Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Zilio, Pierfrancesco (2013) Mechanism of surface plasmon polarition propagation for nano-optics applications. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
7Mb

Abstract (english)

In recent times a new emerging research field has become more and more popular in the optics community, which is plasmonics. This discipline studies the surprising optical properties of metals at the nano-scale, which are substantially different from those at the macro-scale.
This thesis presents several theoretical/numerical studies in the field of plasmonics, both with fundamental research and with applicative purposes in the fields of photovoltaics and sensing.
One basic problem in plasmonics is the study of optical Bloch modes of planar arrays of metallic nanostructures, namely periodic in one or two dimensions but not in the third, what are called plasmonic crystal slabs. We present here a finite-elements-based numerical method for the modal analysis of such structures, which allows to retrieve complex Bloch modes dispersions both of truly bound optical modes and of leaky modes.
We present then a thorough investigation of the optical properties of a well-known plasmonic crystal, which is the 1-D lamellar grating. Our main interest here is the possible use of this structure as a light trapping device for photovoltaics applications. We consider its integration on top of a silicon solar cell and within a thin film organic solar cell. In both cases the mechanisms at the basis of the observed enhancement are analyzed in detail. In the former case, experimental evidence of the enhancement predicted by simulations is provided as well.
For what concerns sensing applications, we carried out three fundamental studies. The first concerns metal-coated dielectric wedges for plasmonic nanofocusing. These structures allow at a time an efficient coupling of impinging light to surface plasmon polaritons and their nanofocusing at the ridge. Finite elements method (FEM) was used to design the structure, which has been fabricated by means of FIB milling combined with silicon anisotropic etching and replica molding. Near field, and Raman optical characterizations were used to verify the nanofocusing effect.
The second study concerned the individuation and optimization of a plasmonic nanostructure suitable for the implementation in an optoelectronic biosensor based on a high electron mobility phototransistor (HEMT). Three different nanostructures were studied, maximizing their optical response to a surface refractive index variation. The best structure turned out to be an array of triangular grooves on a gold thick film, which has been finally fabricated and characterized in collaboration with the IOM-TASC Laboratory in Trieste.
Finally we carried out a study of a class of nanostructures termed as plasmonic vortex lenses, constituted by spiral and circular grooves on a gold surface. The great interest in these structures stems from their ability to couple and focalize impinging circularly polarized light in the form of plasmonic vortices, impressing them an arbitrary orbital angular momentum. We focused in particular on the transmission of such a plasmonic vortices through a hole placed a the lens center, analyzing in detail the angular momentum properties of the transmitted field.

Abstract (italian)

Recentemente un nuova emergente linea di ricerca è diventata sempre più di rilevo in ottica: la plasmonica. Questa disciplina studia le sorprendenti proprietà ottiche dei metalli alla nanoscala, che sono sostanzialmente differenti da quelle a scale macroscopiche, alle quali siamo abituati.
Questa tesi presenta diversi studi teorico-numerici nel campo della plasmonica, con fini sia di ricerca di base, sia applicativi negli ambiti del fotovoltaico e della sensoristica.
Un problema di fondamentale importanza in plasmonica è lo studio dei modi ottici di Bloch di array planari di nanostrutture metalliche, anche detti plasmonic crystal slabs. Presentiamo qui un metodo numerico, basato sulla tecnica degli elementi finiti, per l’analisi modale di tali strutture, tramite il quale è possibile calcolare le dispersioni complesse sia dei modi di Bloch puramente confinati, sia di quelli radiativi.
Presentiamo poi un’estesa analisi delle proprietà ottiche di un ben noto cristallo plasmonico, ovvero il reticolo unidimensionale di nano-strisce metalliche. Ci focalizziamo in particolare sulla possibilità di usare tale nanostruttura come sistema di trapping della luce, per applicazioni al fotovoltaico. A tale scopo consideriamo l’integrazione in una cella solare a silicio cristallino e in una organica a film sottile. In entrambi i casi sono analizzati in dettaglio i meccanismi alla base dell’aumento di assorbimento della luce calcolato. Nel primo caso, inoltre, è fornita evidenza sperimentale dell’enhancement predetto teoricamente.
Per quanto riguarda le applicazioni alla sensoristica, sono stati condotti tre studi di base.
Il primo concerne nanocunei dielettrici ricoperti da un sottile strato metallico, atti ad ottenere l’effetto del nanofocusing plasmonico. Queste strutture permettono di accoppiare efficientemente la luce a plasmoni polaritoni di superficie che sono quindi focalizzati a dimensioni nanometriche sul bordo dei cunei stessi. Simulazioni agli elementi finiti hanno permesso di progettare la struttura, che è stata poi fabbricata attraverso un processo che combina litografia FIB, etching anisotropo del silicio e replica di stampi dielettrici. Tecniche di caratterizzazione in near field e Raman hanno evidenziato la presenza dell’effetto di nanofocusing desiderato.
Il secondo studio ha riguardato l’individuazione e ottimizzazione di opportune nanostrutture plasmoniche adatte per l’implementazione in un biosensore basato su un fototransistor ad alta mobilità elettronica (HEMT). Sono state studiate tre diverse nanostrutture, massimizzando la loro risposta ottica a una variazione di indice di rifrazione superficiale. La migliore struttura si è rivelata un reticolo di solchi triangolari su uno strato d’oro. Tale struttura è stata fabbricata e caratterizzata in collaborazione con l’istituto IOM-TASC di Trieste.
Per finire, si è studiata una classe di nanostrutture denominate lenti per vortici plasmonici, costituite da solchi a spirale o circolari praticati su una superficie metallica. Il forte interesse per queste strutture scaturisce dal fatto che sono in grado di accoppiare la luce incidente a plasmoni polaritoni di superficie, imprimendo al campo un momento angolare orbitale. Ci siamo concentrati in particolare sulla trasmissione dei vortici plasmonici attraverso lenti plasmoniche con un buco al centro, analizzando in dettaglio le proprietà di momento angolare del campo trasmesso.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Romanato , Filippo
Ph.D. course:Ciclo 25 > Scuole 25 > FISICA
Data di deposito della tesi:30 January 2013
Anno di Pubblicazione:31 January 2013
Key Words:plasmonics solar cell sensing orbital angular momentum finite elements simulations comsol
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Area 02 - Scienze fisiche > FIS/02 Fisica teorica, modelli e metodi matematici
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:5810
Depositato il:14 Oct 2013 13:50
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] H. Rather, Surface Plasmons, Berlin,: Springer-Verlag, 1988. Cerca con Google

