Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Sichirollo, Francesco (2013) Novel Offline Switched Mode Power Supplies for Solid State Lighting Applications. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document
7Mb

Abstract (english)

In recent years, high brightness light emitting diodes (HBLEDs) have increasingly attracted the interest of both industrial manufacturers and academic research community. Among the several aspects that make LED technology so attractive, the most appreciated characteristics are related to their robustness, high efficiency, small size, easy dimming capability, long lifetime, very short switch-on/switch-off times and mercury free manufacturing.
Even if all such qualities would seem to give to solid state lighting a clear advantage over all the other kinds of competing technologies, the issues deriving from the need of LED technology improvement, on one hand, and of the development of suitable electronic ballasts to properly drive such solid state light sources, on the other, have so far hindered the expected practical applications.
The latter problem, in particular, is nowadays considered the main bottleneck in view of a widespread diffusion of solid state technology in the general lighting market, as a suitable replacement of the still dominant solutions, namely halogen and fluorescent lamps.
In fact, if it is true that some aspects of the devices’ technology (e.g. temperature dependent performance, light quality, efficiency droop, high price per lumen, etc…) still need further improvements, it is now generally recognized that one of the key requirements, for a large scale spread of solid state lighting, is the optimization of the driver.
In particular, the most important specifications for a LED lamp ballast are: high reliability and efficiency, high power factor, output current regulation, dimming capability, low cost and volume minimization (especially in domestic general lighting applications). From this standpoint, the main goal is, therefore, to find out simple switched mode power converter topologies, characterized by reduced component count and low current/voltage stresses, that avoid the use of short lifetime devices like electrolytic capacitors. Moreover, if compactness is a major issue, also soft switching capability becomes mandatory, in order to enable volume minimization of the reactive components by increasing the switching frequency in the range of the hundreds of kHz without significantly affecting converter’s efficiency.
It is worth mentioning that, in order to optimize HBLED operation, also other matters, like the lamp thermal management concern, should be properly addressed in order to minimize the stress suffered by the light emitting devices and, consequently, the deterioration of the light quality and of the expected lamp lifetime. However, being this work focused on the issues related to the research of innovative driving solutions, the aforementioned thermal management problems, as also all the topics related to the improvement of solid state devices’ technology, will be left aside.
The main goal of the work presented in this thesis is, indeed, to find out, analyze and optimize new suitable topologies, capable of matching the previously described specifications and also of successfully facing the many challenges dictated by the future of general lighting.
First of all, a general overview of solid state lighting features, of the state of the art of lighting market and of the main LED driving issues will be provided.
After this first introduction, the offline driving concern will be extensively discussed and different ways of approaching the problem, depending on the specific application considered, will be described.
The first kind of approach investigated is based on the use of a simple structure relying on a single power conversion stage, capable of concurrently ensuring: compliance with the standards limiting the input current harmonics, regulation of the load current and also galvanic isolation. The constraints deriving from the need to fulfil the EN 61000-3-2 harmonics standard requirements, when using such kind of solution for low power (<15W) LED driving purposes, will be extensively discussed.
A low cost, low component count, high switching frequency converter, based on the asymmetrical half bridge flyback topology, has been studied, developed and optimized. The simplicity and high compactness, characterizing this solution, make it a very good option for CFL and bulb replacement applications, in which volume minimization is mandatory in order to reach the goal of placing the whole driving circuitry in the standard E27 sockets. The analysis performed will be presented, together with the design procedure, the simulation outcomes and the different control and optimization techniques that were studied, implemented and tested on the converter's laboratory prototype.
Another interesting approach, that will be considered, is based on the use of integrated topologies in which two different power conversion stages are merged by sharing the same power switch and control circuitry.
In the resulting converter, power factor correction and LED current regulation are thus performed by two combined semi-stages in which both the input power and the output current have to be managed by the same shared switch. Compared with a conventional two-stages configuration, lower circuit complexity and cost, reduced component count and higher compactness can be achieved through integration, at cost of increased stress levels on the power switch and of losing a degree of freedom in converter design. Galvanic isolation can be provided or not depending on the topologies selected for integration. If non-isolated topologies are considered for both semi-stages, the user safety has to be guaranteed by assuring mechanical isolation throughout the LED lamp case.
The issue, deriving from the need of smoothing the pulsating power absorbed from the line while avoiding the use of short lifetime electrolytic capacitors, will be addressed. A set of integrated topologies, used as HBLED lamp power supplies, will be investigated and a generalized analysis will be presented. Their input line voltage ripple attenuation capability will be examined and a general design procedure will be described.
Moreover, a novel integrated solution, based on the use of a double buck converter, for an about 15W rated down-lighting application will be presented. The analysis performed, together with converter design and power factor correction concerns will be carefully discussed and the main outcomes of the tests performed at simulation level will be provided.
The last kind of approach to be discussed is based on a multi-stage structure that results to be a suitable option for medium power applications, like street lighting, in which compactness is not a major concern.
By adopting such kind of solution it is, indeed, possible to optimize converter’s behavior both on line and on load side, thereby guaranteeing both an effective power factor correction at the input and proper current regulation and dimming capability at the output.
Galvanic isolation can be provided either by the input or the output stage, resulting in a standard two stage configuration, or by an additional intermediate isolated DC-DC stage (operating in open loop with a constant input/output voltage conversion ratio) that namely turns the AC/DC converter topology into a three stage configuration. The efficiency issue, deriving from the need of multiple energy processing along the path between the utility grid and the LED load, can be effectively addressed thanks to the high flexibility guaranteed by this structure that, relaxing the design constraint, allows to easily optimize each stage.
A 150W nominal power rated ballast for street solid state lighting applications, based on the latter (three stage) topology, has been investigated. The analysis performed, the design procedure and the simulations outcomes will be carefully described, as well as the experimental results of the tests made on the implemented laboratory prototype.

Abstract (italian)

