Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Favero, Marco (2013) Modern in-situ XRD investigations on C3S-C3A-GY systems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (PDF/A della tesi di dottorato) - Versione sottomessa
25Mb

Abstract (inglese)

The origin of cement, employed as a binding material, can be attributed to Romans who found that a mixture of lime and crushed volcanic ashes was able to set under water, the resistance being increased along the time, in a way completely different to any other material. Since that age, a huge amount of different kind of cements have been produced to satisfy the request of different mechanical behaviors. To deeply understand the mechanisms that lead to the development of mechanical strength, reaction kinetics that occur during the hydration process must be known. Nowadays we can affirm that cement research has set many important results but despite of this “long-time story”, a lot of improvements are required to better understand the mechanisms of kinetics.
Cements mixed with water are complex systems undergoing critical chemical and physical changes during the hydration process. A unique hydration model able to explain the controlling mechanisms is the main purpose of cement research, but the physical-chemical parameters involved are actually too many. To partly overcome the chemical complexity of common cement materials, simplified cement systems are often used for research purposes. A project has been set to investigate the fundamental reactions occurring during the hydration process and has been divided within 3 different partners: NIST (National Institute of Standards and Technology), W.R. GRACE and University of Padua. Our part of the project was to collect x-ray powder diffraction patterns on the hydrating suspensions, using Rietveld refinement for quantitative phase analysis.
Three simplified cement systems formed by the synthetic phases tricalcium silicate Ca3SiO5 (C3S), tricalcium aluminate Ca3Al2O6 (C3A) and a varying amount of gypsum CaSO4∙2H2O (CŠH2) were investigated by means of in-situ x-ray powder diffraction (XRPD) and isothermal calorimetry (IC) in order to evaluate dissolution-precipitation kinetics. The main hydration products detected by means of XRPD were ettringite, hemicarboaluminate, portlandite, Ca-Si hydrates (C-S-H): the same occurring in real cements.
The Avrami nucleation and growth model successfully fits the degree of hydration data, confirming that C-S-H should have a layered structure as well as the phases resulting from the decomposition of ettringite. The mass balance method was used to calculate the exact amount of C-S-H formed during hydration, which is not directly accessible from Rietveld refinement. The comparison between the degree of hydration calculated from isothermal calorimetry data and the degrees of hydration calculated from x-ray diffraction has revealed how much the reactant phases are responsible for heat release. In particular, it was seen that the study of C3S-C3A-Gy systems is not a simple sum of the investigations of C3S-Gy and C3A-Gy systems, which are two further simplified model cements. The synthetic materials suffered a loss on reactivity despite of the under-vacuum sealing, leading to a continuous and unpredictable change of the materials features (particle size, degree of reactivity) during time.
The obtained experimental data should be necessary to proof the effectiveness of software modelling (HydratiCA). The software has been tested and returned satisfactory results for further simplified systems, such C3S-Gy. Nevertheless, the software is still under a development stage and improvements has to be planned for C3A-Gy systems before testing more complex blends

Abstract (italiano)