[2] S. A. Maier, Plasmonics: fundamentals and applications, Bath,: Springer, 2007. Cerca con Google

[3] «COMSOL Multiphysics®,» [Online]. Available: http://www.comsol.com/. Vai! Cerca con Google

[4] K. Sakoda, Optical Properties of Photonic Crystals, New York: Springer, 2005. Cerca con Google

[5] F. J. Garcia-Vidal, T. W. Ebbesen and L. Kuipers, «Light passing through subwavelength apertures,» Reviews of Modern Physics, vol. 82, 2010. Cerca con Google

[6] H. Atwater e A. Polman, «Plasmonics for improved photovoltaic devices.,» Nat. Mater., vol. 9, n. 3, pp. 205-213, 2010. Cerca con Google

[7] K. Catchpole e A. Polman, «Plasmonic solar cells.,» Opt. Express, vol. 16, n. 26, pp. 21793-21800, 2008. Cerca con Google

[8] K. R. Catchpole and A. Polman, «Design principles for particle plasmon enhanced solar cells,» Applied Physics Letters, vol. 93, 2008. Cerca con Google

[9] M. I. Stockman, «Nanofocusing of optical energy in tapered plasmonic waveguides,» Phys. Rev. Lett., vol. 93, p. 137404, 2004. Cerca con Google

[10] S. Kawata and V. M. Shalev, Tip Enhanced, Elsevier, 2007. Cerca con Google

[11] E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Marin-Moreno and F. Garcia-Vidal, «Guiding and focusing of electromagnetic fields with wedge plasmon polaritons.,» Phys. Rev. Lett., vol. 100, n. 2, p. 023901, 2008. Cerca con Google

[12] L. Dongxiao, L. Yonggang and K. Hong Koo, «Optical trapping by a metal thin-film edge,» Appl. Phys. Lett., vol. 110, p. 103108, 2011. Cerca con Google

[13] J. Homola, S. S. Yee. and G. Gauglitz, «Surface Plasmon resonance sensors: review,» Sensors and Actuators, vol. 54, pp. 3-15, 1999. Cerca con Google

[14] Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner and E. Hasman, «Observation of optical spin symmetry breaking in nanoapertures.,» Nano Lett., vol. 9, n. 8, pp. 3016-3019, 2009. Cerca con Google

[15] P. G. K. Mark L. Brongersma, Surface Plasmon Nanophotonics, Atlanta: Springer, 2007. Cerca con Google

[16] R. Wood, «On a remarkable case of uneven distribution of light in a diffraction grating spectrum,» Phil. Mag., vol. 4, p. 396, 1902. Cerca con Google

[17] U. Fano, «The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces,» J. Opt. Soc. Am., vol. 31, p. 213, 1941. Cerca con Google

[18] A. Otto, «Excitation of nonradiative surface plasma waves in silver by the method of frustrated total internal reflection,» Z. Phys., vol. 216, p. 398, 1968. Cerca con Google