Negli ultimi anni i dispositivi LED di potenza ad elevata luminosità (HBLED) hanno attirato in misura sempre crescente l'interesse della comunità scientifica, sia all'interno del mondo accademico che di quello industriale. Tra le varie caratteristiche, che rendono questo tipo di tecnologia interessante, le qualità più apprezzate sono certamente: la robustezza, l'elevata efficienza, le piccole dimensioni, la facilità di modulazione dell'intensità luminosa, il lungo tempo di vita, l'estrema rapidità di accensione e spegnimento e l'assenza di mercurio.
Nonostante tutti questi aspetti sembrino dare alla tecnologia a stato solido un netto vantaggio rispetto alle tecnologie concorrenti, l'utilizzo dei LED di potenza nel campo dell'illuminazione rimane a tutt'oggi abbastanza limitato. La necessità di ulteriori progressi nella tecnologia dei dispositivi, da un lato, e dello sviluppo di soluzioni in grado di garantirne il corretto ed efficiente pilotaggio, dall'altro, ne hanno, infatti, fino ad ora frenato la diffusione rispetto alle attese.
Quest'ultimo aspetto, in particolare, è al giorno d'oggi considerata il vero "collo di bottiglia" in vista dell'impiego su larga scala della tecnologia a stato solido, in sostituzione delle soluzioni, tutt'ora dominanti nel mercato dell'illuminazione, basate sull'utilizzo di lampade alogene e a fluorescenza.
Se, da un lato, infatti, è vero che alcuni aspetti della tecnologia dei dispositivi (e.g. variabilità delle prestazioni con la temperatura, qualità della luce, calo dell'efficienza luminosa con l'aumentare della corrente, elevato costo per lumen, ecc...) necessitano di essere ulteriormente perfezionati, dall'altro è ormai universalmente riconosciuto che l'elemento chiave per l'ampia diffusione dell'illuminazione a stato solido è proprio l'ottimizzazione dello stadio di alimentazione.
In particolare, le specifiche più importati che un ballast per lampade a LED è tenuto a soddisfare sono: elevata affidabilità ed efficienza, elevato fattore di potenza, capacità di regolazione della corrente di uscita e di modulazione del flusso luminoso, basso costo e minimo ingombro (soprattutto nell'illuminazione domestica). L'obiettivo principale è, quindi, riuscire ad ideare soluzioni basate sull'utilizzo di topologie semplici, caratterizzate da ridotto numero di componenti e limitati livelli di stress di corrente e tensione, che non prevedano l'impiego di componenti con breve tempo di vita come i condensatori elettrolitici. Inoltre, nelle applicazioni in cui la compattezza è considerata uno degli aspetti di maggior rilievo, anche la capacità di operare in soft-switching diviene una specifica indispensabile. Ciò è infatti necessario al fine di permettere la minimizzazione del volume delle componenti reattive, tramite l'aumento della frequenza di commutazione nel range delle centinaia di kHz, senza compromettere l'efficienza del convertitore.
Per completezza, vale la pena di ricordare che, per ottimizzare il funzionamento dei LED ad elevata luminosità, andrebbero presi in considerazione anche altri aspetti, come ad esempio le problematiche legate alla gestione del calore dissipato dalla lampada, importanti al fine di limitare gli stress termici subiti dai dispositivi e, di conseguenza, migliorare la qualità della luce emessa e massimizzare il tempo di vita della lampada.
Tuttavia, essendo il lavoro presentato in questa tesi centrato sulle questioni relative allo stadio di alimentazione, i suddetti problemi di gestione termica, come anche gli aspetti relativi allo sviluppo della tecnologia dei dispositivi non verranno esaminati.
L'obiettivo principale del lavoro che verrà descritto nel corso dei prossimi capitoli, è, infatti, la ricerca di soluzioni innovative per il pilotaggio da rete elettrica di lampade basate su tecnologia a stato solido. Verranno pertanto approfonditamente trattate le tematiche relative ad analisi, ottimizzazione e sviluppo di topologie che siano in grado di soddisfare i requisiti precedentemente enunciati e di affrontare con successo le sfide proposte dalla continua evoluzione dello scenario del "general lighting".
Per prima cosa, sarà fornita una visione di insieme riguardante lo stato dell'arte del mercato dell'illuminazione, le caratteristiche dei dispositivi di illuminazione a stato solido ed i principali aspetti relativi al loro pilotaggio.
Dopo questa prima sezione introduttiva, la tematica relativa all'alimentazione da rete elettrica di tali dispositivi verrà approfonditamente discussa. Differenti modi di approcciare il problema, a seconda della specifica applicazione considerata, verranno discussi.
Il primo tipo di approccio che verrà esaminato si basa sull'uso di una semplice struttura, formata da un singolo stadio di conversione di potenza. Essa è in grado di fornire al contempo il rispetto degli standard che limitano il contenuto armonico della corrente di ingresso, l'isolamento galvanico e la regolazione della corrente e dell'intensità luminosa in uscita.
I vincoli, dettati dall'esigenza di garantire il rispetto della normativa EN 61000-3-2, in applicazioni di bassa potenza (<15W) prive di uno stadio dedicato alla correzione del fattore di potenza, verranno approfonditamente trattati.
Saranno, poi, illustrati i risultati dello studio, sviluppo ed ottimizzazione di un convertitore a singolo stadio, operante ad elevata frequenza di commutazione, basato sulla topologia flyback a mezzo ponte asimmetrico. La semplicità, il ridotto numero di componenti ed il basso costo, che caratterizzano tale tipo di soluzione, la rendono adatta all'alimentazione di lampade per il settore residenziale, in cui la compattezza dello stadio di alimentazione è di fondamentale importanza al fine di consentirne l'alloggiamento nei classici socket E27. L'analisi effettuata, la procedura di progetto ed risultati ottenuti in simulazione ed a livello sperimentale durante lo studio di tale topologia verranno accuratamente descritti e discussi.
Un altro interessante tipo di approccio che verrà considerato si basa sull'utilizzo di topologie integrate, nelle quali due diversi stadi di conversione vengono uniti tramite la condivisione dello stesso interruttore di potenza e della relativa circuiteria di comando.
Nel convertitore che ne risulta, la correzione del fattore di potenza e la regolazione della corrente nei LED saranno dunque garantite dalla combinazione dei due semi-stadi, il cui interruttore comune dovrà essere in grado di gestire sia la potenza di ingresso che la corrente di uscita.
Rispetto alla configurazione a due stadi convenzionale, la soluzione ottenuta tramite l'integrazione consente una minore complessità circuitale, un ridotto numero di componenti e, di conseguenza, una maggiore compattezza ed un minor costo. Tutto ciò viene guadagnato a scapito di un maggiore livello di stress nei componenti e della perdita di un grado di libertà nel progetto del convertitore. L'isolamento galvanico può essere garantito o meno a seconda del tipo di topologie che vengono selezionate per l'integrazione. Se la scelta ricade su topologie non isolate, la sicurezza dell'utente andrà comunque garantita isolando meccanicamente l'involucro della lampada.
I problemi legati alla necessità di smorzare la componente alternata della potenza assorbita dalla rete, evitando al contempo l'utilizzo di componenti con basso tempo di vita, come i condensatori elettrolitici, verranno discussi. A tal proposito si studieranno le caratteristiche di un insieme di topologie integrate, al fine di fornirne un'analisi ed una procedura di design generalizzate. Se ne esaminerà, inoltre, la capacità di attenuare la componente ondulatoria della tensione di ingresso che viene trasferita al carico, dove si traduce in un'oscillazione della corrente di alimentazione fornita ai LED.
Verrà proposta, poi, una soluzione basata su una topologia derivante dall'integrazione di due convertitori di tipo step-down (abbassatori di tensione), per applicazioni di "down-lighting", dimensionata per una potenza di circa 15W. Se ne discuteranno, in particolare, i dettagli di maggiore interesse relativi all'analisi effettuata, alla procedura di progetto ed ai risultati dei test effettuati in ambiente di simulazione.
L'ultimo tipo di approccio considerato prevede, infine, l'utilizzo di una topologia multi-stadio, ritenuta una scelta appropriata soprattutto per applicazioni lighting di potenza elevata (>60W), come l'illuminazione stradale, in cui la compattezza dell'alimentatore non è ritenuta un aspetto di primaria importanza.
Tramite questo tipo di soluzione è, infatti, possibile ottimizzare le prestazioni del convertitore sia dal lato della rete che dal lato del carico. Si riescono a garantire, in tal modo, un'efficace correzione del fattore di potenza, un adeguato controllo della corrente di uscita ed un'appropriata modulazione del flusso luminoso emesso dalla lampada.
L'isolamento galvanico può essere fornito dallo stadio di ingresso o da quello di uscita o da un aggiuntivo stadio DC-DC intermedio, operante a catena aperta con rapporto di conversione di tensione costante. In quest'ultimo caso la struttura del convertitore, si trasforma, dalla classica configurazione a due stadi, in una topologia a triplo stadio.
Il problema che nasce dalla necessità di assicurare un elevato livello di efficienza del sistema, nonostante l'interposizione di ripetuti stadi di conversione dell'energia tra la rete ed il carico a LED, può essere efficacemente risolto grazie alla flessibilità che caratterizza tale tipo di struttura. L'aumento del numero dei gradi di libertà in fase progettuale permette, infatti, di ottimizzare con semplicità ogni singolo stadio.
Per comprovare limiti e potenzialità di tale tipo di approccio, si è deciso di studiare un ballast (dimensionato per una potenza nominale di 150W) basato sulla topologia a triplo stadio precedentemente menzionata, per applicazioni nell'ambito dell'illuminazione stradale. L'analisi condotta, la procedura di progetto ed i risultati delle simulazioni effettuate verranno discussi nel dettaglio, così come i risultati sperimentali dei test di laboratorio effettuati sul prototipo costruito.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Spiazzi, Giorgio
Ph.D. course:Ciclo 25 > Scuole 25 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:30 January 2013
Anno di Pubblicazione:30 January 2013
Key Words:Illuminazione a stato solido / Solid state lighting LED / LED Converitori a commutazione / Switched mode power supplies Convertitori AC-DC / AC-DC Converters
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/01 Elettronica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:5839
Depositato il:11 Oct 2013 15:01
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] "Key World Energy Statistics"; International Energy Agency; 2012. Cerca con Google