L’origine del cemento, utilizzato come legante nell’industria costruttiva, può essere attribuita direttamente ai Romani, i quali osservarono come una miscela di calcare e ceneri vulcaniche finemente macinate fosse in grado, quando miscelata con acqua, di dar luogo a presa, prima, e ad alte resistenze meccaniche, poi, in un modo così efficace mai osservato precedentemente con altri materiali. Da quando i Romani hanno dato il via all’utilizzo di leganti idraulici, diverse tipologie di cemento sono state prodotte per diversi impieghi costruttivi. Per comprendere esaustivamente i meccanismi che conducono allo sviluppo delle resistenze meccaniche, è fondamentale conoscere a fondo come procedano le cinetiche di reazione durante il processo di idratazione.
La ricerca sui materiali cementizi ha oramai raggiunto risultati ragguardevoli in merito allo studio delle cinetiche chimiche ma, nonostante la lunga storia relativa a questi materiali ancora molto lavoro dev’essere svolto.
I cementi miscelati con acqua formano miscele complesse che si modificano in maniera significativamente complessa, sia dal punto di vista chimico sia dal punto di vista fisico, durante il processo di idratazione. Un modello di idratazione univoco che riesca a spiegare tutte le fasi del processo di idratazione è il fine ultimo della ricerca sui materiali cementizi, sebbene questo obiettivo sia ancora lontano, a causa dei numerosi parametri chimico-fisici coinvolti. Per ovviare almeno in parte la complessità dei materiali cementizi tradizionali, per scopi scientifici vengono prodotti sistemi cementizi semplificati, caratterizzati soprattutto da un numero di fasi inferiore rispetto ad un cemento tradizionale.
Un progetto di ricerca è stato messo a punto per approfondire l’aspetto delle cinetiche di reazione. Tre partner sono coinvolti: NIST (National Institute of Standards and Technology), W.R. GRACE ed Università degli Studi di Padova. La parte di progetto inerente al nostro gruppo di ricerca riguardava l’utilizzo della diffrazione in-situ di raggi X per polveri sulle paste in idratazione, utilizzando l’analisi quantitativa con il metodo Rietveld per quantificare l’andamento delle fasi nel tempo. Sono stati scelti tre diversi sistemi cementizi semplificati, formati da materiali sintetizzati in laboratorio: silicato tricalcico Ca3SiO5 (C3S), alluminato tricalcico Ca3Al2O6 (C3A) e diverso contenuto di gesso CaSO4∙2H2O (CŠH2). Sono state impiegate le tecniche di diffrazione in-situ di raggi X per polveri (XRPD) e calorimetria isoterma (IC) per valutare le cinetiche di dissoluzione e precipitazione di reagenti e prodotti. Dall’analisi qualitativa dei diffrattogrammi, i principali prodotti di idratazione individuati sono ettringite, emicarbonato, portlandite, idrati di Ca-Si (C-S-H): gli stessi prodotti di idratazione che si possono individuare nei cementi tradizionali.
Il modello di nucleazione e crescita di Avrami descrive adeguatamente la curva del grado di idratazione, confermando che il C-S-H mostra una struttura a strati, come pure le fasi che derivano dalla decomposizione dell’ettringite. Il metodo del bilancio di massa è stato utilizzato per ricavare quanto C-S-H precipita durante l’idratazione, quantità che non è direttamente calcolabile neanche attraverso l’analisi quantitativa col metodo Rietveld. Confrontando la curva del grado di idratazione calcolato dalla calorimetria isoterma e le curve del grado di idratazione ricavate dai dati in diffrazione rivelano le fasi che qualitativamente e quantitativamente sono maggiormente implicate nello sviluppo di calore. In particolare, si è visto che lo studio dei sistemi C3S-C3A-Gy non coincide con la “somma algebrica” dei risultati sugli studi di C3S-Gy e C3A-Gy (due sistemi cementizi ulteriormente semplificati). I materiali di partenza hanno subito una perdita di reattività, nonostante siano stati conservati sottovuoto. La perdita di reattività ha di fatto modificato continuamente i materiali, cambiando spesso le condizioni iniziali (distribuzione granulometrica, grado di reattività) portando a risultati non facilmente prevedibili.
I risultati ottenuti sperimentalmente dovrebbero essere propedeutici per provare l’efficacia del software di modellazione (HydratiCA). Il software è stato provato sul sistema C3S-Gy, fornendo risultati incoraggianti. Tuttavia, tale software, essendo ancora in fase di sviluppo, necessita di miglioramenti soprattutto per quanto riguarda il sistema C3A-Gy, prima di poter passare alla simulazione di miscele più complesse

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Dalconi, Maria Chiara
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE DELLA TERRA
Data di deposito della tesi:30 Gennaio 2013
Anno di Pubblicazione:30 Gennaio 2013
Parole chiave (italiano / inglese):diffrazione di raggi X per polveri, calorimetria isoterma, cemento, sistema semplificato, C3S-C3A-Gy, cinetiche di idratazione./ x-ray powder diffraction, isothermal calorimetry, cement, simplified system, C3S-C3A-Gy, hydration kinetics.
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/06 Mineralogia
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:5852
Depositato il:15 Ott 2013 09:20
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Ridi, E. Fratini, and P. Baglioni, Cement: a two thousand year old nano-colloid. Journal of colloid and interface science, vol. 357, no. 2, pp. 25564, May 2011. Cerca con Google

Sismondo, An Introduction to Science and Technology Studies, 2nd edition. 2009, p. 256. Cerca con Google

Mukerji, Impossible engineering: technology and territoriality on the Canal du Midi, Illustrate. 2009, p. 121. Cerca con Google