[19] E. Kretschmann and H. Raether, «Radiative decay of non-radiative surface plasmons excited by light,» Z. Naturf., vol. 23A, p. 2135, 1968. Cerca con Google

[20] W. Barnes, A. Dereux and T. Ebbesen, «Surface plasmon subwavelength optics,» Nature, vol. 424, n. 6950, pp. 824-830, 2003. Cerca con Google

[21] P. Drude, «Zur Elektronentheorie der metalle,» Ann. Phys., vol. 306, p. 566, 1900. Cerca con Google

[22] W. L. Barnes, «Surface plasmon polariton length scales: a route to sub-wavelength optics,» J. of Opt. A: Pure Appl. Opt., vol. 8, p. S87, 2006. Cerca con Google

[23] E. D. Palik, Handbook of Optical Constants of Solids, Orlando,: Academic, 1985. Cerca con Google

[24] W. L. Barnes, T. W. Priest, S. C. Kitson and J. R. Sambles, «Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings,» Phys. Rev. B, vol. 54, p. 6227, 1996. Cerca con Google

[25] J. Homola, Surface Plasmon Resonance Based Sensors, Berlin: Springer, 2006. Cerca con Google

[26] A. Mary, S. G. Rodrigo, L. Martin-Moreno and F. J. Garcia-Vidal, «Plasmonic metamaterials based on holey metallic films,» Journal of Physics: Condensed Matter, vol. 20, p. 304215, 2008. Cerca con Google

[27] A. V. Zayats, I. I. Smolyaninov and A. A. Maradudin, «Nano-optics of surface plasmon polaritons,» Physics Reports, vol. 408, p. 131, 2005. Cerca con Google

[28] J. D. Joannopoulos, S. G. Johnson, J. N. Winn and R. D. Meade, Photonic Crystals - Molding the flow of light, Princeton University Press, 2nd edition, 2007. Cerca con Google

[29] A. Ruhe, «Algorithms for the nonlinear eigenvalue problem,» SIAM J. Numer. Anal., vol. 1973, p. 674, 1973. Cerca con Google

[30] S. Shi, C. Chen and D. W. Prather, «Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,» Appl. Phys. Lett., vol. 86, p. 043104, 2005. Cerca con Google

[31] B. P. e. a. Hiett, «Application of finite element methods to photonic crystal modeling,» IEEE Proc. - Sci. Meas. Technol., vol. 149, p. 293, 2002. Cerca con Google

[32] M. Davanço, Y. Urzhumov and G. Shvets, «The complex Bloch bands of a 2D plasmonic crystal displaying isotropic negative refraction,» Optics Express, vol. 15, p. 9681, 2007. Cerca con Google

[33] C. Fietz, Y. Urzhumov and G. Shvets, «Complex k band diagrams of 3D metamaterial/photonic crystals.,» Opt. Express, vol. 19, p. 19027, 2011. Cerca con Google

[34] P. Lalanne, J. C. Rodier and J. P. Hugonin, «Surface plasmons of metallic surfaces perforated by nanohole arrays,» Journal of Optics A: Pure and Applied Optics, vol. 7, p. 422, 2005. Cerca con Google

[35] J. Jin, The Finite Element Method in Electromagnetics, 2nd edition, New York: John Wiley & Sons, 2002. Cerca con Google

[36] Z. S. Sacks, D. M. Kingsland, R. Lee and J. F. Lee, «A perfectly matched anisotropic absorber for use as an absorbing boundary condition,» IEEE Trans. Antennas Propag. , vol. 43, p. 1460, 1995. Cerca con Google

[37] S. D. Gedney, «An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,» IEEE Trans. Antennas Propag., vol. 44, p. 1630, 1996. Cerca con Google

[38] S. G. e. a. Johnson, «Adiabatic theorem and continuous coupled-mode theory for efficient taper transitions in photonic crystals,» Phys. Rev. E, vol. 66, p. 066608, 2002. Cerca con Google

[39] P. Vincent and M. Neviere, «Corrugated dielectric waveguides: a numerical study of the second-order stop bands,» Appl. Phys, vol. 20, p. 345, 1979. Cerca con Google

[40] P. Lalanne, J. Hugonin and P. Chavel, «Optical properties of deep lamellar gratings: a coupled Bloch-mode insight,» J. Lightwave Technol., vol. 24, p. 2442, 2006. Cerca con Google

[41] K. C. e. a. Huang, «Nature of lossy Bloch states in polaritonic photonic crystals,» Phys. Rev. B, vol. 69, p. 195111, 2004. Cerca con Google

[42] A. Kolomenskii, S. Peng, J. Hembd, A. Kolomenski, J. Noel, J. Strohaber, W. Teizer and H. Schuessler, «Interaction and spectral gaps of surface plasmon modes in gold nano-structures.,» Opt. Express, vol. 19, n. 7, pp. 6587-6598, 2011. Cerca con Google