[2] "World Energy Outlook"; International Energy Agency; 2012. Cerca con Google

[3] "Buildings Energy Data Book 2011" prepared by D&R International, Ltd. under contract to Pacific Northwest National Laboratory, for the Buildings Technologies Program, Office of Energy Efficiency and Renewable Energy - U.S. Department of Energy; March 2012. Cerca con Google

[4] "Phasing out incandescent bulbs in the EU"; European Commission Technical briefing and Regulation as endorsed by the Member States' committee meeting of 8 December 2008. Cerca con Google

[5] "2010 U.S. Lighting Market Characterization"; prepared by Navigant Consulting, Inc., for the Solid-State Lighting Program and Building Technologies Program, Office of Energy Efficiency and Renewable Energy - U.S. Department of Energy; January 2012. Cerca con Google

[6] CIE (1932); Commission Internationale de l'Eclairage proceedings, 1931; Cambridge University Press. Cerca con Google

[7] "The illuminance handbook", Metrel, Code No. 20 750 690, Copyright 2002. Cerca con Google

[8] "Light and Health"; Ahmet Çakir, Gisela Çakir; Ergonomic Institute for Occupational and Social Sciences Research Company Ltd.; Berlin 1998. Cerca con Google

[9] "Psychological processes influencing lighting quality"; Jennifer A. Veitch; Journal of the Illuminating Engineering Society, v. 30, no. 1, pp. 124-140, 2001. Cerca con Google

[10] "Best available techniques and sustainable development - features for the lighting design"; Albu H., Beu D., Pop F.; Technical University of Cluj-Napoca, Lighting Engineering Laboratory, Romania. Cerca con Google

[11] "Good Lighting for Healthcare Buildings – Some Basics"; a report by Stefan Lang Managing Director, SIS-LICHT Gebr. Lang GmbH & Co. KG; Business Briefing : Hospital Engineering & Facilities Management; 2004. Cerca con Google

[12] "LED Luminaire Design Guide"; Application Note by Cree Inc. CLD-AP15 rev 0A, Copyright 2007-2012. Cerca con Google

[13] "National Lighting Inventory and Energy Consumption Estimate"; prepared by Navigant Consulting Inc., for the Building Technologies Program, Office of Energy Efficiency and Renewable Energy - U.S. Department of Energy; September 2002. Cerca con Google

[14] "The Life and Times of the LED - a 100-Year History"; Nikolay Zheludev, Optoelectronics Research Centre, University of Southampton, SO17 1BJ, UK.; Nature Publishing Group, 2007. Cerca con Google

[15] "Solid-State Lighting Research and Development: Manufacturing Roadmap"; Prepared by: Bardsley Consulting, Navigant Consulting Inc., Radcliffe Advisors Inc., SB Consulting, SSLS Inc., for the Lighting Research and Development Building Technologies Program, Office of Energy Efficiency and Renewable Energy - U.S. Department of Energy; August 2012. Cerca con Google

[16] "Basic research needs for solid-state lighting"; Report of the Basic Energy Sciences Workshop on Solid-State Lighting; May 22-26, 2006. Cerca con Google

[17] Yat Li, Fang Qian, Jie Xiang and Charles M. Lieber; "Nanowire Electronic and Optoelectronic Devices"; Materials Today, Volume 9, Number 10, October 2006. Cerca con Google

[18] "Solid-State Lighting Research and Development: Multi-Year Project Plan"; prepared by: Bardsley Consulting, Navigant Consulting Inc., Radcliffe Advisors Inc., SB Consulting and Solid State Lighting Services Inc., for the Lighting Research and Development Building Technologies Program, Office of Energy Efficiency and Renewable Energy - U.S. Department of Energy; April 2012. Cerca con Google

[19] "Probabilistic Cost of Light Models for Solid State Lighting in General Illumination Markets"; Brad Powley James Sweeney Stanford University, Precourt Institute for Energy Efficiency; May 27, 2008. Cerca con Google

[20] "Analysis of LED Technologies for Solid State Lighting Markets"; Cheng-Chih Hsieh; Electrical Engineering and Computer Sciences University of California at Berkeley, Technical Report No. UCB/EECS-2012-156; June 2, 2012. Cerca con Google

[21] EN61000-3-2 Edition 2.2; Limits for Harmonic Current Emissions; 2004. Cerca con Google

[22] "ENERGY STAR® Program Requirements for Solid State Lighting Luminaires - Eligibility Criteria" ; Energy Star; December 19, 2008. Cerca con Google

[23] H. Van der Broeck, G. Sauerländer, M. Wendt, “Power driver topologies and control schemes for LEDs” IEEE Applied Power Electronics Conf. Proc. (APEC), 2007, February 25-March 1, pp. 1319-1325. Cerca con Google

[24] Bing Lu; Wenduo Liu; Yan Liang; Lee, F.C.; Van Wyk, J.D.; , "Optimal design methodology for LLC resonant converter" Applied Power Electronics Conference and Exposition, 2006. APEC '06. Twenty-First Annual IEEE , vol., no., pp. 6 pp., 19-23 March 2006 Cerca con Google

[25] De Simone, S.; Adragna, C.; Spini, C.; Gattavari, G.; "Design-oriented steady-state analysis of LLC resonant converters based on FHA"; Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006. International Symposium on , vol., no., pp.200-207, 23-26 May 2006 Cerca con Google

[26] C. Adragna, S. De Simone, C. Spini, "A design Methodology for LLC Resonant Converters Based on Inspection of Resonant Tank Currents"; IEEE Applied Power Electronics Conf. (APEC), 2008, pp. 1361-1367. Cerca con Google

[27] Choi, Hangseok; "Analysis and Design of LLC Resonant Converter with Integrated Transformer" Applied Power Electronics Conference, APEC 2007 - Twenty Second Annual IEEE , vol., no., pp.1630-1635, Feb. 25 2007-March 1 2007. Cerca con Google

