Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Fiorin, Lucia (2013) Spatial coordination between veins and stomata links water supply with water loss in leaves. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF - Versione sottomessa
13Mb

Abstract (inglese)

The question of how water supply and water loss-adhibited structures integrate in leaves to perform a complex mediation among plant different necessities, and its evolutive implications, has been almost neglected so far.
Hydraulic resistance in leaves accounts for 30% of the total resistance of the plant to water transport (Sack and Holbrook 2006), a dominating component of what being situated within the leaf spongy mesophyll (Cochard, Nardini, and Coll 2004). Only few recent works have identified the length of the water path from veins to evaporating sites as a limiting factor to the transpiration performances of plants (Brodribb, Feild, and Jordan 2007; Brodribb, Feild, and Sack 2010). By estimating the proximity between veins and stomata with the inverse value of vein density, an explaination for angiosperms highest photosynthetic capacity among plants has been found in their superior vein density values (Boyce et al. 2009).
In this dissertation I examined how the spatial arrangements of stomata and veins coordinate in two philogenetically and morphologically diverse groups of both angiosperms and ferns. By sampling species spanning the breadth of vein architecture and phylogenetic diversity I sought to understand whether relationships among spatial traits were general or variable among plants of the same group and among groups.
A method based on image editing and geoprocessing tools was developed and applied in order to spatially relate stomata and veins position on the leaf. The “elementary unit of lamina completely enclosed by veins” was identified as a loop and three new functional traits linking veins and stomata (stomata density per loop lamina, stomata density per loop contour and average minimum distance from stomata to vein walls per loop) were defined. To account for fern branching structures, the definition of loop was then extended to as “the smallest portion of lamina all enclosed by veins and leaf margin”.
In Chapter 2 I present the hypothesis underling my work and I describe how GIS tools can be used on leaves microscope images in order to extract spatial data on vein and stomata arrangement.
In Chapter 3 I examine a dataset on 32 philogenetically diverse angiosperm species and a gymnosperm. Specifically, I compile average values for each species for the functional traits I previously defined. Then I compare values of stomata density and loop size for different position on the leaf in order to verify or exclude the presence of a spatial gradient and I test for general relationships among the functional and geometrical leaf traits.
In Chapter 4 I apply the same methodology to a dataset of 8 diverse fern species.
Finally in Chapter 5 the results for the two groups of plants are jointly discussed in an attempt to unify methodology and evolutive physiology.
This detailed examination of spatial coordination between stomata and veins in both angiosperm and fern species provides some key insights into the evolutive trends leading to the supremacy of a group of plants on the other

Abstract (italiano)