[43] Y. Ding and R. Magnusson, «Band gaps and leaky-wave effects in resonant photonic-crystal waveguides.,» Opt. Express, vol. 15, n. 2, pp. 680-694, 2007. Cerca con Google

[44] F. J. G. de Abajo, «Colloquium: Light scattering by particle and hole arrays,» Rev. Mod. Phys., vol. 79, p. 1267, 2007. Cerca con Google

[45] J. Bravo-Abad, L. Martin-Moreno, F. Garcia-Vidal, E. Hendry and J. G. Rivas, «Transmission of light through periodic arrays of square holes: From a metallic wire mesh to an array of tiny holes,» Phys. Rev. B, vol. 76, p. 241102, 2007. Cerca con Google

[46] [Online]. Available: http://www.iea.org. Vai! Cerca con Google

[47] [Online]. Available: www.itrpv.net/doc/roadmap_itrpv_2011_brochure_web.pdf. Vai! Cerca con Google

[48] E. Yablonovitch, «Statistical ray optics,» J. Opt. Soc. Am. A, vol. 72, p. 899, 1982. Cerca con Google

[49] M. A. Green and S. Pillai, «Harnessing plasmonics for solar cells,» Nat. Photon., vol. 6, 2012. Cerca con Google

[50] L. Tsakalakos, «Nanostructures for photovoltaics,» Materials Science and Engineering: R: Reports, vol. 62, p. 175, 2008. Cerca con Google

[51] S. Mokkpati, F. J. Beck, A. Polman and K. R. Catchpole, «Designing periodic arrays of metal nanoparticles for light trapping applications in solar cells,» Appl. Phys. Lett., vol. 95, p. 053115, 2009. Cerca con Google

[52] R. A. Pala, J. White, E. Barnard, J. Liu and M. L. Brongersma, «Design of Plasmonic Thin-Film Solar Cells with Broadband Absorption Enhancements,» Adv. Mater., vol. 21, p. 3504, 2009. Cerca con Google

[53] J. Munday and H. Atwater, «Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings.,» Nano Lett., vol. 11, n. 6, pp. 2195-2201, 2011. Cerca con Google

[54] M. G. Kang, T. Xu, H. J. Park, X. Luo and G. L. J., «Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowires electrodes,» Adv. Mater., vol. 22, p. 4378, 2010. Cerca con Google

[55] K. Le, A. Abass, B. Maes, P. Bienstman and A. Alù, «Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells.,» Opt. Express, vol. 20, n. 1, pp. A39-A50, 2012. Cerca con Google

[56] C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan and P. Peumans, «Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,» Appl. Phys. Lett., vol. 96, p. 133302, 2010. Cerca con Google

[57] H. Shen and B. Maes, «Combined plasmonic gratings in organic solar cells.,» Opt. Express, vol. 19 Suppl 6, pp. A1202-A1210, 2011. Cerca con Google

[58] A. J. Morfa, K. L. Rowlen, T. H. Reilly, M. J. Romero and J. v. d. Lagemaat, «Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics,» Appl. Phys. Lett., vol. 92, p. 013504, 2008. Cerca con Google

[59] B. Sturman, E. Podivilov and M. Gorkunov, «Theory of extraordinary light transmission through arrays of subwavelength slits,» Phys. Rev. B, vol. 77, p. 075106, 2008. Cerca con Google

[60] F. Garcia-Vidal and L. Martin-Moreno, «Transmission and focusing of light in one-dimensional periodically nanostructured metals,» Phys. Rev.B, vol. 66, p. 155412, 2002. Cerca con Google

[61] D. Crouse, «Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,» IEEE Trans. Electron. Dev., vol. 52, p. 2365, 2005. Cerca con Google

[62] R. Gordon, «Light in a subwavelength slit in a metal: Propagation and reflection,» Phys. Rev. B, vol. 73, p. 153405, 2006. Cerca con Google

[63] Q. Cao and P. Lalanne, «Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits.,» Phys. Rev. Lett., vol. 88, n. 5, p. 057403, 2002. Cerca con Google

[64] Y. Xie, A. Zakharian, J. Moloney and M. Mansuripur, «Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts,» Opt. Express, vol. 13, pp. 4485-91, 2005. Cerca con Google

[65] Y. Takakura, «Optical resonance in a narrow slit in a metallic screen,» Phys. Rev. Lett., vol. 86, p. 5601, 2001. Cerca con Google

[66] F. Marquier, J. J. Greffet, F. Pardo and J. L. Pelouard, «Resonant transmission through a metallic film due to coupled modes,» Opt. Express, vol. 13, p. 70, 2005. Cerca con Google