[28] G. Huang, A. J. Zhang and Y. Gu, “LLC series resonant dc-to-dc converter”; US patent 6344979 B1, Feb.2002. Cerca con Google

[29] Rong-Tai Chen; Yung-Yaw Chen; Yueh-Ru Yang; , "Single-Stage Asymmetrical Half-Bridge Regulator With Ripple Reduction Technique" Power Electronics, IEEE Transactions on , vol.23, no.3, pp.1358-1369, May 2008. Cerca con Google

[30] Mishima, T.; Nakaoka, M.; "Performance evaluation on a fixed-frequency ZCS-PWM asymmetrical half-bridge DC-DC converter with auxiliary Active Edge-Resonant Snubber"; Power Electronics Specialists Conference, 2008. PESC 2008. IEEE , vol., no., pp.2177-2183, 15-19 June 2008. Cerca con Google

[31] Arias, M.; Fernandez, M.; Gonzalez, D.; Sebastian, J.; Balocco, D.; Diallo, A.; "Improving the design of the asymmetrical half-bridge converter without electrolytic capacitor for low-output-voltage ac-dc LED drivers"; Energy Conversion Congress and Exposition (ECCE), 2012 IEEE , vol., no., pp.3241-3248, 15-20 Sept. 2012. Cerca con Google

[32] Oruganti, R.; Phua Chee Heng; Guan, J.T.K.; Liew Ah Choy; "Soft-switched DC/DC converter with PWM control"; Power Electronics, IEEE Transactions on , vol.13, no.1, pp.102-114, Jan 1998. Cerca con Google

[33] Tsai-Fu Wu; Jin-Chyuan Hung; Sheng-Yu Tseng; Yaow-Ming Chen; "A single-stage fast regulator with PFC based on an asymmetrical half-bridge topology"; Industrial Electronics, IEEE Transactions on , vol.52, no.1, pp. 139- 150, Feb. 2005. Cerca con Google

[34] Zhongming Ye; Greenfeld, F.; Zhixiang Liang; "A topology study of single-phase offline AC/DC converters for high brightness white LED lighting with power factor pre-regulation and brightness dimmable"; Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE , vol., no., pp.1961-1967, 10-13 Nov. 2008. Cerca con Google

[35] Mishima, T.; Nakaoka, M.; "A Novel High-Frequency Transformer-Linked Soft-Switching Half-Bridge DC–DC Converter With Constant-Frequency Asymmetrical PWM Scheme"; Industrial Electronics, IEEE Transactions on , vol.56, no.8, pp.2961-2969, Aug. 2009. Cerca con Google

[36] Choi, W.Y.; Kwon, J.M.; Kwon, B.H.; "Efficient LED back-light power supply for liquid-crystal-display" Electric Power Applications, IET , vol.1, no.2, pp.133-142, March 2007. Cerca con Google

[37] Taheri, M.; Milimonfared, J.; Bayat, H.; Fathi, S.H.; "Analysis, design and implementation of a new zerovoltage- switching interleaved asymmetrical half bridge converter using an integrated transformer"; Power Electronics, IET , vol.5, no.9, pp.1912-1922, November 2012. Cerca con Google

[38] Tso-Min Chen; Chern-Lin Chen; "Characterization of asymmetrical half bridge flyback converter"; Power Electronics Specialists Conference, 2002. pesc 02. 2002 IEEE 33rd Annual , vol.2, no., pp. 921- 926 vol.2, 2002. Cerca con Google

[39] Chen, T.-M.; Chen, C.-L.; "Analysis and design of asymmetrical half bridge flyback converter"; Electric Power Applications, IEE Proceedings - , vol.149, no.6, pp. 433- 440, Nov 2002. Cerca con Google

[40] Han Li; Wenjun Zhou; Shiping Zhou; Xiao Yi; , "Analysis and design of high frequency asymmetrical half bridge flyback converter"; Electrical Machines and Systems, 2008. ICEMS 2008. International Conference on , vol., no., pp.1902-1904, 17-20 Oct. 2008. Cerca con Google

[41] Kim, H.; Jung, J.; Baek, J.; Kim, H.; "Analysis and Design of a Multi-output Converter using Asymmetrical PWM Half-bridge Flyback Converter Employing a Parallel-series Transformer"; Industrial Electronics, IEEE Transactions on , vol.PP, no.99, pp.1, 0. Cerca con Google

[42] Sung-Sae Lee; Sang-Kyoo Han; Gun-Woo Moon; "Analysis and design of asymmetrical ZVS PWM half bridge forward converter with flyback type transformer"; Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual , vol.2, no., pp. 1525- 1530 Vol.2, 20-25 June 2004. Cerca con Google

[43] Xu, X.; Khambadkone, A.M.; Oruganti, R.; , "An asymmetrical half bridge flyback converter with zero-voltage and zero-current switching" Industrial Electronics Society, 2004. IECON 2004. 30th Annual Conference of IEEE , vol.1, no., pp. 767- 772 Vol. 1, 2-6 Nov. 2004. Cerca con Google

[44] Li-Ming Wu; Chen-Yin Pong; , "A half bridge flyback converter with ZVS and ZCS operations"; Power Electronics, 2007. ICPE '07. 7th Internatonal Conference on , vol., no., pp.876-882, 22-26 Oct. 2007. Cerca con Google

[45] Kwon, J.-M.; Choi, W.-Y.; Do, H.-L.; Kwon, B.-H.; "Single-stage half-bridge converter using a coupled-inductor"; Electric Power Applications, IEE Proceedings - , vol.152, no.3, pp. 748- 756, 6 May 2005. Cerca con Google

[46] Jeong, G.-Y.; "High efficiency asymmetrical half-bridge flyback converter using a new voltage-driven synchronous rectifier"; Power Electronics, IET , vol.3, no.1, pp.18-32, January 2010. Cerca con Google

[47] Bor-Ren Lin; Cheng-Chang Yang; Wang, D.; "Analysis, design and implementation of an asymmetrical half-bridge converter"; Industrial Technology, 2005. ICIT 2005. IEEE International Conference on , vol., no., pp.1209-1214, 14-17 Dec. 2005. Cerca con Google

[48] Jee-Hoon Jung; Joong-Gi Kwon; "Soft switching and optimal resonance conditions of APWM HB flyback converter for high efficiency under high output current"; Power Electronics Specialists Conference, 2008. PESC 2008. IEEE , vol., no., pp.2994-3000, 15-19 June 2008. Cerca con Google

[49] Tso-Min Chen; Chern-Lin Chen; "Small-Signal Modeling of Asymmetrical Half Bridge Flyback Converter"; Power Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th International , vol.1, no., pp.1-5, 14-16 Aug. 2006. Cerca con Google

[50] Medini, D.; Ben-Yaakov, S.; "A current-controlled variable-inductor for high frequency resonant power circuits"; Applied Power Electronics Conference and Exposition, 1994. APEC '94. Conference Proceedings 1994., Ninth Annual , vol., no., pp.219-225 vol.1, 13-17 Feb 1994. Cerca con Google

[51] Gulko, M.; Medini, D.; Ben-Yaakov, S.; "Inductor-controlled current-sourcing resonant inverter and its application as a high pressure discharge lamp driver"; Applied Power Electronics Conference and Exposition, 1994. APEC '94. Conference Proceedings 1994., Ninth Annual , vol., no., pp.434-440 vol.1, 13-17 Feb 1994. Cerca con Google