La questione dell’integrazione tra strutture adibite all’approvvigionamento e all’allontanamento dell’acqua nelle foglie per eseguire la complessa mediazione tra le diverse esigenze della pianta, e le sue implicazioni evolutive, è stata finora praticamente trascurata.
La resistenza idraulica nelle foglie costituisce il 30% della resistenza idraulica totale al trasporto dell’acqua nella pianta (Sack and Holbrook 2006), di questa, una componente dominante si trova all'interno del mesofillo spugnoso (Cochard, Nardini, and Coll 2004). Solo pochi recenti lavori hanno identificato nella lunghezza del percorso dell'acqua dalle venature ai siti di evaporazione un fattore limitante per la traspirazione della pianta (Brodribb, Feild, and Jordan 2007; Brodribb, Feild, and Sack 2010).
Stimando la distanza tra vene e stomi come il reciproco della densità delle venature, la capacità fotosintetica delle angiosperme, massima tra le piante, è stata spiegata attraverso la loro preminente densità di venature (Boyce et al. 2009)
In questa tesi ho esaminato in che modo le disposizioni spaziali di vene e stomi risultano coordinate tra loro in due gruppi di specie di felci e angiosperme filogeneticamente e morfologicamente diverse tra loro. Campionando specie che abbracciassero la gamma delle possibili architetture delle venature e della diversità filogenetica ho cercato di capire se le relazioni tra caratteristiche spaziali erano o meno generali tra le piante di uno stesso gruppo e tra i due gruppi.
Per riferire la posizione degli stomi a quella delle venature sulla foglia è stato sviluppato e applicato un metodo basato sulla modifica di immagini e sull’uso di strumenti di georeferenziazione. “L'unità elementare di lamina completamente racchiusa da vene” è stata identificata come loop (areola) e sono stati definiti tre nuovi tratti funzionali che collegano vene e stomi (la densità stomatica riferita all’ area dei loop, la densità stomatica riferita a contorno dei loop e la media per ogni loop delle distanze minime degli stomi dalle pareti delle venature). Per tener conto del fatto che alcune felci presentavano strutture ramificate aperte, la definizione di loop è stata successivamente estesa a “la più piccola porzione di lamina completamente racchiusa da vene e margine fogliare”.
Nel capitolo 2 presento le ipotesi generali sottese al lavoro e descrivo come il GIS può essere applicato a immagini di foglie fatte al microscopio, al fine di estrarre dati sulla disposizione spaziale di vene e stomi.
Nel capitolo 3 esamino un set 32 specie di angiosperme filogeneticamente diverse e una gimnosperma. In particolare, riporto i valori medi per ciascuna specie dei tratti funzionali definiti in precedenza. Poi confronto i valori di densità stomatica e dimensione dei loop per diverse posizioni sulla foglia con lo scopo di verificare o escludere la presenza di un gradiente spaziale e testo la sussistenza di relazioni generali tra i tratti funzionali e geometrici della foglia.
Nel capitolo 4 gli stessi metodi sono applicati ad un set di otto diverse specie di felci.
Infine, nel capitolo 5 i risultati sono esaminati congiuntamente per i due gruppi di piante nell’intento di unificare metodologia di lavoro con fisiologia evolutiva.
Il dettagliato esame sul coordinamento spaziale tra stomi e venature compiuto su specie di angiosperme e di felci fornisce alcuni spunti fondamentali sulle tendenze evolutive che portano alla supremazia di un gruppo di piante dall'altro

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Anfodillo, Tommaso
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > TERRITORIO, AMBIENTE, RISORSE E SALUTE > ECOLOGIA
Data di deposito della tesi:30 Gennaio 2013
Anno di Pubblicazione:30 Gennaio 2013
Parole chiave (italiano / inglese):idraulica della foglia/leaf hydraulics, densità stomatica/ stomata density, distribuzione stomatica/stomata distribution, dati spaziali/spatial data, lunghezza del percorso attraverso il mesofillo/path length through mesophyll, felci/fern species
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/05 Assestamento forestale e selvicoltura
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:5809
Depositato il:15 Ott 2013 09:43
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aloni, Roni. 2004. “The Induction of Vascular Tissues by Auxin.” In Plant Hormones: Biosynthesis, Signal Transduction, Action!, ed. Peter J Davies, 471–492. 3rd ed. Kluwer Academic Publishers. Cerca con Google

Altus, D P, and M J Canny. 1985. “Water Pathways in Wheat Leaves. I. The Division of Fluxes Between Different Vein Types.” Australian Journal of Plant Physiology 12 (1972): 173–81. Cerca con Google

Banavar, J R, A Maritan, and A Rinaldo. 1999. “Size and Form in Efficient Transportation Networks.” Nature 399 (6732) (May 13): 130–2. doi:10.1038/20144. http://www.ncbi.nlm.nih.gov/pubmed/10335841. Vai! Cerca con Google

Beerling, David J, and Peter J Franks. 2010. “The Hidden Cost of Transpiration.” Nature 464 (March): 495–496. Cerca con Google

Bergmann, Dominique C, and Fred D Sack. 2007. “Stomatal Development.” Annual Review of Plant Biology 58 (January): 163–81. doi:10.1146/annurev.arplant.58.032806.104023. http://www.ncbi.nlm.nih.gov/pubmed/17201685. Vai! Cerca con Google