C. Hewlett, Leas Chemistry of Cement and Concrete, Fourth Edi., no. January. 2010. Cerca con Google

F. W. Taylor, Cement chemistry. Thomas Telford, 1997. Cerca con Google

F. W. Taylor, Cement chemistry, Second Edi. Thomas Telford, 1997. Cerca con Google

K. Peterson, Diffraction Investigations of Cement Clinker and Tricalcium Silicate using Rietveld Analysis Ph.D. Thesis. University of Technology, Sydney, 2003. Cerca con Google

Takeuchi, F. Nishi, and I. Maki, Crystal-chemical characterization of the 3 CaO " Al2O3Na2O solid-solution series, Zeitschrift für Kristallographie, vol. 152, no. 34, pp. 259307, 1980. Cerca con Google

S. J. AHMED and H. F. W. TAYLOR, Crystal Structures of the Lamellar Calcium Aluminate Hydrates, Nature, vol. 215, no. 5101, pp. 622623, Aug. 1967. Cerca con Google

T. Matschei, B. Lothenbach, and F. Glasser, The AFm phase in Portland cement, Cement and Concrete Research, vol. 37, no. 2, pp. 118130, Feb. 2007. Cerca con Google

L. J. Strumble, No Title, in 8th International Conference on the Chemistry of Cement, ICCC, 1986, p. 582. Cerca con Google

E. Breval, C3A hydration, Cement and Concrete Research, vol. 6, no. 1, pp. 129137, 1976. Cerca con Google

C. J. Hampson and J. E. Bailey, The microstructure of the hydration products of the tricalcium aluminate in the presence of gypsum, Journal of Materials Science, vol. 18, pp. 402410, 1983. Cerca con Google

F. E. Jones, The Quaternary System CaOAl2O3CaSO4H2O at 25°C. Equilibria with Crystalline Al2O33H2O, Alumina Gel, and Solid Solution, Journal of Physical Chemistry, vol. 48, no. 6, pp. 311356, 1944. Cerca con Google

T. R. Jensen, A. N. Christensen, and J. C. Hanson, Hydrotermal transformation of the calcium aluminium oxide hydrates CaAl2O4"10H2O and Ca2Al2O5"8H2O to Ca3Al2(OH)12 investigated by in situ synchrotron X-ray powder diffraction, Cement and Concrete Research, pp. 23002309, 2005. Cerca con Google

J. DAns and H. Eick, Das System CaO Al2O3 CaSO4 H2O bei 20°C, Zement-Kalk-Gips, vol. 6, no. 9, pp. 302311, 1953. Cerca con Google

R. Turriziani and G. Schippa, Riconoscimento allATD ed ai raggi X dei solidi quaternari CaO Al2O3 CaSO4 H2O, La ricerca scientifica, vol. 24, no. 11, pp. 23562363, 1955. Cerca con Google

G. L. Kalousek, Sulfoaluminates of calcium as stable and metastable phases, and a study of a portion of the five-component system CaO SO3 Al2O3 Na2O H2O at 25°C., University of Maryland, 1941. Cerca con Google

M. H. Roberts, Calcium aluminate hydrates and related basic salt solid solutions, in V International Symposium on the Chemistry of cements, vol II, 1969, pp. 104117. Cerca con Google

P. Seiligmann and N. R. Greening, Phase equilibria of cement-water, in V International Symposium on the Chemistry of cements, vol II, 1969, pp. 179200. Cerca con Google

H. Poelmann, Solid solution in the system 3CaO"Al2O3"CaSO4"aq - 3CaO"Al2O3"Ca(OH)2"aq, Neues Jahrbuch fur Mineralogie. Abhandlungen, vol. 161, pp. 2741, 1969. Cerca con Google

F. Glasser, A. Kindness, and S. Stronach, Stability and solubility relationships in AFm phases: Part I. Chloride, sulfate and hydroxide, Cement and Concrete Research, vol. 29, pp. 861866, 1999. Cerca con Google

M. Zhang, Incorporation of Oxyanionic B, Cr, Mo and Se into hydrocalumite and ettringite: Application to cementitious system, University of Waterloo, 2000. Cerca con Google

A. N. Christensen, T. R. Jensen, N. V. Y. Scarlett, I. C. Madsen, and J. C. Hanson, Hydrolysis of Pure and Sodium Substituted Calcium Aluminates and Cement Clinker Components Investigated by in Situ Synchrotron X-ray Powder Diffraction, Journal of American Ceramic Society, vol. 87, no. 8, pp. 14881493, 2004. Cerca con Google

E. Aruja, Unit cell and Space-Group Determination of Tetra- and di-Calcium Aluminate Hydrates, Acta Crystallographica, vol. 13, p. 1018, 1960. Cerca con Google

