Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Crestani, Elena (2013) Tracer Test Data Assimilation for the Assessment of Local Hydraulic Properties in Heterogeneous Aquifers. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi)
25Mb

Abstract (inglese)

The hydraulic conductivity distribution in a natural porous media is characterized by a great heterogeneity that makes its spatial assessment problematic and expensive. At the same time, a detailed knowledge of the hydraulic properties, as porosity, storativity, transmissivity and hydraulic conductivity K, is fundamental for the prediction of groundwater flow and solute transport in natural formations. Among the hydraulic properties, being the subsurface transport phenomena in natural formations mainly controlled by the Darcy's law, the proper definition of the K spatial distribution at different scales plays a fundamental role to evaluate the evolution of a contaminant plume, to define the well-catchment areas or to monitor a landfill site. To estimate aquifer hydraulic properties, inverse models have long been studied and, beyond the traditional hydraulic conductivity and head measurements, tracer test analyses have been widely adopted in the past and their use have increased in the recent years thanks to a great improvement of geophysical techniques. Among others, the Electrical Resistivity Tomography (ERT) allows to monitor a tracer test injection, providing time-lapse informations about the plume evolution with limited cost.
Assuming that time-lapse spatially distributed data deduced from a tracer test are available, the present work investigates different approaches aimed to the estimation of the local K distribution. At this purpose, Kalman filter based data assimilation techniques are coupled with the Lagrangian transport model and applied in different synthetic contexts

Abstract (italiano)

La distribuzione di conducibilità idraulica in un mezzo poroso naturale è caratterizzata da grande eterogeneità, che rende la sua determinazione problematica e costosa. Allo stesso tempo, una approfondita conoscenza delle proprietà idrauliche, quali la porosità, l'immagazzinamento specifico e la conducibilità idraulica K, è di fondamentale importanza per poter predire e analizzare il flusso sotterraneo e il trasporto di soluti in formazioni naturali. Poichè i fenomeni di trasporto sotterraneo che si realizzano negli acquiferi sono principalmente controllati dalla legge di Darcy, tra le diverse proprietà idrauliche sopraccitate, un'opportuna definizione della distribuzione spaziale di K gioca un ruolo fondamentale nella predizione del plume di inquinanti, e quindi assume particolare rilevanza in molte attività di pratico interesse, quali la definizione delle aree di salvaguardia dei pozzi o il monitoraggio di discariche. Le proprietà idrauliche degli acquiferi sono di norma stimate con l'ausilio di modelli inversi utilizzando, oltre le tradizionali misure di conducibilità idraulica e piezometria, quelle derivanti da analisi di iniezioni controllate (test con traccianti o tracer test nella comune dizione anglosassone). I test con traccianti sono stati in diverse occasioni adottati nel passato ma il loro uso è aumentato negli anni recenti grazie agli sviluppi delle tecniche geofisiche che semplificano il monitoraggio delle prove in situ. Fra queste, la Tomografia Elettrica Resistiva (ERT) sembra essere la più appropriata per misurare le quantità di interesse nel caso di iniezioni di traccianti, essendo possibile acquisire un grande numero di informazioni sull'evoluzione spazio-temporale dell'evoluzione del plume, a costi relativamente limitati.
Partendo dal presupposto che siano disponibili misure derivanti da una iniezione controllata in pozzo, il presente lavoro suggerisce alcuni approcci che, sulla base dei dati deducibili dalle misure ERT, permettono di stimare la distribuzione spaziale di K e verifica la loro effettiva capacità predittiva. Tali modelli risultano dall'accoppiamento di tecniche basate sul filtro di Kalman con modelli di trasporto Lagrangiano: l'applicazione ad una estesa serie di casi sintetici ha permesso inoltre di ottenere utili indicazioni in relazione a vantaggi e svantaggi di ciascuna delle metodologie proposte

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Salandin, Paolo - Camporese, Matteo
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE,
Data di deposito della tesi:30 Gennaio 2013
Anno di Pubblicazione:30 Gennaio 2013
Parole chiave (italiano / inglese):distribuzione spaziale di conducibilità idraulica, test con traccianti, assimilazione dati, filtro di Kalman, scala locale / hydraulic conductivity spatial distribution, tracer test, data assimilation, Kalman filter, local scale
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/02 Costruzioni idrauliche e marittime e idrologia
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:5822
Depositato il:08 Ott 2013 15:35
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Alcolea, A., Carrera, J., Medina, A., 2006. Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Adv. Water Resour. 29, 1678–1689. Cerca con Google

Annan, A. P., 2005. Hydrogeophysics. Vol. 50. of Water Sci. Technol. Library. Springer, New York. Cerca con Google