[52] Ben-Yaakov, S.; Peretz, M.M.; "A self-adjusting sinusoidal power source suitable for driving capacitive loads"; Power Electronics, IEEE Transactions on , vol.21, no.4, pp. 890- 898, July 2006. Cerca con Google

[53] Yuequan Hu; Huber, L.; Jovanovic´, M.M.; "Single-Stage, Universal-Input AC/DC LED Driver With Current-Controlled Variable PFC Boost Inductor"; Power Electronics, IEEE Transactions on , vol.27, no.3, pp.1579-1588, March 2012. Cerca con Google

[54] Wolfle, W.H.; Hurley, W.G.; , "Quasi-active power factor correction with a variable inductive filter: theory, design and practice"; Power Electronics, IEEE Transactions on , vol.18, no.1, pp. 248- 255, Jan 2003. Cerca con Google

[55] Mu Xianmin; Wang Jianze; Ji Yanchao; Wei Xiaoxia; Fu Xiangyun; , "Novel Harmonic Free Single Phase Variable Inductor Based on Active Power Filter Strategy," Power Electronics and Motion Control Conference, 2006. IPEMC 2006. CES/IEEE 5th International , vol.3, no., pp.1-4, 14-16 Aug. 2006. Cerca con Google

[56] Hooper, R.; Guy, B.; Perrault, R.; "A current-controlled variable inductor"; Instrumentation & Measurement Magazine, IEEE , vol.14, no.4, pp.39-44, Aug. 2011. Cerca con Google

[57] Alonso, J.M.; Dalla-Costa, M.A.; Cardesin, J.; Garcia, J.; "Magnetic dimming of electronic ballasts" Electronics Letters , vol.41, no.12, pp. 718- 719, 9 June 2005. Cerca con Google

[58] Marques, H.V.; Seidel, A.R.; Perdiga~o, M.S.; Alonso, J.M.; Saraiva, E.S.; "Constant-Frequency Magnetically Controlled Universal Ballast With SoS Compliance for TL5 Fluorescent Lamps"; Power Electronics, IEEE Transactions on , vol.27, no.4, pp.2163-2175, April 2012. Cerca con Google

[59] Borekci, S.; "Dimming Electronic Ballasts Without Striations"; Industrial Electronics, IEEE Transactions on , vol.56, no.7, pp.2464-2468, July 2009. Cerca con Google

[60] Nakamura, K.; Ichinokura, O.; Maeda, M.; Akatsuka, S.; Takasugi, K.; Sato, H.; "Analysis of orthogonal-core type linear variable inductor and application to VAr compensator"; Magnetics, IEEE Transactions on , vol.36, no.5, pp.3565-3567, Sep 2000. Cerca con Google

[61] Wolfle, W.; Hurley, W.G.; Lambert, S.; "Quasi-active power factor correction: the role of variable inductance"; Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual , vol.4, no., pp.2078-2083 vol. 4, 2001. Cerca con Google

[62] Boeke, U.; "Scalable fluorescent lamp driver using magnetic amplifiers"; Power Electronics and Applications, 2005 European Conference on , vol., no., p.10. Cerca con Google

[63] su, J.-U.W.; Hu, A.P.; Swain, A.; Xin Dai; Yue Sun; "A new contactless power pick-up with continuous variable inductor control using magnetic amplifier"; Power System Technology, 2006. PowerCon 2006. International Conference on , vol., no., pp.1-8, 22-26 Oct. 2006. Cerca con Google

[64] Perdigao, M.S.; Alonso, J.M.; Dalla Costa, M.A.; Saraiva, E.S.; "Comparative Analysis and Experiments of Resonant Tanks for Magnetically Controlled Electronic Ballasts"; Industrial Electronics, IEEE Transactions on , vol.55, no.9, pp.3201-3211, Sept. 2008. Cerca con Google

[65] Kislovski, A.S.; "Linear variable inductor in DC current sensors utilized in telecom solar battery chargers"; Telecommunications Energy Conference, 1989. INTELEC '89. Conference Proceedings., Eleventh International , vol., no., pp.23.2/1-23.2/3 vol.2, 15-18 Oct 1989. Cerca con Google

[66] Vollin, J.; Tan, F.D.; Cuk, S.M.; "Magnetic regulator modeling"; Applied Power Electronics Conference and Exposition, 1993. APEC '93. Conference Proceedings 1993., Eighth Annual , vol., no., pp.604-611, 7-11 Mar 1993. Cerca con Google

[67] Kislovski, A.S.; "Linear variable inductor (LVI) in single-phase telecom rectifiers"; Telecommunications Energy Conference, 1995. INTELEC '95., 17th International , vol., no., pp.93-98, 29 Oct-1 Nov 1995. Cerca con Google

[68] Kislovski, A.S.; "Relative incremental permeability of soft ferrites as a function of the magnetic field H: an analytic approximation"; Power Electronics Specialists Conference, 1996. PESC '96 Record., 27th Annual IEEE , vol.2, no., pp.1469-1475 vol.2, 23-27 Jun 1996. Cerca con Google

[69] Rozanov, E.; Ben-Yaakov, S.; "A SPICE behavioral model for current-controlled magnetic inductors"; Electrical and Electronics Engineers in Israel, 2004. Proceedings. 2004 23rd IEEE Convention of , vol., no., pp. 338- 341, 6-7 Sept. 2004. Cerca con Google

[70] Perdigao, M.S.; Alonso, J.M.; Dalla Costa, M.A.; Saraiva, E.S.; "A variable inductor MATLAB/Simulink behavioral model for application in magnetically-controlled electronic ballasts"; Power Electronics, Electrical Drives, Automation and Motion, 2008. SPEEDAM 2008. International Symposium on , vol., no., pp.349-354, 11-13 June 2008. Cerca con Google

[71] Alonso, J.M.; Dalla Costa, M.A.; Rico-Secades, M.; Cardesin, J.; Garcia, J.; "Investigation of a New Control Strategy for Electronic Ballasts Based on Variable Inductor"; Industrial Electronics, IEEE Transactions on , vol.55, no.1, pp.3-10, Jan. 2008. Cerca con Google

[72] Perdigao, M.S.; Alonso, J.M.; Costa, M.A.D.; Saraiva, E.S.; "Using Magnetic Regulators for the Optimization of Universal Ballasts"; Power Electronics, IEEE Transactions on , vol.23, no.6, pp.3126-3134, Nov. 2008. Cerca con Google

[73] Sewell, H.I.; Stone, D.A.; Howe, D.; , "Dynamic load impedance correction for induction heaters" Power Electronics and Drive Systems, 1999. PEDS '99. Proceedings of the IEEE 1999 International Conference on , vol.1, no., pp.110-115 vol.1, 1999. Cerca con Google

[74] Leung-Pong Wong; Yim-Shu Lee; David Ki-Wai Cheng; "A new approach to the analysis and design of integrated magnetics"; Applied Power Electronics Conference and Exposition, 2001. APEC 2001. Sixteenth Annual IEEE , vol.2, no., pp.1196-1202 vol.2, 2001. Cerca con Google

[75] Valdivia, V.; Pleite, J.; Zumel, P.; Gonzalez, C.; "Improving design of integrated magnetics for power electronics converters"; Electronics Letters , vol.44, no.11, pp.693-694, May 22 2008. Cerca con Google