Beyschlag, Wolfram, and Jürgen Eckstein. 2001. “Towards a Causal Analysis of Stomatal Patchiness : the Role of Stomatal Size Variability and Hydrological Heterogeneity.” Acta Oecologica 22: 161–173. Cerca con Google

Blonder, Benjamin, Cyrille Violle, Lisa P Bentley, and Brian J Enquist. 2011. “Venation Networks and the Origin of the Leaf Economics Spectrum.” Ecology Letters 14: 91–100. doi:10.1111/j.1461-0248.2010.01554.x. Cerca con Google

Boyce, C Kevin. 2005. “Patterns of Segregation and Convergence in the Evolution of Fern and Seed Plant Leaf Morphologies.” Paleobiology 31 (1): 117–140. Cerca con Google

Boyce, C Kevin. 2009. “Seeing the Forest with the Leaves – Clues to Canopy Placement from Leaf Fossil Size and Venation Characteristics.” Geobiology 7: 192– 199. doi:10.1111/j.1472-4669.2008.00176.x. Cerca con Google

Boyce, C Kevin, Timothy J. Brodribb, Taylor S Feild, and Maciej A Zwieniecki. 2009. “Angiosperm Leaf Vein Evolution Was Physiologically and Environmentally Transformative.” Proceedings of The Royal Society of London. B, Biological Sciences 276 (25 February 2009): 1771–1776. doi:10.1098/rspb.2008.1919. Cerca con Google

Brodribb, Timothy J., and Taylor S Feild. 2010. “Leaf Hydraulic Evolution Led a Surge in Leaf Photosynthetic Capacity During Early Angiosperm Diversification.” Ecology Letters 13 (2) (February): 175–83. doi:10.1111/j.1461-0248.2009.01410.x. http://www.ncbi.nlm.nih.gov/pubmed/19968696. Vai! Cerca con Google

Brodribb, Timothy J., Taylor S Feild, and Gregory J Jordan. 2007. “Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics.” Plant Physiology 144 (August 2007): 1890–1898. doi:10.1104/pp.107.101352. Cerca con Google

Brodribb, Timothy J., Taylor S. Feild, and Lawren Sack. 2010. “Viewing Leaf Structure and Evolution from a Hydraulic Perspective.” Functional Plant Biology 37 (6): 488. doi:10.1071/FP10010. http://www.publish.csiro.au/?paper=FP10010. Vai! Cerca con Google

Brodribb, Timothy J., and N Michele Holbrook. 2004. “Stomatal Protection Against Failure: A Comparison of Coexisting Ferns and Angiosperms.” New Phytologist 162 (3): 663–670. doi:10.1111/j.1469-8137.2004.01060.x. Cerca con Google

Brodribb, Timothy J., N Michele Holbrook, Maciej a Zwieniecki, and Beatriz Palma. 2005. “Leaf Hydraulic Capacity in Ferns, Conifers and Angiosperms: Impacts on Photosynthetic Maxima.” The New Phytologist 165 (3) (March): 839–46. doi:10.1111/j.1469-8137.2004.01259.x. http://www.ncbi.nlm.nih.gov/pubmed/15720695. Vai! Cerca con Google

Brodribb, Timothy J., and Scott A M McAdam. 2011a. “Passive Origins of Stomatal Control in Vascular Plants.” Science 331 (4 february 2011): 582–85. doi:10.1126/science.1197985. Cerca con Google

Brodribb, Timothy J. 2011b. “Stomatal ( Mis ) Behaviour.” Tree Physiology 31: 1039–1040. doi:10.1093/treephys/tpr100. Cerca con Google

Buckley, Tom. 2005. “Tansley Review. The Control of Stomata by Water Balance.” New Phytologist: 275–292. doi:10.1111/j.1469-8137.2005.01543.x. Cerca con Google

Canny, M J. 1990. “Fine Veins of Dicotyledon Leaves as Sites for Enrichment of Solutes of the Xylem Sap.” New Phytologist 115 (3): 511–516. Cerca con Google