[67] W. Hinsberg, H. F. A., J. Hoffnagle, M. Sanchez, G. Wallraff, M. Morrison and S. Frank, «Deep ultraviolet interferometric lithography as a tool for assessment of chemically amplified photoresist performance,» J. Vac. Sci. Tech. B, vol. 16, p. 3689, 1998. Cerca con Google

[68] A. Luque and S. Hegedus, Handbook of photovoltaic science and engineering, John Wiley & Sons, 2003. Cerca con Google

[69] A. Goetzberger, J. Knobloch and B. Voss, Crystalline silicon solar cells: Technology and system applications, Wiley, 1998. Cerca con Google

[70] «Ioffe Physical Technical Institute, “Electrical properties of Silicon (Si).”,» [Online]. Available: http://www.ioffe.ru/SVA/NSM/Semicond/Si/electric.html. Vai! Cerca con Google

[71] T. Kietzke, «Recent Advances in Organic Solar Cells,» Adv. OptoElectron., vol. 2007, p. 40285, 2007. Cerca con Google

[72] P. E. Shaw, A. Ruseckas and I. D. W. Samuel, «Exciton diffusion measurements in poly(3-hexylthiophene),» Adv. Mater., vol. 20, p. 3516, 2008. Cerca con Google

[73] M. Mazzeo, F. della Sala, F. Mariano, G. Melcarne, S. D'Agostino, Y. Duan, R. Cingolani and G. Gigli, «Shaping white light through electroluminescent fully organic coupled microcavities.,» Adv. Mater., vol. 22, n. 42, pp. 4696-4700, 2010. Cerca con Google

[74] K. Walzer, B. Maennig, M. Pfeiffer and K. Leo, «Highly efficient organic devices based on electrically doped transport layers,» Chem. Rev. , vol. 107, p. 1233, 2007. Cerca con Google

[75] S. Bozhevolnyi and T. Søndergaard, «General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators.,» Opt. express, vol. 15, n. 17, pp. 10869-10877, 2007. Cerca con Google

[76] E. Barnard, J. White, A. Chandran and M. Brongersma, «Spectral properties of plasmonic resonator antennas.,» Opt. Express, vol. 16, n. 21, pp. 16529-16537, 2008. Cerca con Google

[77] N. Panoiu and R. Osgood, «Enhanced optical absorption for photovoltaics via excitation of waveguide and plasmon-polariton modes.,» Opt. Lett., vol. 32, p. 2825, 2007. Cerca con Google

[78] D. K. Gramotnev and S. I. Bozhevolnyi, «Plasmonics beyond the diffraction limit,» Nat. Photon., vol. 4, p. 83, 2010. Cerca con Google

[79] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy and A. V. Zayats, «Plasmonic nanorod metamaterials for biosensing,» Nat. Mater., vol. 8, p. 867, 2009. Cerca con Google

[80] E. Verhagen, M. Spasenović, A. Polman and L. K. Kuipers, «Nanowire plasmon excitation by adiabatic Mode transformation,» Phys. Rev. Lett., vol. 102, p. 203904, 2009. Cerca con Google

[81] K. Kato, A. Ono, W. Inami and Y. Kawata, «Plasmonic nanofocusing using a metal-coated axicon prism.,» Opt. Express, vol. 18, p. 13580, 2010. Cerca con Google

[82] N. Lindquist, P. Nagpal, A. Lesuffleur, D. Norris and S. Oh, «Three-dimensional plasmonic nanofocusing.,» Nano Lett., vol. 10, p. 1369, 2010. Cerca con Google

[83] P. Nagpal, N. Lindquist, S. Oh and D. Norris, «Ultrasmooth patterned metals for plasmonics and metamaterials.,» Science, vol. 325, p. 594, 2009. Cerca con Google

[84] D. Gramotnev and K. Vernon, «Adiabatic nano-focusing of plasmons by sharp metallic wedges,» Appl. Phys. B, vol. 86, p. 7, 2007. Cerca con Google

[85] M. W. Vogel and D. K. Gramotnev, «Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,» J. Appl. Phys., vol. 107, p. 044303, 2010. Cerca con Google

[86] D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui and S. Matsuo, «Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,» Appl. Phys. Lett., vol. 87, p. 061106, 2005. Cerca con Google

[87] A. Boltasseva, V. Volkov, R. Nielsen, E. Moreno, S. Rodrigo and S. Bozhevolnyi, «Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths.,» Opt. Express, vol. 16, p. 5252, 2008. Cerca con Google

[88] F. D. Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani and E. D. Fabrizio, «Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing {SERS} structures,» Nat. Photon., vol. 5, p. 682, 2011. Cerca con Google

[89] D. O'Connor, M. McCurry, B. Lafferty and A. V. Zayats, «Plasmonic waveguide as an efficient transducer for high-density data storage,» Appl. Phys. Lett., vol. 95, p. 171112, 2009. Cerca con Google

