Pennington BF e Smith SD (1991). Multiple regression of sib-pair data on reading to detect quantitative trait loci. Reading and Writing, 3: 299-313. Cerca con Google

51. Galaburda A (1989). Ordinary and Extraordinary Brain Development: Anatomical Variation in Developmental dyslexia. Annals of Dyslexia, 39: 67-80. Cerca con Google

52. Gayan J e Olson RK (2001). Genetic and Environmental Influences on Orthographic and Phonological Skills in Children With Reading Disabilities. Developmental Neurophychology, 20: 483-507. Cerca con Google

53. Geiger G e Lettvin JY (1999). How dyslexics see and learn to read well. In Everatt J.(Ed). Reading and Dyslexia: Visual and Attentional Process, London: Routledge, 64-90. Cerca con Google

54. Geiger G, Cattaneo C, Galli R, Pozzoli U, Lorusso ML, Facoetti A e Molteni M (2008). Wide and diffuse perceptual modes characterizes dyslexics in vision and audition. Perception, in press. Cerca con Google

55. Geiger G, Lettvin JY e Fahle M (1994). Dyslexic children learn a new strategy for reading: a controlled experiment. Vision Research, 34: 1223-1233. Cerca con Google

56. Giessing C, Thiel CM, Rosler F e Fink GR (2006). The modulatory effects of nicotine on pairetal cortex activity in a cued target detection task depend on cue reliability. Neuroscience, 137: 853-864. Cerca con Google

57. Goswami U (2000). Phonological representations, reading development and dyslexia: Towards a cross-linguistic theoretical framework. Dyslexia, 6: 133-151. Cerca con Google

58. Gottesman II e Gould TD (2003). The endophenotype concept in psychiatry: etymology and strategic intentions. American Journal of Psychiatry, 160: 636-645. Cerca con Google

59. Grigorenko EL, Wood FB, Meyer MS, Hart LA, Speed WC, Shuster A e Pauls DL (1997). Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. American Journal of Human Genetic, 60: 27-39. Cerca con Google

60. Habib M (2000). The neurological basis of developmental dyslexia. Brain, 123: 2373-2399. Cerca con Google

61. Hari R e Renvall H (2001). Impaired processing of rapid stimulus sequences in dyslexia. Trends in Cognitive Science, 5: 525-532. Cerca con Google

62. Hari R, Renvall H, e Tanskanen T (2001). Left minineglect in dyslexic adults. Brain, 124: 1373-1380. Cerca con Google

63. Hari R, Valta M e Uutella K (1999). Prolonged attentional dwell time in dyslexic adults. Neuroscience Letters, 271: 202-204. Cerca con Google

64. Hartley D e Moore D (2002). Auditory processing efficiency deficits in children with developmental language impairments. Journal of Acoustic Society of America, 112: 2962-2966. Cerca con Google

65. Hawelka S, Huber C e Wimmer H (2006). Impaired visual processing of letter and digit strings in adult dyslexic readers. Vision Research, 46: 718-23. Cerca con Google

66. Heiervang E e Hugdahl K (2003). Impaired visual attention in children with dyslexia. Journal of Learning Disabilities, 36: 68-73. Cerca con Google

67. Hopfinger JB e Mangun GR (1998). Reflexive attention modulates processing of visual stimuli in human exstrastriate cortex. Psychological Science, 9: 441-447. Cerca con Google

68. Husain M, Shapiro K, Martin J e Kennard C (1997). Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature, 385: 154-156. Cerca con Google

69. Kavcic V e Daffy CJ (2003). Attentional dynamics and visual perception: Mechanisms of spatial disorientation in Alzheimer disease, Brain 126: 1173-1181. Cerca con Google

70. Keysers C e Perrett DI (2002). Visual masking and RSVP reveal neural competition, Trends in Cognitive Science, 6: 120-125. Cerca con Google

71. Kiss I, Pisio C, Francois A, Schopflocher D (1998): Central executive function in working memory: event-related brain potential studies. Cognitive Brain Research, 6: 235-247. Cerca con Google

72. Klein RM (2000). Inhibition of return. Trend in Cognitive Science, 4: 138-147. Cerca con Google

73. Leppanen U, Aunola K, Niemi P e Nurmi JE (2008). Letter knowledge predicts Grade 4 reading fluency and reading comprehension. Learning and Instruction, in press. Cerca con Google

74. Levin ED (2002). Nicotinic receptor subtypes and cognitive function. Journal of Neurobiology, 53: 633-40. Cerca con Google

75. Levin ED e Simon BB (1998). Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl), 138: 217-230. Cerca con Google

76. Luck SJ (1999). Direct and indirect integration of event-related potentials, functional magnetic resonance images and single-unit recordings. Human Brain Mapping, 8: 115-120. Cerca con Google