Carins Murphy, Madeline R, Gregory J Jordan, and Timothy J. Cerca con Google

Brodribb. 2012. “Differential Leaf Expansion Can Enable Hydraulic Acclimation to Sun and Shade.” Plant, Cell & Environment 35 (8) (August): 1407–18. doi:10.1111/j.1365-3040.2012.02498.x. http://www.ncbi.nlm.nih.gov/pubmed/22339445. Vai! Cerca con Google

Chapin, F Stuart III, Pamela A Matson, and Harold A Mooney. 2002. Principles of Terrestrial Ecosystem Ecology. 1st ed. Springer-Verlag New York, Inc. Cerca con Google

Cochard, Herve, A Nardini, and L Coll. 2004. “Hydraulic Architecture of Leaf Blades : Where Is the Main Resistance ?” Plant, Cell & Environment 27: 1257–1267. Cerca con Google

Coomes, David a., Steven Heathcote, Elinor R Godfrey, James J Shepherd, and Lawren Sack. 2008. “Scaling of Xylem Vessels and Veins Within the Leaves of Oak Species.” Biology Letters 4 (3) (June 23): 302–6. doi:10.1098/rsbl.2008.0094. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2610058&tool=pmcentrez&rendertype=abstract. Vai! Cerca con Google

Corson, Francis. 2010. “Fluctuations and Redundancy in Optimal Transport Networks.” Physical Review Letters 104 (4) (January): 1–4. doi:10.1103/PhysRevLett.104.048703. http://link.aps.org/doi/10.1103/PhysRevLett.104.048703. Vai! Cerca con Google

Crawley, Michael J. 2007. The R Book. 1st ed. Cerca con Google

Croxdale, Judith L. 2000. “STOMATAL PATTERNING IN ANGIOSPERMS.” American Journal of Botany 87 (8): 1069–1080. Cerca con Google

Dannenhoffer, Joanne M, Wesley Ebert, Ray F Evert, and Gerdien de Jong. 1990. “LEAF VASCULATURE IN BARLEY, HORDEUM VULGARE.” American Journal of Botany 77 (5): 636–652. Cerca con Google

Dannenhoffer, Joanne M, and R Evert. 1994. “DEVELOPMENT OF THE VASCULAR SYSTEM IN THE LEAF OF BARLEY ( HORDEUM VULGARE L .).” International Journal of Plant Sciences 155 (2): 143–157. Cerca con Google

Dimitrov, Pavel, and Steven W Zucker. 2006. “A Constant Production Hypothesis Guides Leaf Venation Patterning.” Proceedings of the National Academy of Sciences of the United States of America 103 (24) (June 13): 9363–8. doi:10.1073/pnas.0603559103. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1474015&tool=pmcentrez&rendertype=abstract. Vai! Cerca con Google

Enquist, Brian J. 2003. “Cope ’ s Rule and the Evolution of Long-distance Transport in Vascular Plants : Allometric Scaling , Biomass Partitioning and Optimization.” Plant, Cell & Environment 26: 151–161. Cerca con Google

Franks, Peter J, and David J Beerling. 2009. “Maximum Leaf Conductance Driven by CO 2 Effects on Stomatal Size and Density over Geologic Time.” PNAS 106 (25): 10343–10347. Cerca con Google

Gan, Yi, Lei Zhou, Zhong-ji Shen, Zhu-xia Shen, Yi-qiong Cerca con Google

Zhang, and Gen-xuan Wang. 2010. “Stomatal Clustering , a New Marker for Environmental Perception and Adaptation in Terrestrial Plants.” Botanical Studies 51: 325–336. Cerca con Google

Geisler, Matt, Jeanette Nadeau, and Fred D Sack. 2000. “Oriented Asymmetric Divisions That Generate the Stomatal Spacing Pattern in Arabidopsis Are Disrupted by the Too Many Mouths Mutation.” The Plant Cell 12 (November): 2075–2086. Cerca con Google