[90] I. S. Bozhevolnyi, «Plasmonic nanoguides and circuits,» Singapore, Pan Stanford, 2009, p. 353. Cerca con Google

[91] D. K. Gramotnev, M. W. Vogel and M. I. Stockman, «Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods,» J. Appl. Phys., vol. 104, p. 034311, 2008. Cerca con Google

[92] D. F. P. Pile and D. K. Gramotnev, «Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,» Appl. Phys. Lett., vol. 89, p. 041111, 2006. Cerca con Google

[93] K. C. Vernon, D. K. Gramotnev and D. F. P. Pile, «Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,» J. App. Phys., vol. 101, p. 104312, 2007. Cerca con Google

[94] E. Verhagen, L. K. Kuipers and A. Polman, «Plasmonic nanofocusing in a dielectric wedge.,» Nano Lett., vol. 10, n. 9, p. 3665, 2010. Cerca con Google

[95] M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu and T. Yatsui, «Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields,» IEEE, J. Sel. Top. Quantum electron., vol. 8, p. 839, 2002. Cerca con Google

[96] A. Zayats and D. Richards, Nano-Optics and Near-Field Optical Microscopy, London: Artech House, 2009. Cerca con Google

[97] W. Chen, D. Abeysinghe, R. Nelson and Q. Zhan, «Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer.,» Nano Lett., vol. 10, n. 6, p. 2075, 2010. Cerca con Google

[98] S. Yamamoto and H. Watarai, «Surface-Enhanced Raman Spectroscopy of Dodecanethiol-Bound Silver Nanoparticles at the Liquid/Liquid Interface,» Langmuir, vol. 22, p. 6562, 2006. Cerca con Google

[99] D. Grieshaber, R. MacKenzie, J. Voros and E. Reimhult, «Electrochemical Biosensors - sensor principles and architectures,» Sensors, vol. 8, p. 1400, 2008. Cerca con Google

[100] J. Anker, W. Hall, O. Lyandres, N. Shah, J. Zhao and R. Van Duyne, «Biosensing with plasmonic nanosensors.,» Nat. Mater., vol. 7, p. 442, 2008. Cerca con Google

[101] D. Neamen, Semiconductor physics and devices, 3rd ed., New York: McGraw-Hill, 2003. Cerca con Google

[102] M. Grundmann, The physics of semiconductors, Berlin: Springer, 2006. Cerca con Google

[103] M. A. de Salles and M. A. Romero, «Al0.3Ga0.7As/GaAs HEMT's under optical illumination,» IEEE Trans. on Microwave Theory and techniques, vol. 39, p. 2010, 1991. Cerca con Google

[104] M. A. Romero, M. A. G. Martinez and P. R. Herczfeld, «An Analytical Model for the photodetection mechanisms in High-electron mobility transistors,» IEEE Trans on microwave theory and techniques, vol. 44, p. 2279, 1996. Cerca con Google

[105] M. Gaio, Study and development of high-mobility photodetector aimed at being integrated with plasmonic nanostructures, M. Sc. Thesis 2011. Cerca con Google

[106] B. Sapoval and C. Hermann, Physics of Semiconductors, Springer, 2003. Cerca con Google

[107] B. Nabet, M. A. Romero, A. Cola and F. Quaranta, «The Role of the AlGaAs Doping Level on the Optical Gain of Two-Dimensional Electron Gas Photodetectors,» J. Electron. Mat., vol. 33, p. 123, 2003. Cerca con Google

[108] D. E. Aspnes, «GaAs lower conduction-band minima: Ordering and properties,» Phys. Rev. B, vol. 14, p. 5331, 1976. Cerca con Google

[109] G. Bovo, Multilayer electro-plasmonic nanostructures for biosensing architechtures, M. Sc. Thesis 2011. Cerca con Google

[110] L. D. Unsworth, Z. Tun, H. Sheardown and J. L. Brash, «Chemisorption of thiolated poly(ethylene oxide) to gold: surface chain densities measured by ellipsometry and neutron reflectometry,» J. Colloid. Interf. Sci., vol. 281, p. 112, 2005. Cerca con Google

[111] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo and G. M. Whitesides, «Self-Assembled Monolayers of Thiolates on Metals as a Form of nanotechnology,» Chem. Rev., vol. 105, p. 1103, 2005. Cerca con Google

[112] S. Bozhevolnyi, V. Volkov, E. Devaux and T. Ebbesen, «Channel plasmon-polariton guiding by subwavelength metal grooves.,» Phys. Rev. Lett., vol. 95, p. 046802, 2005. Cerca con Google

[113] T. Sondergaard and S. Bozhevolnyi, «Surface-plasmon polariton resonances in triangular-groove metal gratings,» Phys. Rev. B, vol. 80, p. 195407, 2009. Cerca con Google