Archie, G. E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Petrol. Tech. 1, 55–62. Cerca con Google

Bailey, R., Baù, D., 2010. Ensemble smoother assimilation of hydraulic head and return flow data to estimate hydraulic conductivity distribution. Water Resour. Res. 46, W12543. Cerca con Google

Bailey, R., Baù, D., 2012. Estimating geostatistical parameters and spatially-variable hydraulic conductivity within a catchment system using an ensemble smoother. Hy- Cerca con Google

drol. Earth Syst. Sci 16 (2), 287–304. Cerca con Google

Bailey, R. T., Baù, D. A., Gates, T. K., 2012. Estimating spatially-variable rate constants of denitrification in irrigated agricultural groundwater systems using an ensemble smoother. J. Hydrol. 468–469 (0), 188–202. Cerca con Google

Barlebo, H. C., Hill, M. C., Rosbjerg, D., 2004. Investigating the macrodispersion experiment (made) site in columbus, mississippi, using a three-dimensional inverse flow and transport model. Water Resour. Res. 40(4) (W04211). Cerca con Google

Baù, D., Mayer, A., 2008. Optimal design of pump-and-treat systems under uncertain hydraulic conductivity and plume distribution. J. Contam. Hydrol. 100, 30–46. Cerca con Google

Bellin, A., Rubin, Y., Rinaldo, A., 1994. Eulerian-lagrangian approach for modeling of flow and transport in heterogeneous geological formations. Water Resour. Res. 30 (11), 2913–2924. Cerca con Google

Bellin, A., Salandin, P., Rinaldo, A., 1992. Simulation of dispersion in heterogeneous porous formations: Statistics, first order theories, convergence of computations. Water Resour. Res. 28, 2211–2227. Cerca con Google

Binley, A., Cassiani, G., Middleton, R., Winship, P., 2002. Vadose zone flow model parameterisation using cross-borehole radar and resistivity imaging . J. Hydrol. 267, 147–159. Cerca con Google

Boggs, J., Young, S., Beard, L., Gelhar, L., Rehfeldt, K., Adams, E., 1992. Field study of dispersion in a heterogeneous aquifer: 1. overview and site description. Water Resour. Res. 28 (12), 3281–3291. Cerca con Google

Camporese, M., Cassiani, G., Deiana, R., Salandin, P., 2011. Assessment of local hydraulic properties from electrical resistivity tomography monitoring of a three-dimensional syntetic tracer test experiment. Water Resour. Res. 47 (W12508). Cerca con Google

Caroni, E., Fiorotto, V., 2005. Analysis of concentration as sampled in natural aquifers. Trans. Porous Media 59 (1), 19–45. Cerca con Google

Carrera, J., Alcolea, A., Medina, A., Hidalgo, J., Slooten, L. J., 2005. Inverse problem in hydrogeology. Hydrogeol. J. 13, 206–222. Cerca con Google

Certes, C., DeMarsily, G., 1991. Application of the pilot point method to the identification of aquifer transmissivities. Adv. Water Resour. 14, 284–300. Cerca con Google

Chen, X., Murakami, H., Hahn, M. S., Hammond, G. E., Rockhold, M. L., Zachara, J. M., Rubin, Y., 2012. Three-dimensional bayesian geostatistical aquifer characterization at the hanford 300 area using tracer test data. Water Resour. Res. 48 (W06501). Cerca con Google

Chen, Y., Zhang, D., 2006. Data assimilation for transient flow in geologic formations via ensemble kalman filter. Adv. Water Resour. 29, 1107–1122. Cerca con Google

Crestani, E., Camporese, M., Salandin, P., 2010. Hydraulic conductivity assessment via tracer test data assimilation: a comparison of updating techniques. In: Proceedings of the IAHR International Groundwater Symposium 2010. Cerca con Google

Cvetkovic, V., Shapiro, A., Dagan, G., 1992. A solute flux approach transport heterogeneous formations 2. uncertainty analysis. Water Resour. Res. 28 (5), 1377–1388. Cerca con Google

Dafflon, B., Barrash, W., Cardiff, M., Johnson, T., 2011. Hydrological parameter estimations from a conservative tracer test with variable-density effects at the boise hydrogeophysical research site. Water Resour. Res. 47 (W12513), 199–210. Cerca con Google

Dagan, G., 1986. Statistical - theory of groundwater - flow and transport - pore to laboratory, laboratory to formation, and formation to regional scale. Water Resour. Res. 22, S120–S134. Cerca con Google

Dagan, G., 1989. Flow and Transport in Porous Formations. Springer. Cerca con Google

Dagan, G., 1991. Dispersion of a passive solute in non-ergodic transport by steady velocity fields in heterogeneous formations. J. Fluid Mech. 233, 197–210. Cerca con Google