Hernández, Marcelo P:, and Ana M. Arambarri. 2010. “Stomatal Distribution, Stomatal Density and Daily Leaf Movement in Acacia Aroma ( Leguminosae ).” Bol. Soc. Argent. Bot 45 (1900): 273–284. Cerca con Google

Hetherington, Alistair M, and F Ian Woodward. 2003. “The Role of Stomata in Sensing and Driving Environmental Change.” Nature 424 (August): 901–908. Cerca con Google

Huang, Hui-fen, and Qing-xin Chu. 2010. “Fractal Power Network Based on Plant Vein for Power Integrity.” IEE Transactions on Electromagnetic Compatibility 52 (3): 759–762. Cerca con Google

Hunt, M. a., N. J. Davidson, G. L. Unwin, and D. C. Close. 2002. “Ecophysiology of the Soft Tree Fern, Dicksonia Antarctica Labill.” Austral Ecology 27 (4) (June 22): 360–368. doi:10.1046/j.1442-9993.2002.01190.x. http://doi.wiley.com/10.1046/j.1442-9993.2002.01190.x. Vai! Cerca con Google

Hüve, K, R Remus, D Lüttschwager, and W Merbach. 2002. “Water Transport in Impaired Leaf Vein Systems.” Plant Biology 4 (3): 603–611. Cerca con Google

Katifori, Eleni, and Marcelo Magnasco. 2012. “Quantifying Loopy Network Architectures.” PLoS ONE 7 (6). Cerca con Google

Katifori, Eleni, Gergely J. Szöllősi, and Marcelo O. Magnasco. 2010. “Damage and Fluctuations Induce Loops in Optimal Transport Networks.” Physical Review Letters 104 (4) (January): 1–4. doi:10.1103/PhysRevLett.104.048704. http://link.aps.org/doi/10.1103/PhysRevLett.104.048704. Vai! Cerca con Google

Kizilova, N N. 2008. “Long-distance Liquid Transport in Plants.” Proceedings of the Estonian Academy of Sciences 57 (3): 179. doi:10.3176/proc.2008.3.07. http://www.kirj.ee/?id=14278&tpl=1061&c_tpl=1064. Vai! Cerca con Google

Kono, Yasuhiro:, and Kozo Nakata. 1982. “Observations of Cross Veins of the Second Foliage Leaf Blade in the Rice Plant by Use of a Revised Method for Clearing Leaves.” Japanese Journal of Crop Sciences 51 (4): 445–454. Cerca con Google

Korn, Robert W. 1993. “Evidence in Dicots for Stomatal Patterning by Inhibition.” International Journal of Plant Sciences 154 (3): 367–377. Cerca con Google

Larkin, J C, M D Marks, J Nadeau, and F Sack. 1997. “Epidermal Cell Fate and Patterning in Leaves.” The Plant Cell 9 (7) (July): 1109–20. doi:10.1105/tpc.9.7.1109. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=156984&tool=pmcentrez&rendertype=abstract. Vai! Cerca con Google

Locosselli, Giuliano Maselli, and Gregório Ceccantini. 2012. “Plasticity of Stomatal Distribution Pattern and Stem Tracheid Dimensions in Podocarpus Lambertii: An Cerca con Google

Ecological Study.” Annals of Botany 110 (5) (October): 1057–66. doi:10.1093/aob/mcs179. http://www.ncbi.nlm.nih.gov/pubmed/22875814. Vai! Cerca con Google

Lorente, S, W Wechsatol, and A Bejan. 2002. “Tree-shaped Flow Structures Designed by Minimizing Path Lengths.” International Journal of Heat and Mass Transfer 45: 3299–3312. Cerca con Google

Martins, Giordane Augusto, Angela Maria Soares, João Paulo Rodrigues Alves Delfino Barbosa, José Marcio Mello, Evaristo Mauro Castro, and Antonio Carlos Ferraz. 2011. “Stomatal Density Distribution Patterns in Leaves of the Jatobá (Hymenaea Courbaril L.).” Trees 26 (2) (September 28): 571–579. doi:10.1007/s00468-011-0620-4. http://www.springerlink.com/index/10.1007/s00468-011-0620-4. Vai! Cerca con Google