[114] T. Sondergaard, S. Bozhevolnyi, J. Beermann, S. Novikov, E. Devaux and T. Ebbesen, «Resonant plasmon nanofocusing by closed tapered gaps,» Nano Lett., vol. 10, n. 1, p. 291, 2010. Cerca con Google

[115] T. Sondergaard, S. Bozhevolnyi, J. Beermannn, S. M. Novikov, E. Devaux and T. W. Ebbesen, «Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders,» J. Opt. Soc. Am. B, vol. 29, p. 130, 2012. Cerca con Google

[116] V. Giannini, Y. Francescato, H. Amrania, C. Phillips and S. Maier, «Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach.,» Nano Lett., vol. 11, n. 7, p. 2835, 2011. Cerca con Google

[117] A. P. Blanchard-Dionne, L. Guyot, S. Patskovsky, R. Gordon and M. Meunier, «Intensity based surface plasmon resonance sensor using a nanohole rectangular array.,» Opt. Express, vol. 19, p. 15041, 2011. Cerca con Google

[118] L. J. Van der Pauw, «A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,» Philips Research Reports, vol. 13, p. 1, 1958. Cerca con Google

[119] Y. Gorodetski, A. Niv, V. Kleiner and E. Hasman, «Observation of the spin-based plasmonic effect in nanoscale structures.,» Phys. Rev. Lett., vol. 101, n. 4, 2008. Cerca con Google

[120] Y. Gorodetski, K. Bliokh, B. Stein, C. Genet, N. Shitrit, V. Kleiner, E. Hasman and T. Ebbesen, «Weak Measurements of Light Chirality with a Plasmonic Slit,» Phys. Rev. Lett., vol. 109, 2012. Cerca con Google

[121] Y. Gorodetski, S. Nechayev, V. Kleiner and E. Hasman, «Plasmonic Aharonov-Bohm effect: Optical spin as the magnetic flux parameter,» Phys. Rev. B, vol. 82, 2010. Cerca con Google

[122] T. Ohno and S. Miyanishi, «Study of surface plasmon chirality induced by Archimedes' spiral grooves.,» Opt. Express, vol. 14, p. 6285, 2006. Cerca con Google

[123] J. Miao, Y. Wang, C. Guo, Y. Tian, J. Zhang, Q. Liu, Z. Zhou and H. Misawa, «Far-Field Focusing of Spiral Plasmonic Lens,» Plasmonics, vol. 7, 2011. Cerca con Google

[124] N. Shitrit, S. Nechayev, V. Kleiner and E. Hasman, «Spin-dependent plasmonics based on interfering topological defects.,» Nano Lett., vol. 12, n. 3, pp. 1620-1623, 2012. Cerca con Google

[125] N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner and E. Hasman, «Optical spin Hall effects in plasmonic chains.,» Nano Lett., vol. 11, p. 2038, 2011. Cerca con Google

[126] S. Yang, W. Chen, R. L. Nelson and Q. Zhan, «Miniature circular polarization analyzer with spiral plasmonic lens,» Opt. Lett., vol. 34, p. 3047, 2009. Cerca con Google

[127] H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang and B. Lee, «Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens.,» Nano Lett., vol. 10, n. 2, pp. 529-536, 2010. Cerca con Google

[128] S. Y. Lee, I. M. Lee, J. Park, C. Y. Hwang and B. Lee, «Dynamic switching of the chiral beam on the spiral plasmonic bull's eye structure,» Appl. Opt., vol. 50, n. 31, p. G104, 2011. Cerca con Google

[129] D. Wang, T. Yang and K. Crozier, «Optical antennas integrated with concentric ring gratings: electric field enhancement and directional radiation.,» Opt. Express, vol. 19, n. 3, p. 2148, 2011. Cerca con Google

[130] B. Liu, D. Wang, C. Shi, K. Crozier and T. Yang, «Vertical optical antennas integrated with spiral ring gratings for large local electric field enhancement and directional radiation.,» Opt. Express, vol. 19, p. 10049, 2011. Cerca con Google

[131] G. Rui, R. Nelson and Q. Zhan, «Beaming photons with spin and orbital angular momentum via a dipole-coupled plasmonic spiral antenna.,» Opt. Express, vol. 20, p. 18819, 2012. Cerca con Google

[132] L. Vuong, A. Adam, J. Brok, P. Planken and H. Urbach, «Electromagnetic spin-orbit interactions via scattering of subwavelength apertures.,» Phys. Rev. Lett., vol. 104, p. 083903, 2010. Cerca con Google

[133] M. Kang, J. Chen, B. Gu, Y. Li, L. Vuong and H. T. Wang, «Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin-to-orbital angular momentum,» Phys. Rev. A, vol. 85, p. 035801, 2012. Cerca con Google