[76] Orietti, E.; Mattavelli, P.; Spiazzi, G.; Adragna, C.; Gattavari, G.; "Two-phase interleaved LLC resonant converter with current-controlled inductor"; Power Electronics Conference, 2009. COBEP '09. Brazilian , vol., no., pp.298-304, Sept. 27 2009-Oct. 1 2009. Cerca con Google

[77] Alonso, J.M.; Perdiga~o, M.S.; Vaquero, D.G.; Calleja, A.J.; Saraiva, E.S.; "Analysis, Design, and Experimentation on Constant-Frequency DC-DC Resonant Converters With Magnetic Control" Power Electronics, IEEE Transactions on , vol.27, no.3, pp.1369-1382, March 2012. Cerca con Google

[78] Garcia, J.; Calleja, A.J.; Corominas, E.L.; Gacio, D.; Campa, L.; Diaz, R.E.; , "Integrated driver for power LEDs"; IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society , vol., no., pp.2578-2583, 7-10 Nov. 2010. Cerca con Google

[79] Tsai-Fu Wu; Te-Hung Yu; "Off-line applications with single-stage converters"; Industrial Electronics, IEEE Transactions on , vol.44, no.5, pp.638-647, Oct 1997. Cerca con Google

[80] Tsai-Fu Wu; Shih-An Liang; Yu-Kai Chen; "High-power-factor single-stage converter with robust controller for universal off-line applications"; Power Electronics, IEEE Transactions on , vol.14, no.6, pp.1078-1085, Nov 1999. Cerca con Google

[81] Willers, M.J.; Egan, M.G.; Daly, S.; Murphy, J.M.D.; "Analysis and design of a practical discontinuous-conduction-mode BIFRED converter"; Industrial Electronics, IEEE Transactions on , vol.46, no.4, pp.724-733, Aug 1999. Cerca con Google

[82] Ferdowsi, M.; Emadi, A.; "Pulse regulation control technique for integrated high-quality rectifier-regulators"; Industrial Electronics, IEEE Transactions on , vol.52, no.1, pp. 116- 124, Feb. 2005. Cerca con Google

[83] Madigan, M.T.; Erickson, R.W.; Ismail, E.H.; "Integrated high-quality rectifier-regulators"; Industrial Electronics, IEEE Transactions on , vol.46, no.4, pp.749-758, Aug 1999. Cerca con Google

[84] Redl, R.; Balogh, L.; Sokal, N.O.; "A new family of single-stage isolated power-factor correctors with fast regulation of the output voltage"; Power Electronics Specialists Conference, PESC '94 Record., 25th Annual IEEE , vol., no., pp.1137-1144 vol.2, 20-25 Jun 1994. Cerca con Google

[85] Lu, D.D.-C.; Iu, H.H.-C.; Pjevalica, V.; "A Single-Stage AC/DC Converter With High Power Factor, Regulated Bus Voltage, and Output Voltage"; Power Electronics, IEEE Transactions on , vol.23, no.1, pp.218-228, Jan. 2008. Cerca con Google

[86] Lu, D.D.-C.; Iu, H.H.-C.; Pjevalica, V.; "Single-Stage AC/DC Boost–Forward Converter With High Power Factor and Regulated Bus and Output Voltages"; Industrial Electronics, IEEE Transactions on , vol.56, no.6, pp.2128-2132, June 2009. Cerca con Google

[87] Wu, T.-F.; Yu, T.-H.; Chang, Y.-H.; "A systematic illustration of the applications of grafted converter trees"; Industrial Electronics, Control, and Instrumentation, 1996., Proceedings of the 1996 IEEE IECON 22nd International Conference on , vol.3, no., pp.1536-1541 vol.3, 5-10 Aug 1996. Cerca con Google

[88] Tsai-Fu Wu; Yu-Kai Chen; "A systematic and unified approach to modeling PWM DC/DC converters based on the graft scheme"; Industrial Electronics, IEEE Transactions on , vol.45, no.1, pp.88-98, Feb 1998. Cerca con Google

[89] Tsai-Fu Wu; Yu-Kai Chen; "Modeling of single-stage converters with high power factor and fast regulation"; Industrial Electronics, IEEE Transactions on , vol.46, no.3, pp.585-593, Jun 1999. Cerca con Google

[90] Guan-Chyun Hsieh; Jeng-Feng Tsai; Mao-Fu Lai; Jung-Chien Li; "Design of power factor corrector for the off-line isolated buck/boost converter by a voltage-follower technique"; Industrial Electronics, Control, and Instrumentation, 1993. Proceedings of the IECON '93., International Conference on , vol., no., pp.959-964 vol.2, 15-19 Nov 1993. Cerca con Google

[91] W.-Y. Choi; J.-S. Yoo; "A Bridgeless Single-Stage Half-Bridge AC/DC Converter"; Power Electronics, IEEE Transactions on , vol.26, no.12, pp.3884-3895, Dec. 2011. Cerca con Google

[92] Y.-S Roh; Y.-J. Moon; J.-C. Gong; C. Yoo; "Active Power Factor Correction (PFC) Circuit With Resistor-Free Zero-Current Detection"; Power Electronics, IEEE Transactions on , vol.26, no.2, pp.630-637, Feb. 2011. Cerca con Google

[93] Lai, J.-S.; Chen, D.; "Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode"; Applied Power Electronics Conference and Exposition, 1993. APEC '93. Conference Proceedings 1993., Eighth Annual , vol., no., pp.267-273, 7-11 Mar 1993. Cerca con Google

[94] Chen, D.-S.; Lai, J.-S.; "A study of power correction boost converter operating at CCM-DCM mode"; Southeastcon '93, Proceedings., IEEE , vol., no., pp.6 p., 4-7 Apr 1993. Cerca con Google

[95] Wang, Z.; Wang, S.; Kong, P.; Lee, F. C.; "DM EMI Noise Prediction for Constant On-Time, Critical Mode Power Factor Correction Converters," Power Electronics, IEEE Transactions on , vol.27, no.7, pp.3150-3157, July 2012. Cerca con Google

[96] Xie, X.; Zhao, C.; Zheng, L.; Liu, S.; "An Improved Buck PFC Converter with High Power Factor"; Power Electronics, IEEE Transactions on , vol.PP, no.99, pp.1, IEEE Xplore Early Access. Cerca con Google

[97] R. Redl, “Power factor correction in single-phase switching-mode power supplies—An overview”; Int. J. Electron., vol. 77, no. 5, pp. 555–582, 1994. Cerca con Google

[98] Jovanovic, M.M.; Jang, Y.; "State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications - an overview"; Industrial Electronics, IEEE Transactions on , vol.52, no.3, pp. 701- 708, June 2005. Cerca con Google

[99] C.-M. Wang, C.-H. Lin, T.-C. Yang; "High-Power-Factor Soft-Switched DC Power Supply System," Power Electronics, IEEE Transactions on , vol.26, no.2, pp.647-654, Feb. 2011. Cerca con Google

[100] Dalla Costa, M.A.; Marchesan, T.B.; da Silveira, J.S.; Seidel, A.R.; Nederson do Prado, R.; Alonso A´lvarez, J.M.; "Integrated Power Topologies to Supply HPS Lamps: A Comparative Study"; Power Electronics, IEEE Transactions on , vol.25, no.8, pp.2124-2132, Aug. 2010. Cerca con Google