McAdam, Scott a M, and Timothy J. Brodribb. 2012. “Stomatal Innovation and the Rise of Seed Plants.” Ecology Letters 15 (1) (January): 1–8. doi:10.1111/j.1461-0248.2011.01700.x. http://www.ncbi.nlm.nih.gov/pubmed/22017636. Vai! Cerca con Google

McElwain, Jennifer C. 2011. “Ferns: a Xylem Success Story.” The New Phytologist 192 (2) (October): 307–10. doi:10.1111/j.1469-8137.2011.03865.x. http://www.ncbi.nlm.nih.gov/pubmed/21950333. Vai! Cerca con Google

McKown, Athena D, Herve Cochard, and Lawren Sack. 2010. “Decoding Leaf Hydraulics with a Spatially Explicit Model: Principles of Venation Architecture and Implications for Its Evolution.” The American Naturalist 175 (4) (April): 447–60. doi:10.1086/650721. http://www.ncbi.nlm.nih.gov/pubmed/20178410. Vai! Cerca con Google

McMurtrie, Ross E, and Roderick C Dewar. 2011. “Leaf-trait Variation Explained by the Hypothesis That Plants Maximize Their Canopy Carbon Export over the Lifespan of Leaves.” Tree Physiology 31 (9) (September): 1007–23. doi:10.1093/treephys/tpr037. http://www.ncbi.nlm.nih.gov/pubmed/21646281. Vai! Cerca con Google

Melville, R. 1969. “Leaf Venation Patterns and the Origin of the Angiosperms.” Nature 224: 121–125. Cerca con Google

Mileyko, Yuriy, Herbert Edelsbrunner, Charles a. Price, and Joshua S Weitz. 2012. “Hierarchical Ordering of Reticular Networks.” PLoS ONE 7 (6). Cerca con Google

Mott, Keith A, and David Peak. 2007. “Stomatal Patchiness and Task-performing Networks.” Annals of Botany 99: 219–226. doi:10.1093/aob/mcl234. Cerca con Google

Nardini, Andrea, Emmanuelle Gortan, Matteo Ramani, and Sebastiano Salleo. 2008. “Heterogeneity of Gas Exchange Rates over the Leaf Surface in Tobacco: An Effect of Hydraulic Architecture?” Plant, Cell & Environment 31 (6) (June): 804–12. doi:10.1111/j.1365-3040.2008.01798.x. http://www.ncbi.nlm.nih.gov/pubmed/18284586. Vai! Cerca con Google

Nelson, T., and N. Dengler. 1997. “Leaf Vascular Pattern Formation.” The Plant Cell 9 (7) (July): 1121–1135. doi:10.1105/tpc.9.7.1121. http://www.ncbi.nlm.nih.gov/pubmed/16887150. Vai! Cerca con Google

Nikolopoulos, Dimosthenis, Georgios Liakopoulos, Ioannis Drossopoulos, and George Karabourniotis. 2002. “The Relationship Between Anatomy and Photosynthetic Performance of Heterobaric Leaves.” Plant Physiology 129 (May): 235–243. doi:10.1104/pp.010943.Heterobaric. Cerca con Google

Noblin, X, L Mahadevan, I A Coomaraswamy, D A Weitz, N M Cerca con Google

Holbrook, and Maciej A Zwieniecki. 2008. “Optimal Vein Density in Artificial and Real Leaves.” Proceedings of the National Academy of Sciences of the United States of America 105 (27): 9140–9144. Cerca con Google

Peak, David, Jevin D West, Susanna M Messinger, and Keith a Mott. 2004. “Evidence for Complex, Collective Dynamics and Emergent, Distributed Computation in Plants.” Proceedings of the National Academy of Sciences of the United States of America 101 (4) (January 27): 918–22. doi:10.1073/pnas.0307811100. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=327117&tool=pmcentrez&rendertype=abstract. Vai! Cerca con Google