[134] L. Marrucci, C. Manzo and D. Paparo, «Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media.,» Phys. Rev. Lett., vol. 96, p. 163905, 2006. Cerca con Google

[135] K. T. Gahagan and G. A. Swartzlander, «Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap,» J. Opt. Soc. Am. B., vol. 16, p. 533, 1999. Cerca con Google

[136] Y. S. Kivshar and B. Luther-Davies, «Dark optical solitons: physics and applications,» Phys. Rep., vol. 298, p. 81, 1998. Cerca con Google

[137] J. Scheuer and M. Orenstein, «Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities,» Science, vol. 285, p. 230, 1999. Cerca con Google

[138] R. A. Beth, «Mechanical Detection and Measurement of the Angular Momentum of light,» Phys. Rev., vol. 50, p. 115, 1936. Cerca con Google

[139] J. D. Jackson, Classical electrodynamics, 3rd ed., John Wiley & Sons, 1999. Cerca con Google

[140] L. Allen, M. J. Beijersbergen, R. J. C. Spreeuw and J. P. Woerdman, «Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes,» Phys. Rev. A, vol. 45, p. 8185, 1992. Cerca con Google

[141] A. M. Yao and M. J. Padgett, «Orbital angular momentum: origins behavior and applications,» Adv. in Opt. and Photon, vol. 3, p. 161, 2011. Cerca con Google

[142] J. P. Torres and L. Torner, Twisted Photons, Weinheim: Wiley-VCH Verlag, 2011. Cerca con Google

[143] D. L. Andrews, Structured light and its applications, Elsevier, 2008. Cerca con Google

[144] S. M. Barnett, «Optical angular-momentum flux,» J. Opt. B: Quantum Semiclass. Opt., 4, p. S7, 2002. Cerca con Google

[145] A. Cerjan and C. Cerjan, «Orbital angular momentum of Laguerre-Gaussian beams beyond the paraxial approximation.,» J. Opt. Soc. Am. A: Optics, Image Science and Vision, vol. 28, p. 2253, 2011. Cerca con Google

[146] I. Bialynicki-Birula and Z. Bialynicka-Birula, «Canonical separation of angular momentum of light into its orbital and spin parts,» J. of Opt., vol. 13, p. 064014, 2011. Cerca con Google

[147] M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen and J. P. Woerdman, «Helical-wavefront laser beams produced with a spiral phaseplate,» Opt. Commun., vol. 112, p. 321, 1994. Cerca con Google

[148] V. Y. Bazhenov, M. V. Vasnetsov and M. S. Soskin, «Screw dislocations in light wavefronts,» JETP Letts, vol. 52, p. 429, 1990. Cerca con Google

[149] S. Pancharatnam, «Generalized theory of interference, and its applications,» Proc. Indian Acad. Sci., vol. A44, p. 247, 1956. Cerca con Google

[150] M. V. Berry, «Quantum phase factors accompanying adiabatic changes,» Proc. R. Soc. Lond., vol. A392, p. 45, 1984. Cerca con Google

[151] S. W. Cho, J. Park, S. Y. Lee, H. Kim and B. Lee, «Coupling of spin and angular momentum of light in plasmonic vortex.,» Opt. Express, vol. 20, p. 10083, 2012. Cerca con Google

[152] J. Miao, Y. Wang, C. Guo, Y. Tian, S. Guo, Q. Liu and Z. Zhou, «Plasmonic Lens with Multiple-Turn Spiral Nano-Structures,» Plasmonics, vol. 6, p. 235, 2011. Cerca con Google

[153] W. Chen, D. C. Abeysinghe, R. L. Nelson and Q. Zhan, «Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination,» Nano Lett., vol. 4320, p. 9, 2009. Cerca con Google

[154] K. Bachman, J. Peltzer, P. Flammer, T. Furtak, R. Collins and R. Hollingsworth, «Spiral plasmonic nanoantennas as circular polarization transmission filters.,» Opt. Express, vol. 20, p. 1308, 2012. Cerca con Google

[155] T. Ongarello, G. Parisi, D. Garoli, E. Mari and P. R. F. Zilio, «Focusing dynamics on circular distributed tapered metallic waveguides by means of plasmonic vortex lenses,» Optics Lett. , vol. 37, p. 4516, 2012. Cerca con Google

[156] F. Baida and J. Salvi, «Enhanced optical transmission through annular aperture arrays: role of the plasmonic guided modes,» Rev. Plasmonics, vol. 2010, p. 239, 2012. Cerca con Google

[157] Y. Yirmiyahu, A. Niv, G. Biener, V. Kleiner and E. Hasman, «Excitation of a single hollow waveguide mode using inhomogeneous anisotropic subwavelength structures,» Opt. Express, vol. 15, p. 13404, 2007. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record