[101] Gacio, D.; Alonso, J.M.; Calleja, A.J.; Garci´a, J.; Rico-Secades, M.; "A Universal-Input Single-Stag2e High-Power-Factor Power Supply for HB-LEDs Based on Integrated Buck–Flyback Converter"; Industrial Electronics, IEEE Transactions on , vol.58, no.2, pp.589-599, Feb. 2011. Cerca con Google

[102] Cheng, C.-A.; Cheng, H.-L.; Yang, F.-L.; Ku, C.-W.; "Single-stage driver for supplying high-power light-emitting-diodes with universal utility-line input voltages"; Power Electronics, IET , vol.5, no.9, pp.1614-1623, November 2012. Cerca con Google

[103] Alonso, J.M.; Gacio, D.; Garcia, J.; Rico-Secades, M.; Dalla Costa, M.A.; "Analysis and design of the integrated double buck-boost converter operating in full DCM for LED lighting applications"; IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society , vol., no., pp.2889-2894, 7-10 Nov. 2011. Cerca con Google

[104] Alonso, J.M.; Calleja, A.J.; Gacio, D.; Cardesin, J.; Lopez, E.; "A long-life high-power-factor HPS-lamp LED retrofit converter based on the integrated buck-boost buck topology"; IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society , vol., no., pp.2860-2865, 7-10 Nov. 2011. Cerca con Google

[105] Chun-An Cheng; Fu-Li Yang; Chen-Wei Ku; Chun-Hsien Yen; "A novel single-stage high power LEDs driver"; Power Electronics and ECCE Asia (ICPE & ECCE), 2011 IEEE 8th International Conference on , vol., no., pp.2733-2740, May 30 2011-June 3 2011. Cerca con Google

[106] Alonso, J.M.; Vina, J.; Vaquero, D.G.; Martinez, G.; Osorio, R.; "Analysis and Design of the Integrated Double Buck–Boost Converter as a High-Power-Factor Driver for Power-LED Lamps"; Industrial Electronics, IEEE Transactions on , vol.59, no.4, pp.1689-1697, April 2012. Cerca con Google

[107] Gacio, D.; Alonso, J.M.; Garcia, J.; Campa, L.; Crespo, M.J.; Rico-Secades, M.; "PWM Series Dimming for Slow-Dynamics HPF LED Drivers: the High-Frequency Approach"; Industrial Electronics, IEEE Transactions on , vol.59, no.4, pp.1717-1727, April 2012. Cerca con Google

[108] Grant, D.A.; Darroman, Y.; Suter, J.; "Synthesis of Tapped-Inductor Switched-Mode Converters"; Power Electronics, IEEE Transactions on , vol.22, no.5, pp.1964-1969, Sept. 2007. Cerca con Google

[109] Tintu, V.R.; George, M.; "Tapped inductor technology based DC-DC converter"; Signal Processing, Communication, Computing and Networking Technologies (ICSCCN), 2011 International Conference on , vol., no., pp.747-753, 21-22 July 2011. Cerca con Google

[110] Kaiwei Yao; Mao Ye; Ming Xu; Lee, F.C.; "Tapped-inductor buck converter for high-step-down DC-DC conversion"; Power Electronics, IEEE Transactions on , vol.20, no.4, pp. 775- 780, July 2005. Cerca con Google

[111] Joung-Hu Park; Bo-Hyung Cho; "Nonisolation Soft-Switching Buck Converter With Tapped-Inductor for Wide-Input Extreme Step-Down Applications"; Circuits and Systems I: Regular Papers, IEEE Transactions on , vol.54, no.8, pp.1809-1818, Aug. 2007. Cerca con Google

[112] Rico-Secades, M.; Garcia, J.; Cardesin, J.; Calleja, A.J.; "Using Tapped-Inductor Converters as LED Drivers"; Industry Applications Conference, 2006. 41st IAS Annual Meeting. Conference Record of the 2006 IEEE , vol.4, no., pp.1794-1800, 8-12 Oct. 2006. Cerca con Google

[113] Rico-Secades, M.; Garcia, J.; Torres, A.; Cardesin, J.; Calleja, A.; "Pitfalls in Low Voltage LED Drivers Design using Tapped-Inductor Converters"; Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on , vol., no., pp.2990-2995, 4-7 June 2007. Cerca con Google

[114] Spiazzi, G.; "Analysis of buck converters used as power factor preregulators"; Power Electronics Specialists Conference, 1997. PESC '97 Record., 28th Annual IEEE , vol.1, no., pp.564-570 vol.1, 22-27 Jun 1997. Cerca con Google

[115] Bernard Keogh;“Power Factor Correction Using the Buck Topology—Efficiency Benefits and Practical Design Considerations”; TI Power Supply Design Seminar, SEM1900, 2010-2011. Cerca con Google

[116] Alonso, J.M.; Calleja, A.J.; Ribas, J.; Corominas, E.L.; Rico-Secades, M.; "Analysis and design of a novel single-stage high-power-factor electronic ballast based on integrated buck half-bridge resonant inverter"; Power Electronics, IEEE Transactions on , vol.19, no.2, pp. 550- 559, March 2004. Cerca con Google

[117] Xiaohui Qu; Siu-Chung Wong; Tse, C.K.; "Resonance-Assisted Buck Converter for Offline Driving of Power LED Replacement Lamps"; Power Electronics, IEEE Transactions on , vol.26, no.2, pp.532-540, Feb. 2011. Cerca con Google

[118] Alonso, J.M.; Dalla Costa, M.A.; Ordiz, C.; "Integrated Buck-Flyback Converter as a High-Power-Factor Off-Line Power Supply"; Industrial Electronics, IEEE Transactions on , vol.55, no.3, pp.1090-1100, March 2008. Cerca con Google

[119] Huber, L.; Liu Gang; Jovanovic, M.M.; "Design-Oriented Analysis and Performance Evaluation of Buck PFC Front End"; Power Electronics, IEEE Transactions on , vol.25, no.1, pp.85-94, Jan. 2010. Cerca con Google

[120] Spiazzi, G.; Buso, S.; "Power factor preregulators based on combined buck-flyback topologies"; Power Electronics, IEEE Transactions on , vol.15, no.2, pp.197-204, Mar 2000. Cerca con Google

[121] H.Endo, H.; Yamashita, T.; Sugiura, T.; "A high-power-factor buck converter"; Power Electronics Specialists Conference, 1992. PESC '92 Record., 23rd Annual IEEE , vol., no., pp.1071-1076 vol.2, June 29 1992-July 3 1992. Cerca con Google

[122] Jianyou Yang; Junming Zhang; Xinke Wu; Zhaoming Qian; Ming Xu; "Performance comparison between buck and boost CRM PFC converter"; Control and Modeling for Power Electronics (COMPEL), 2010 IEEE 12th Workshop on , vol., no., pp.1-5, 28-30 June 2010. Cerca con Google

[123] Mori, Y.; Matsui, K.; Hasegawa, M.; Ueda, F.; Mori, H.; "A novel PFC buck chopper for single-phase with single switching device"; Electrical Machines and Systems, 2009. ICEMS 2009. International Conference on , vol., no., pp.1-6, 15-18 Nov. 2009. Cerca con Google