77. Lyytinen H, Gttorm TK, Huttunen T, Hamalainen J, Leppanen PHT e Vesterinen M (2005). Psychophysiology of developmental dyslexia: a review of findings including studies of children at risk for dyslexia. Journal of Neurolinguistic, 18: 167-195. Cerca con Google

78. Mangub GR e Hillyard SA (1988). Spatial gradients of visual attention: behavioral and electrophysiological evidence. Electroencephalography Clinical and Neurophysiology, 70: 417-428. Cerca con Google

79. Mangun GR e Hillyard SA (1990). Electrophysiological studies of visual selective attention in humans. In: Scheibel AB, Wechsler A, editors. The neurobiological foundations of higher cognitive function. New York: Guilford Press, 271-295. Cerca con Google

80. Mangun GR, Hiylliyard SA, Luck SJ (1993). Electrocortical substrates of visual selective attention. In Attention and Performance, XIV (Meyer D. e Kornblum S, eds), MIT Press, 219-243. Cerca con Google

81. Marcel A, Mackintosh B, Postma P, Cusack R, Vuckovich J, Nimmo-Smith I e Cox SML (2006). Is susceptibility to perceptual migration and fusion modality-specific or multimodal? Neuropsychologia, 44: 693-710. Cerca con Google

82. Marino C, Giorda R, Vanzin L, Nobile M, Lorusso ML, Baschirotto C et al. (2005). A locus on 15q15-15qter influences dyslexia: further support from a transmission/disequilibrium study in an Italian speaking population. Journal of Medical Genetics, 41: 42-46. Cerca con Google

83. Marois R, Chun MN e Gore JC (2000). Neural correlates of the attentional blink. Neuron, 28: 299-308. Cerca con Google

84. Marutle A, Warpman U, Bogdanovic N, Lannfelt L e Nordberg A (1999). Neuronal nicotinic receptor deficits in Alzheimer patients with the Swedish amyloid precursor protein 670/671 mutation. Journal of Neurochemical, 72: 1161-1169. Cerca con Google

85. Mayall K e Humphreys GW (2002). Presentation and task effects on migration errors in attentional dyslexia. Neuropsychologia, 40: 1506-1515. Cerca con Google

86. McClelland JL e Mozer MC (1986). Perceptual interactions in two-word displays: familiarity and similarity effects. Journal of Experimental Psychology: Human Perception and Performance, 12: 18-35. Cerca con Google

87. McDonald JJ, Ward LM e Kiehl KA (1999). An event-related brain potential study of inhibition of return. Perception and Psychophysic, 61: 1411-1423. Cerca con Google

88. McIntyre LM, Martin ER, Simonsen KL e Kaplan NL (2000). Circumventing multiple testing: a multilocus Monte Carlo approach to testing for association. Genetic Epidemiology, 19: 18-29. Cerca con Google

89. McPeek RM, Malikovic V e Nakayama K (1999). Saccades require focal attention and are facilitated by a short-term memory system. Vision Research, 39: 1555-1566. Cerca con Google

90. Meng H, Smith SD, Hager K, Held M, Liu J, Olson RK et al. (2005). DCDC2 is associated with reading disability and modulates neuronal development in the brain. Proceedings of National Academy of Sciences USA, 102: 17053-17058. Cerca con Google

91. Mondor TA e Bryden MP (1991). The influence of attention on the dichotic REA. Neuropsychologia, 29: 1179-1190. Cerca con Google

92. Montgomery CR, Morris RD, Sevcik RA e Clarkson MG (2005). Auditory backward masking deficits in children with reading disabilities. Brain and Language, 95: 450-456. Cerca con Google

93. Morris DW, Robinson L, Turic D, Duke M, Webb V, Milham C et al. (2000). Family-based association mapping provides evidence for a gene for reading disability on chromosome 15q. Human of Molecular Genetics, 9: 843-848. Cerca con Google

94. Mozer MC (1983). Letter migration in word perception. Journal of Experimental Psychology: Human Perception and Performance, 9: 531-46. Cerca con Google

95. Neville HJ e Lawson D (1987). Attention to central and peripheral visual space in a movement detection task. I. Normal hearing adults. Brain Research, 405: 253-267. Cerca con Google

96. Nopola-Hemmi J, Myllyluoma B, Haltia T, Taipale M, Ollikainen V, Ahonen T et al. (2001). A dominant gene for developmental dyslexia on chromosome 3. Journal of Medical Genetics, 38: 658-664. Cerca con Google