A. N. Christensen, T. R. Jensen, and J. C. Hanson, Formation of ettringite, Ca6Al2(SO4)3"26H2O, AFt, e monosulfate, Ca4Al2O6(SO4)"14H2O, AFm-14, in hydrothermal hydration of Portland cement and of calcium aluminium oxide-calcium sulfate dihydrate mixtures studied by in situ synchrotron X-ray powder diffra, Journal of Solid State Chemistry, vol. 177, pp. 19441951, 2004. Cerca con Google

P. Barnes, X. Turrillas, A. C. Jupe, S. L. Colston, D. OConnor, R. J. Cernik, P. Livesey, C. Hall, D. Bates, and R. Dennis, Applied crystallography solutions to problems in industrial solid-state chemistry. Case examples with ceramics, cements and zeolites, Journal of the Chemical Society, Faraday Transactions, vol. 92, no. 12, p. 2187, 1996. Cerca con Google

A. Nørlund Christensen, N. V. Y. Scarlett, I. C. Madsen, T. René Jensen, and J. C. Hanson, Real time study of cement and clinker phases hydration, Dalton Transactions, no. 8, pp. 15291536, Apr. 2003. Cerca con Google

M.-N. de Noirfontaine, M. Courtial, F. Dunstetter, G. Gasecki, and M. Signes-Frehel, Tricalcium silicate Ca3SiO5 superstructure analysis: a route towards the structure of the M1 polymorph, Zeitschrift für Kristallographie - Crystalline Materials, vol. 227, no. 2, pp. 102112, 2011. Cerca con Google

J. W. Jeffery, The crystal structure of tricalcium silicate, Acta Crystallographica, vol. 5, p. 26, 1952. Cerca con Google

I. G. Richardson, The calcium silicate hydrates, Transactions Of The Faraday Society, vol. 38, pp. 137 158, 2008. Cerca con Google

S. MERLINO, E. BONACCORSI, and T. ARMBRUSTER, The real structures of clinotobermorite and tobermorite 9 Å: OD character, polytypes, and structural relationships , European Journal of Mineralogy , vol. 12 , no. 2 , pp. 411429. Cerca con Google

S. MERLINO, E. BONACCORSI, and T. ARMBRUSTER, The real structure of tobermorite 11Å: normal and anomalous forms, OD character and polytypic modifications , European Journal of Mineralogy , vol. 13 , no. 3 , pp. 577590. Cerca con Google

E. Bonaccorsi, S. Merlino, and A. R. Kampf, The Crystal Structure of Tobermorite 14 Å (Plombierite), a CSH Phase, Journal of the American Ceramic Society, vol. 88, no. 3, pp. 505512, 2005. Cerca con Google

Y. Fu, P. Xie, P. Gu, and J. Beaudoin, Effect of temperature on sulphate adsorption/desorption by tricalcium silicate hydrates, Cement and concrete research, vol. 24, no. 8, pp. 14281432, 1994. Cerca con Google

S. Gunay, S. Garrault, A. Nonat, and P. Termkhajornkit, Influence of calcium sulphate on hydration and mechanical strength of tricalcium silicate, Unpublished, 2012. Cerca con Google

S. Pourchet, L. Regnaud, J. P. Perez, and A. Nonat, Cement and Concrete Research Early C 3 A hydration in the presence of different kinds of calcium sulfate, Cement and Concrete Research, vol. 39, no. 11, pp. 989996, 2009. Cerca con Google

S. Garrault, H. Minard, and A. Nonat, Hydration of silicate phase and mechanical evolution inalite-tricalcium aluminate-gypsum'complex system, 12 th International International Congress on the Chemistry of Cement, 2007. Cerca con Google

N. Tenoutasse, The Hydratation Mechanism of C3A and C3S in the Presence of Calcium Chloride and Calcium Sulphate, pp. 372378, 1969. Cerca con Google

Medala, Etude des interactions entre les phases minerales constituant le ciment Portland et des solutions alcalines concentrees, Université de Bourgogne, 2005. Cerca con Google

P. Mehta, D. Pirtz, and M. Polivka, Properties of alite cements, Cement and concrete research, pp. 439450, 1979. Cerca con Google

D. Menetrier, I. Jawed, and J. Skalny, Effect of gypsum on C 3 S hydration, Cement and Concrete Research, vol. I, no. c, pp. 697701, 1980. Cerca con Google