Dagan, G., Cvetkovic, V., Shapiro, A., 1992. A solute flux approach transport heterogeneous formations 1. the general framework. Water Resour. Res. 28 (5), 1369–1376. Cerca con Google

Dagan, G., Nguyen, V., 1989. A comparison of travel time and concentration approaches to modeling transport by groundwater. Journal of Contaminant Hydrology 4 (1), 79–91. Cerca con Google

Doherty, J. E., Fienen, M. N., Hunt, R. J., 2010. Approaches to highly parameterized inversion: Pilot-point theory, guidelines, and research directions. Scientific Investigations Report 2010 5168, U.S. Geological Survey. Cerca con Google

Evensen, G., 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using monte carlo methods to forecast error statistics. J. Geophys. Res. 99(C5), 10143–10162. Cerca con Google

Evensen, G., 2004. Sampling strategies and square root analysis schemes for the EnKF. Ocean Dynam. 54, 539–560. Cerca con Google

Evensen, G., 2009a. Data Assimilation. The ensemble Kalman filter. Springer, New York. Cerca con Google

Evensen, G., 2009b. The ensemble Kalman filter for combined state and parameter estimation. IEEE Contr. Syst. Mag. 29 (3). Cerca con Google

Fu, J., Gomez-Hernandez, J. J., 2009. Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking markov chain monte carlo method. J. Hydrol. 364 (3-4), 328–341. Cerca con Google

Gelhar, L., 1993. Stochastic Subsurface Hydrology. Prentice Hall. Cerca con Google

Gomez-Hernandez, J., Sahuquillo, A., Capilla, J., 1997. Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data - i. theory. J. Hydrol. 203, 162–174. Cerca con Google

Hendricks Franssen, H. J., Alcolea, A., Riva, M., Bakr, M., van der Wiel, N., Stauffer, F., Guadagnini, A., 2009. A comparison of seven methods for the inverse modelling of groundwater flow. application to the characterisation of well catchments. Adv. Water Resour. 32 (6), 851–872. Cerca con Google

Hendricks Franssen, H. J., Gomez-Hernandez, J., Sahuquillo, A., 2003. Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data. J. Hydrol. 281, 281–295. Cerca con Google

Hendricks Franssen, H. J., Kaiser, H. P., Kuhlmann, U., Bauser, G., Stauffer, F., Muller, R., Kinzelbach, W., 2011. Operational real-time modeling with ensemble Kalman filter of variably saturated subsurface flow including stream-aquifer interaction and parameter updating. Water Resour. Res. 47 (W02532). Cerca con Google

Hendricks Franssen, H. J., Kinzelbach, W., 2008. Real-time groundwater flow modeling with the Ensemble Kalman Filter: Joint estimation of states and parameters and the filter inbreeding problem. Water Resour. Res. 44, 1–21. Cerca con Google

Huang, C., Hu, B., Li, X., Ye, M., 2009. Using data assimilation method to calibrate a heterogeneous conductivity field and improve solute transport prediction with an unknown contamination source. Stochastic Environmental Research and Risk Assessment 23, 1155–1167. Cerca con Google

Jafarpour, B., Tarrahi, M., 2011. Assessing the performance of the ensemble kalman filter for subsurface flow data integration under variogram uncertainty. Water Resour.Res. 47 (W05537). Cerca con Google

Kemna, A., Vanderborght, J., Kulessa, B., Vereecken, H., 2002a. Imaging and characterisation of subsurface solute transport using electrical resistivity tomography (ERT) and equivalent transport models. J. Hydrol. 267, 125–146. Cerca con Google

Keppenne, C. L., 2000. Data assimilation into a Primitive-Equation Model with a parallel Ensemble Kalman Filter. Mon. Weather Rev. 128(6), 1971–1981. Cerca con Google

Kowalsky, M. B., Finsterle, S., Williams, K. H., Murray, C., Commer, M., Newcomer, D., Englert, A., Steefel, C. I., Hubbard, S. S., 2012. On parameterization of the inverse problem for estimating aquifer properties using tracer data. Water Resour.Res. 48 (W06535). Cerca con Google

Li, L., Zhou, H., Gomez-Hernandez, J. J., Franssen, H. J. H., 2012. Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble kalman filter. J. Hydrol. 428, 152–169. Cerca con Google

Liu, G., Chen, Y., Zhang, D., 2008. Investigation of flow and transport processes at the MADE site using ensemble Kalman filter. Adv. Water Resour. 31(7), 975–986. Cerca con Google

Liu, X., Cardiff, M., Kitanidis, P., 2010. Parameter estimation in nonlinear environmental problems. Stochastic Environmental Research and Risk Assessment 24, 1003–1022. Cerca con Google