97. Paracchini S, Thomas A, Castro S, Lai C, Paramasivam M, Wang Y et al. (2006). The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration. Human Molecular Genetics, 15: 1659-1666. Cerca con Google

98. Parasuraman R, Greenwood PM, Kumar R e Fossella J (2005). Beyond heritability: Neurotransmitter genes differentially modulate visuospatial attention and working memory. Psychological Science, 16: 200-207. Cerca con Google

99. Perry C, Ziegler J e Zorzi M (2007). Nested incremental modeling in the development of computational theories: The CDP+ model of reading aloud. Psychological Review, 114: 273-315. Cerca con Google

100. Phillips JM, McAlonan K, Robb WG e Brown VJ (2000). Cholinergic neurotransmission influences covert orientation of visuospatial attention in the rat. Psychopharmacology (Berl), 150: 112-116. Cerca con Google

101. Picciotto MR, Zoli M, Lèna C, Bessis A, Lallemand Y, Le Novère N, Vincent P, Merlo-Pich E, Brlet P e Changeux JP (1995). Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature, 374: 65-67. Cerca con Google

102. Plomin R e Kovas Y (2005). Generalist genes and learning disabilities. Psychology Bulletin, 131: 592-617. Cerca con Google

103. Posner MI (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32: 3-25. Cerca con Google

104. Potter MC, Staub A e O'Connor DH (2002). The time course of competition for attention: Attention is initially labile. Journal of Experimental Psychology: Human Perception and Performance, 28: 1149-1162. Cerca con Google

105. Ramus F (2003). Developmental dyslexia: specific phonological deficit or general sensorimotor dysfunction? Current Opinion in Neurobiology, 13: 212-218. Cerca con Google

106. Reynolds JH e Chelazzi L (2004). Attentional modulation of visual processing. Annual Reviews, 27: 611-647. Cerca con Google

107. Roach NW e Hogben JH (2004). Attentional Modulation of visual processing in adult dyslexia. A spatial-cuing deficit. Psychological Science, 15: 650-654. Cerca con Google

108. Roach NW e Hogben JH (2007). Impaired filtering of behaviourally irrelevant visual information in dyslexia. Brain, 130: 771-785. Cerca con Google

109. Robinson DL e Rugg MD (1988). Latencies of visually responsive neurons in various regions of the Rhesus monkey brain and their relation to human visual responses. Biological Psychology, 26: 111-116. Cerca con Google

110. Saalmann YB, Pigarev IN, Vidyasagar TR (2007). Neural Mechanisms of Visual Attention: How Top-Down Feedback Highlights Relevant Locations. Science, 316: 1612-1615. Cerca con Google

111. Sartori G, Job R e Tressoldi P (1995). Batteria per la valutazione della dislessia e della disortografia evolutiva. Firenze: O.S. Organizzazioni Speciali. Cerca con Google

112. Sathian K, Simon TJ, Peterson S, Patel GA, Hoffman JM e Grafton ST (1999). Neural evidence linking visual object enumeration and attention. Journal of Cognitive Neuroscience, 11: 36-51. Cerca con Google

113. Schulte-Korne G, Grimm T, Nothen MM, Muller-Myhsok B, Cichon S, Vogt IR et al. (1998). Evidence for linkage of spelling disability to chromosome 15. American Journal of Human Genetic, 63: 279-282. Cerca con Google

114. Schumacher J, Anthoni H, Dahdouh F, Konig IR, Hillmer AM, Kluck N et al. (2006) Strong genetic evidence of DCDC2 as a susceptibility gene for dyslexia. American Journal of Human Genetic, 78: 52-62. Cerca con Google

115. Shallice T e McGill J (1978). The origins of mixed errors. In Attention and Performance VII (Requin, J., ed.), MIT Press, 193-208. Cerca con Google

116. Share DL (1995). Phonological recoding and self-teaching: Sine qua non of reading acquisition. Cognition, 55: 151-218. Cerca con Google

117. Shaywitz SE e Shaywitz BA (2005). Dyslexia (specific reading disability). Biological Psychiatry, 57: 1301-1309. Cerca con Google

118. Skottun BC (2000). The magnocellular deficit theory of dyslexia: The evidence from contrast sensitivity. Vision Research, 40: 111-127. Cerca con Google

119. Slaghius WL e Ryan JF (2006). Directional motion contrast sensitivity in developmental dyslexia. Vision Research, 46: 3291-3303. Cerca con Google

120. Smith SD, Pennington BF e Kimberling WJ (1991). Screening for multiple genes influencing dyslexia. Reading and writing, 3: 285-298. Cerca con Google

121. Snowling MJ (2000). Dyslexia. Oxford Blackwell. Cerca con Google

122. Spalek TM (2007). A direct assessment of the role of expectation in inhibition of return. Psychological Science, 18: 783-787. Cerca con Google