R. Barbarulo, H. Peycelon, and S. Leclercq, Chemical equilibria between CSH and ettringite, at 20 and 85 °C, Cement and Concrete Research, vol. 37, no. 8, pp. 11761181, Aug. 2007. Cerca con Google

A. Bentur, Effect of Gypsum on the Hydration and Strength of C3S Pastes, Journal of the American Ceramic Society, 1976. Cerca con Google

P. Brown, C. Harner, and E. Prosen, The effect of inorganic salts on tricalcium silicate hydration, Cement and Concrete Research, vol. 16, pp. 1722, 1986. Cerca con Google

H. Minard, Etude intégrée des processus dhydratation, de coagulation, de rigidification et de prise pour un système C3S-C3A-sulfates-alcalins, Université de Bourgogne, 2003. Cerca con Google

C. Hesse, F. Goetz-Neunhoeffer, and J. Neubauer, A new approach in quantitative in-situ XRD of cement pastes: Correlation of heat flow curves with early hydration reactions, Cement and Concrete Research, vol. 41, no. 1, pp. 123128, Jan. 2011. Cerca con Google

P. Julliand, E. Gallucci, R. Flatt, and K. L. Scrivener, Dissolution theory applied to the induction period of in alite hydration, Cement and Concrete Research, vol. 40, pp. 831844, 2010. Cerca con Google

J. J. Thomas, H. M. Jennings, and J. J. Chen, Influence of nucleation seeding on the hydration mechanism s of tricalcium silicate and cement, Journal of Physical Chemistry C, vol. 113, pp. 43274334, 2009. Cerca con Google

A. Quennoz and K. L. Scrivener, Interactions between alite and C3A-gypsum hydrations in model cements, Cement and Concrete Research, vol. 44, pp. 4654, Feb. 2013. Cerca con Google

S. Garrault, A. Nonat, Y. Sallier, and L. Nicoleau, On the origin of the dormant period of cement hydration, in 13th International Congress on the Chemistry of Cement, 2011. Cerca con Google

L. DAloia and G. Chanvillard, Determining the apparent activation energy of concrete: Eanumerical simulations of the heat of hydration of cement, Cement and Concrete Research, vol. 32, pp. 12771289, 2002. Cerca con Google

J. Poole, K. Riding, and K. Folliard, Methods for calculating activation energy for Portland cement, ACI materials Journal, no. 104, 2007. Cerca con Google

R. E. Dinnebier and S. J. L. Billinge, Powder Diffraction Theory and Practice. 2008. Cerca con Google

L. S. Zevin and G. Kimmel, Quantitative X-ray Diffractometry, Inez Murei. New York: Springer-Verlag, 1995. Cerca con Google

H. M. Rietveld, Line profiles of neutron powder-diffraction peaks for structure refinement, Acta Crystallographica, vol. 22, no. 1, pp. 151152, Jan. 1967. Cerca con Google

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, vol. 2, no. 2, pp. 6571, Jun. 1969. Cerca con Google

P. Barnes and J. Bensted, Structure and performance of cements, Second Edi. Spoon Press - Taylor & Francis Group, 2001. Cerca con Google

T. Fullmann, J. Neubauer, and G. Walenta, Quantitative Rietveld phase analysis of hydrated Portland cements. I. Quantitative analysis of synthetic AFm and AFt phases, in 21st International Conference of Cement Microscopy Association, 1999, pp. 103113. Cerca con Google

T. Fullmann, G. Walenta, T. Bier, B. Espinosa, and K. Scrivener, Quantitative Rietveld phase analysis of calcium aluminium cements, World Cement Research, vol. 30, no. 6, pp. 9196, 1999. Cerca con Google

J. I. Escalante-Garcia and J. H. Sharp, Effect of temperature on the hydration of the main clinker phases in Portland cements. Part I., neat cements, Cement and concrete research, vol. 28, no. 9, pp. 12451257, 1998. Cerca con Google

A. Emanuelson, E. Henderson, and S. Hansen, Hydration of ferrite Ca2AlFeO5 in the presence of sulphates and bases, Cement and concrete research, vol. 26, no. 11, pp. 16891694, 1996. Cerca con Google

A. Emanuelson and S. Hansen, Distribution of iron among ferrite hydrates, Cement and concrete research, vol. 27, no. 8, pp. 11671177, 1997. Cerca con Google

R. Yang, C. D. Lawrence, and J. H. Sharp, Delayed ettringite formation in 4-year old cement pastes, Cement and concrete research, vol. 26, no. 11, pp. 16491659, 1996. Cerca con Google