Pelletier, Jon D, and Donald L Turcotte. 2000. “Shapes of River Networks and Leaves : Are They Statistically Similar ?” Philosophycal Transactions of the Royal Society of London. Series B, Biological Sciences 355: 307–311. doi:10.1098/rstb.2000.0566. Cerca con Google

Pittermann, Jarmila, Emily Limm, Christopher Rico, and Mairgareth a Christman. 2011. “Structure-function Constraints of Tracheid-based Xylem: a Comparison of Conifers and Ferns.” The New Phytologist 192 (2) (October): 449–61. doi:10.1111/j.1469-8137.2011.03817.x. http://www.ncbi.nlm.nih.gov/pubmed/21749396. Vai! Cerca con Google

Poolet, I, Tracy Lawson, J D B Weyers, and J A Raven. 2000. “Effect of Elevated CO2 on the Stomatal Distribution and Leaf Physiology of Alnus Glutinosa.” New Phytologist 145 (3): 511–521. Cerca con Google

Price, Charles a., Scott L Wing, and Joshua S Weitz. 2012. “Scaling and Structure of Dicotyledonous Leaf Venation Networks.” Ecology Letters 15 (2) (February): 87–95. doi:10.1111/j.1461-0248.2011.01712.x. http://www.ncbi.nlm.nih.gov/pubmed/22093803. Vai! Cerca con Google

Rolland-lagan, Anne-gaelle, Mira Amin, and Malgosia Pakulska. 2009. “Quantifying Leaf Venation Patterns : Two-dimensional Maps.” The Plant Journal 57: 195–205. doi:10.1111/j.1365-313X.2008.03678.x. Cerca con Google

Roth, A, V Mosbrugger, G Belz, and H J Neugebauer. 1995. “Hydrodinamic Modelling Study of Angiosperm Leaf Venation Types.” In Botanica Acta, 108:1995–1995. Cerca con Google

Roth-Nebelsick, a. 2001. “Evolution and Function of Leaf Venation Architecture: A Review.” Annals of Botany 87 (5) (May): 553–566. doi:10.1006/anbo.2001.1391. http://linkinghub.elsevier.com/retrieve/doi/10.1006/anbo.2001.1391. Vai! Cerca con Google

Ruszala, Elizabeth M, David J Beerling, Peter J Franks, Caspar Chater, Stuart a Casson, Julie E Gray, and Alistair M Hetherington. 2011. “Land Plants Acquired Active Stomatal Control Early in Their Evolutionary History.” Current Biology : CB 21 (12) (June 21): 1030–5. doi:10.1016/j.cub.2011.04.044. http://www.ncbi.nlm.nih.gov/pubmed/21658945. Vai! Cerca con Google

Sack, Lawren, P D Cowan, N Jaikumar, and N M Holbrook. 2003. “The ‘ Hydrology ’ of Leaves : Co-ordination of Structure and Function in Temperate Woody Species.” Plant, Cell & Environment 26: 1343–1356. Cerca con Google

Sack, Lawren, Elisabeth M Dietrich, Christopher M Streeter, David Sánchez-Gómez, and N Michele Holbrook. 2008. “Leaf Palmate Venation and Vascular Redundancy Confer Tolerance of Hydraulic Disruption.” Proceedings of the National Academy of Sciences of the United States of America 105 (5) (February 5): 1567–72. doi:10.1073/pnas.0709333105. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2234185&tool=pmcentrez&rendertype=abstract. Vai! Cerca con Google

Sack, Lawren, and N Michele Holbrook. 2006. “Leaf Hydraulics.” Annual Review of Plant Biology 57 (January): 361–81. doi:10.1146/annurev.arplant.56.032604.144141. http://www.ncbi.nlm.nih.gov/pubmed/16669766. Vai! Cerca con Google