123. Sperling AJ, Lu ZL, Manis FR e Seidenberg MS (2005). Deficits in perceptual noise exclusion in developmental dyslexia. Nature Neuroscience, 8: 862-863. Cerca con Google

124. Sperling AJ, Lu ZL, Manis FR e Seidenberg MS (2006). Motion perception deficits and reading impairment: it's the noise, not the motion. Psychological Science, 17: 1043-1054. Cerca con Google

125. Spielman RS, McGinnies RE e Ewens WJ (1993). Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). American Journal of Human Genetic, 52: 506-516. Cerca con Google

126. Sprenger-Charolles L, Siegel LS, Bechennec D e Serniclaes W (2003). Development of phonological and orthographic processing in reading aloud, in silent reading, and in spelling: a four-year longitudinal study. Journal of Experimental Child Psychology, 84: 194-217. Cerca con Google

127. Stein J e Walsh V (1997). To see but not to read: The magnocellular theory of dyslexia. Trends in Neuroscience, 20: 147-152. Cerca con Google

128. Stein JF e Talcott JB (1999). Impaired neuronal timing in developmental dyslexia- The magnocellular hypothesis. Dyslexia 5: 59-78. Cerca con Google

129. Tallal P (1980). Auditory temporal perception, phonics, and reading disabilities in children. Brain and Language, 9: 182-98. Cerca con Google

130.Tallal P (2004). Improving language and literacy is a matter of time. Nature Review Neuroscience, 5: 721-728. Cerca con Google

131. Thiel CM e Fink GR (2008). Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention andtop-down attentional control. Neuroscience, In press Cerca con Google

132. Thiel CM, Ziles K e Fink GR (2005). Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex. Neuropsychopharmacology, 30: 810-820. Cerca con Google

133. Treisman A e Souther J (1986). Illusory words: the roles of attention and of top-down constraints in conjoining letters to form words. Journal of Experimental Psychology: Human Perception and Performance, 12: 3-17. Cerca con Google

134. Turkeltaub PE, Gareau L, Flowers DL, Zeffiro TA e Eden GF (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6: 767-773. Cerca con Google

135. Valdois S, Bosse ML e Tainturier (2004). The cognitive deficits responsible for developmental dyslexia: review of evidence for a selective visual attentional disorder. Dyslexia, 10:339-363. Cerca con Google

136. van der Heijden (1992). Selective Attention in vision. Routledge London and New York. Cerca con Google

137. van der Velde F, van der Heijden AHC e Schreuder R (1989). Context-dependent migrations in visual word perception. Journal of Experimental Psychology: Human Perception and Performance, 15: 133-141. Cerca con Google

138. Vidyasagar TR (1999). A neural model of attentional spotlight: Parietal guiding the temporal. Brain Research Reviews, 30: 66-76. Cerca con Google

139. Visser TAW, Boden C e Giaschi DE (2004). Children with dyslexia: Evidence for visual attention deficits in perception of rapid sequences of objects, Vision Research, 44: 2521-2535. Cerca con Google

140. Wechsler D (1986). Scala di Intelligenza Wechsler per Bambini-Riveduta. Firenze O.S. Organizzazioni Speciali. Cerca con Google

141. Whitney C e Cornelissen P (2005). Letter-position encoding and dyslexia. Journal of Research in Reading, 28: 274-301. Cerca con Google

142. Wijers AA, Been PH, Romkes KS (2005). Dyslexia show a deviant lateralization of attentional control: a brain potential study. Neuroscience Letters, 374: 87-91. Cerca con Google

143. Wimmer H, Hutzler F, Wiener C (2002). Children with dyslexia and right parietal lobe disfunction: event-related potentials in response to words and pseudowords. Neuroscience Letters, 331: 211-213. Cerca con Google

144. Wright BA, Bowen RW e Zecker SG (2000). Nonlinguistic perceptual deficits associates with reading and language disorders. Current Opinion in Neurobiology, 10: 482-486. Cerca con Google

145. Xiang Z, Huguenard JR e Prince DA (1998). Cholinergic switching within neocortical inhibitory networks. Science, 281: 985-988. Cerca con Google

146. Ziegler J, Perry C, Wyatt A, Ladner D e Schulte-Korne G (2003). Developmental dyslexia in different languages: Language-specific or universal? Journal of Experimental Child Psychology, 86: 169-193. Cerca con Google

147. Zorzi M, Bernes V e Pelamatti G (2005). Classificazione dei sottotipi di dislessia evolutiva, Atti del Convegno Nazionale AIRIPA, Pisa, 89. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record