[124] da Fonseca, Z.P.; Font, C.I.; Kaster, M.S.; Perin, A.J.; Nascimento, C.B.; "An electronic AC power system with buck PFC and linear regulator to drive and control the current of power LEDs"; Power Electronics Conference (COBEP), 2011 Brazilian , vol., no., pp.864-870, 11-15 Sept. 2011. Cerca con Google

[125] Jinrong Qian; Qun Zhao; Lee, F.C.; "Single-stage single-switch power-factor-correction AC/DC converters with DC-bus voltage feedback for universal line applications"; Power Electronics, IEEE Transactions on , vol.13, no.6, pp.1079-1088, Nov 1998. Cerca con Google

[126] Xiaohui Qu; Wong, S.C.; Tse, C.K.; Xinbo Ruan; "Isolated PFC Pre-Regulator for LED Lamps"; Industrial Electronics, 2008. IECON 2008. 34th Annual Conference of IEEE , vol., no., pp.1980-1987, 10-13 Nov. 2008. Cerca con Google

[127] Garcia, J.; Calleja, A.J.; Corominas, E.L.; Gacio, D.; Ribas, J.; "Electronic driver without electrolytic capacitor for dimming High Brightness LEDs"; Industrial Electronics, 2009. IECON '09. 35th Annual Conference of IEEE , vol., no., pp.3518-3523, 3-5 Nov. 2009. Cerca con Google

[128] Athalye, P.; Harris, M.; Negley, G.; "A two-stage LED driver for high-performance high-voltage LED fixtures"; Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE , vol., no., pp.2385-2391, 5-9 Feb. 2012. Cerca con Google

[129] Xiaohui Qu; Siu-Chung Wong; Tse, C.K.; "Noncascading Structure for Electronic Ballast Design for Multiple LED Lamps With Independent Brightness Control"; Power Electronics, IEEE Transactions on , vol.25, no.2, pp.331-340, Feb. 2010. Cerca con Google

[130] Arias, M.; Lamar, D.G.; Linera, F.F.; Balocco, D.; Diallo, A.A.; Sebastia´n, J.; "Design of a Soft-Switching Asymmetrical Half-Bridge Converter as Second Stage of an LED Driver for Street Lighting Application"; Power Electronics, IEEE Transactions on , vol.27, no.3, pp.1608-1621, March 2012. Cerca con Google

[131] Shu Ji; Haoran Wu; Xiaoyong Ren; Lee, F.C."; Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE , vol., no., pp.718-722, 6-11 March 2011. Cerca con Google

[132] Sebastian J., Villegas P.J., Nuno F., Hernando M.M.; "High efficiency and wide-bandwidth performance obtainable from a two input buck converter"; IEEE Transactions on Power Electronics, vol.13, no.4, pp.706-717, July 1998. Cerca con Google

[133] Yu-Chieh Hung; Fu-San Shyu; Chih Jung Lin; Yen-Shin Lai; "Design and implementation of symmetrical half-bridge DC-DC converter"; Power Electronics and Drive Systems, 2003. PEDS 2003. The Fifth International Conference on , vol.1, no., pp. 338- 342 Vol.1, 17-20 Nov. 2003. Cerca con Google

[134] Shixiang Zhou; "Energy saving control technology of DC-DC half-bridge converter"; Computer, Mechatronics, Control and Electronic Engineering (CMCE), 2010 International Conference on , vol.4, no., pp.242-245, 24-26 Aug. 2010. Cerca con Google

[135] Czarkowski, D.; Kazimierczuk, M.K.; "Circuit models of PWM half-bridge DC-DC converter"; Circuits and Systems, 1992., Proceedings of the 35th Midwest Symposium on , vol., no., pp.469-472 vol.1, 9-12 Aug 1992. Cerca con Google

[136] Wu, C.J.; Lee, F.C.; Balachandran, S.; Goin, H.L.; "Design Optimization for a Half-Bridge DC-DC Converter"; Aerospace and Electronic Systems, IEEE Transactions on , vol.AES-18, no.4, pp.497-508, July 1982. Cerca con Google

[137] Brkovic, M.; Pietkiewicz, A.; Cuk, S.; "Novel soft-switching converter with magnetic amplifiers"; Industrial Electronics, Control, and Instrumentation, 1993. Proceedings of the IECON '93., International Conference on , vol., no., pp.830-835 vol.2, 15-19 Nov 1993. Cerca con Google

[138] J. F. Lazar, R. Martinelli; "Steady-State Analysis of the LLC series resonant converter" IEEE Applied Power Electronics Conf. (APEC), 2001, pp. 728-735. Cerca con Google

[139] R. Beiranvand, B. Rashidian, M. R. Zolghadri, S. M. H. Alavi, "A Design Procedure for Optimizing the LLC Resonant Converter as a Wide Output Range Voltage Source"; IEEE Transaction on Power Electronics, Vol.27, NO.8, August 2012, pp.3749-3763. Cerca con Google

[140] J. Y. Lee, Y. S. Jeong, B. M. Han, "An Isolated DC-DC Converter Using High-Frequency Unregulated LLC Resonant Converter for Fuel Cell Applications"; IEEE Transactions on Industrial Electronics, Vol.58, NO.7, July 2011, pp. 2926-2934. Cerca con Google

[141] C. H. Chang, E. C. Chang, C. A. Cheng, H. L. Cheng, S. C. Lin, "Small Signal Modeling of LLC Resonant Converters Based on Extended Describing Function"; International Symposium on Computer, Consumer and Control (IS3C), 2012, pp. 365-368. Cerca con Google

[142] J. Tian, J. Petzoldt, T. Reimann, M. Scherf, G. Deboy, M. Maerz, G. Berger, "Envelope model for resonant converters and application in LLC converters"; European Conference on Power Electronics and Applications (EPE), 2007, pp. 1-7. Cerca con Google

[143] B. Yang, F. C. Lee, A. J. Zhang and G. Huang, “LLC resonant converter for front end dc/dc conversion”; IEEE Applied Power Electronics Conference (APEC), 2002, pp. 1108–1112. Cerca con Google

[144] Y. Zhang, D. Xu, K. Mino, K. Sasagawa, "1MHz-1kW LLC Resonant Converter with Integrated Magnetics”; IEEE Applied Power Electronics Conf. (APEC), 2007, pp. 955-961. Cerca con Google

[145] C. Ruijun, Y. Yugang, J. Ying, “Design of LLC resonant converter with integrated magnetic technology”; International Conference on Electrical Machines and Systems (ICEMS), 2005, pp. 1351-1355. Cerca con Google

[146] S. R. Cove, M. Ordonez, F. Luchino, J. E. Quaicoe, “Integrated magnetic design of small planar transformers for LLC resonant converters”; IEEE Energy Conversion Congress and Exposition (ECCE), 2011, pp. 1839- 1844. Cerca con Google

[147] B. Yang, R. Chen, F. C. Lee, “Integrated Magnetic for LLC Resonant Converter”; IEEE Applied Power Electronics Conf. (APEC), 2002, pp. 346-351. Cerca con Google

[148] B. H. Lee, M. Y. King, C. E. Kim, K. B. Park, G. W. Moon, "Analysis of LLC Resonant Converter considering effects of parasitic components"; International Telecommunications Energy Conference (INTELEC), 2009. Cerca con Google

[149] Duerbaum, T.; "First harmonic approximation including design constraints"; Telecommunications Energy Conference, 1998. INTELEC. Twentieth International , vol., no., pp.321-328, 1998. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record