Sack, Lawren, Christine Scoffoni, Athena D McKown, Kristen Frole, Michael Rawls, J Christopher Havran, Huy Tran, and Thusuong Tran. 2012. “Developmentally Based Scaling of Leaf Venation Architecture Explains Global Ecological Patterns.” Nature Communications 3 (may) (January): 837. doi:10.1038/ncomms1835. http://www.ncbi.nlm.nih.gov/pubmed/22588299. Vai! Cerca con Google

Sack, Lawren, Christopher M Streeter, and N Michele Holbrook. 2004. “Hydraulic Analysis of Water Flow Through Leaves of Sugar Maple and Red Oak.” Plant Physiology 134 (April): 1824–1833. doi:10.1104/pp.103.031203.1824. Cerca con Google

Slade, Brenda F. 1959. “THE MODE OF ORIGIN OF VEIN-ENDINGS IN THE LEAF OF LIRIODENDRON TULIPIFERA L .” New Phytologist 58 (3): 299–305. Cerca con Google

Smith, S, J D B Weyers, and W G Berry. 1989. “Variation in Stomatal Characteristics over the Lower Surface of Commelina Communis Leaves.” Plant, Cell & Environment 12: 653–659. Cerca con Google

Sperry, J. S. 2004. “Coordinating Stomatal and Xylem Functioning – an Evolutionary Perspective” 162: 568–570. Cerca con Google

Terashima, Ichiro. 1992. “Anatomy of Non-uniform Leaf Photosynthesis.” Photosynthesis Research 31 (3) (March): 195–212. doi:10.1007/BF00035537. http://www.springerlink.com/index/10.1007/BF00035537. Vai! Cerca con Google

Ueno, Osamu, Yukiko Kawano, Masataka Wakayama, and Tomoshiro Takeda. 2006. “Leaf Vascular Systems in C(3) and C(4) Grasses: a Two-dimensional Analysis.” Annals of Botany 97 (4) (April): 611–21. doi:10.1093/aob/mcl010. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2803656&tool=pmcentrez&rendertype=abstract. Vai! Cerca con Google

Vatén, Anne, and Dominique C Bergmann. 2012. “Mechanisms of Stomatal Development: An Evolutionary View.” EvoDevo 3 (1) (January): 11. doi:10.1186/2041-9139-3-11. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3390899&tool=pmcentrez&rendertype=abstract. Vai! Cerca con Google

Wechsatol, W, S Lorente, and A Bejan. 2005. “Tree-shaped Networks with Loops.” International Journal of Heat and Mass Transfer 48: 573–583. doi:10.1016/j.ijheatmasstransfer.2004.08.020. Cerca con Google

West, Geoffrey B, James H Brown, and Brian J Enquist. 1999. “A General Model for the Structure and Allometry of Plant Vascular Systems.” Nature 400 (August): 664–667. Cerca con Google

Wiegand, Thorsten, and Kirk A Moloney. 2004. “Rings , Circles , and Null-models for Point Pattern Analysis in Ecology.” OIKOS 2 (August 2003): 209–229. Willis, K.J., McElwain, J.C. The evolution of plants. 2002. Oxford University Press.378 pp. Cerca con Google

Woodward, F Ian. 1987. “Stomatal Numbers Are Sensitive to Increases in CO2 from Pre-industrial Levles.” Nature 327 (18): 617–618. Cerca con Google

Zwieniecki, Maciej A, P J Melcher, C Kevin Boyce, Lawren Cerca con Google

Sack, and N M Holbrook. 2002. “Hydraulic Architecture of Leaf Venation in Laurus Nobilis L .” Plant, Cell & Environment 25: 1445–1450. Cerca con Google

Zwieniecki, Maciej A, Howard a. Stone, Andrea Leigh, C Kevin Boyce, and N. Michele Holbrook. 2006. “Hydraulic Design of Pine Needles: One-dimensional Optimization for Single-vein Leaves.” Plant, Cell & Environment 29 (5) (May): 803–809. doi:10.1111/j.1365-3040.2005.01448.x. http://doi.wiley.com/10.1111/j.1365-3040.2005.01448.x. Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record