McLaughlin, D., Townley, L. R., 1996. A reassessment of the groundwater inverse problem. Water Resour. Res. 32(5), 1131–1161. Cerca con Google

Nowak, W., 2009. Best unbiased ensemble linearization and the quasi-linear Kalman ensemble generator. Water Resour. Res. 45, 1–17. Cerca con Google

Papoulis, A., Pillai, S., 2002. Probability, random variables, and stochastic processes. McGraw-Hill. Cerca con Google

Perri, M., Cassiani, G., Gervasio, I., Deiana, R., Binley, A., 2012. A saline tracer test monitored via both surface and cross-borehole electrical resistivity tomography: Comparison of time-lapse results. J. Appl. Geophys. 79, 6–16. Cerca con Google

Pollock, D. W., 1988. Semianalytical computation of path lines for finite-difference models. Ground Water 26 (6), 743–750. Cerca con Google

Ptak, T., Piepenbrink, M., Martac, E., 2004. Tracer tests for the investigation of heterogeneous porous media and stochastic modelling of flow and transport - a review of some recent developments. J. Hydrol. 294, 122–163. Cerca con Google

Ramarao, B., Lavenue, A., DeMarsily, G., Marietta, M., 1995. Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields: 1. theory and computational experiments. Water Resour. Res. 31(3), 475–493. Cerca con Google

Robin, M., Gutjahr, A., Suducky, E., Wilson, J., 1993. Cross-correlated random-field generation with the direct fourier-transform method. Water Resour. Res. 29 (7), 2385–2397. Cerca con Google

Rubin, Y., 2003. Applied stochastic hydrogeology. Oxford University Press. Cerca con Google

Rubin, Y., Chen, X., Murakami, H., Hahn, M., 2010. A Bayesian approach for inverse modeling, data assimilation, and conditional simulation of spatial random fields. Water Resour. Res. 46 (W10523). Cerca con Google

Salandin, P., Fiorotto, V., 1998. Solute transport in highly heterogeneous aquifers. Water Resour. Res. 34, 949–961. Cerca con Google

Schoeniger, A., Nowak, W., Hendricks, H. F., 2012. Parameter estimation by ensemble kalman filters with transformed data: Approach and application to hydraulic tomography. Water Resour. Res. 48 (W04502). Cerca con Google

Sposito, G., Dagan, G., 1994. Predicting plume evolution in heterogeneous porous formation. Water Resour. Res. 30(2), 585–589. Cerca con Google

Sun, A. Y., Morris, A., Mohanty, S., 2009. Comparison of deterministic ensemble kalman filters for assimilating hydrogeological data. Adv. Water Resour. 32, 280–292. Cerca con Google

Vrugt, J. A., Robinson, B. A., Vesselinov, V. V., 2005. Improved inverse modeling for flow and transport in subsurface media: Combined parameter and state estimation. Geophysical Research Letters 32 (18), n/a–n/a. Cerca con Google

Vrugt, J. A., Stauff, P. H., Wohling, T., Robinson, B. A., Vesselinov, V. V., 2008. Inverse Modeling of Subsurface Flow and Transport Properties: A Review with New Developments. Vadose Zone J. 7 (2). Cerca con Google

Xie, X., Zhang, D., 2010. Data assimilation for distributed hydrological catchment modeling via ensemble kalman filter. Adv. Water Resour. 33 (6), 678 – 690. Cerca con Google

Yen, B., Cheng, A., Melching, C., 1986. First order reliability analysis, in Stochastic and risk analysis in hydraulic engineering. Water Resources Publications, iSBN 0918334-57-8. Cerca con Google

Zhang, D., Andricevic, R., Sun, A., Hu, X., He, G., 2000. Solute flux approach to transport through spatially nonstationary flow in porous media. Water Resour. Res. 36 (8), 2107–2120. Cerca con Google

Zhou, H., Gomez-Hernandez, J. J., Hendricks Franssen, H.-J., Li, L., 2011. An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Adv. Water Resour. 34, 844–864. Cerca con Google

Zimmerman, D. A., de Marsily, G., Gotway, C. A., Marietta, M. G., Axness, C. L., Beauheim, R. L., Bras, R. L., Carrera, J., Dagan, G., Davies, P. B., Gallegos, D. P.,Galli, A., Gomez-Hernandez, J., Grindrod, P., Gutjahr, A. L., Kitanidis, P. K., Lavenue, A. M., McLaughlin, D., Neuman, S. P., RamaRao, B. S., Ravenne, C., Rubin, Y., 1998. A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resour. Res. 34(6), 1373–1413. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record