J. H. Kuzel, Rietveld quantitative XRD analysis of Portland cement: Part I. Theory and application to the hydration of C3A in the presence of gypsum, in 18th International Conference of Cement Microscopy Association, 1996, pp. 8799. Cerca con Google

O. Omotoso, D. Ivey, and R. Mikula, Hexavalent chromium in tricalcium silicate: Part I Quantitative X-ray diffraction analysis of crystalline hydration products, Journal of materials science, vol. 3, pp. 507513, 1998. Cerca con Google

R. Talero, Comparative XRD analysis of ettringite originating from pozzolan and from Portland cement, Cement and concrete research, vol. 26, no. 8, pp. 12771283, 1996. Cerca con Google

S. Clark and P. Barnes, comparison of laboratory, synchrotron and neutron diffraction for the real time study, Cement and Concrete Research, vol. 25, no. 3, pp. 639646, 1995. Cerca con Google

T. Liang and Y. Nanru, Hydration products of calcium aluminoferrite in the presence of gypsum, Cement and concrete research, vol. 24, pp. 150158, 1994. Cerca con Google

J. H. Kuzel and H. Pöllmann, Hydration of C3A in the presence of Ca(OH)2, CaSO4"2H2O and CaCO3, Cement and concrete research, vol. 21, pp. 885895, 1991. Cerca con Google

L. J. Parrott, M. Geiker, W. A. Gutteridge, and D. Killoh, Monitoring Portland cement hydration: comparison of methods, Cement and concrete research, vol. 20, no. 6, pp. 919926, 1990. Cerca con Google

C. Ftikos and T. Philippou, Preparation and hydration study of rich C2S cements, Cement and concrete research, vol. 20, no. 6, pp. 934940, 1990. Cerca con Google

W. A. Gutteridge, Quantitative X-ray powder diffraction in the study of some cementive materials, Proceedings of the British Ceramic Society, vol. 35, pp. 1123, 1984. Cerca con Google

C. Evju, Initial Hydration of Cementitious Systems Using a Simple Isothermal Calorimeter and Dynamic Correction, Journal of thermal analysis and calorimetry, vol. 71, pp. 829840, 2003. Cerca con Google

N. Tenoutasse, The Hydration Mechanism of C3A and C3S in the Presence of Calcium Chloride and Calcium Sulphate, 1969, pp. 372378. Cerca con Google

F. Nishi, Y. Takéuchi, and I. Maki, Tricalcium silicate Ca3O[SiO4]: The monoclinic superstructure, Zeitschrift für Kristallographie, vol. 172, pp. 297314, 1975. Cerca con Google

M. De Noirfontaine, Tricalcium silicate Ca3SiO5 superstructure analysis: a route towards the structure of the M1 polymorph, Zeitschrift für Kristallographie, vol. 2, pp. 102112, 2012. Cerca con Google

N. I. Golovastikov, R. G. Matveeva, and N. V. Belov, Crystal structure of the tricalcium silicate (CaOSiO2)3=C3S, Kristallografiya, vol. 20, pp. 721729, 1975. Cerca con Google

R. Cheary, A. Coelho, and J. Cline, Fundamental parameters line profile fitting in laboratory diffractometers, Journal of Research of the National Institute of Standards and Technology, vol. 109, no. 1, pp. 125, 2004. Cerca con Google

TOPAS version 4.1. Bruker AXS, Karlsruhe, Germany, 2007. Cerca con Google

W. A. Dollase, Correction of intensities for preferred orientation in powder diffractometry: application of the March model, Journal of Applied Crystallography, vol. 19, pp. 267272, 1986. Cerca con Google

W. The free enciclopedia, Kapton, 26 July 2012, 15.49. [Online]. Available: http://en.wikipedia.org/wiki/Kapton. Vai! Cerca con Google

L. Valentini, M. C. Dalconi, M. Parisatto, G. Cruciani, and G. Artioli, Towards three-dimensional quantitative reconstruction of cement microstructure by X-ray diffraction microtomography, Journal of Applied Crystallography, vol. 44, no. 2, pp. 272280, 2011. Cerca con Google

E. Wirquin, M. Broda, and B. Duthoit, Determination of the apparent activation energy of one concrete by calorimetric and mechanical means: Influence of a superplasticizer, Cement and concrete research, vol. 32, pp. 12071213, 2002. Cerca con Google

B. H. OConnor and M. D. Raven, Application of the Rietveld Refinement Procedure in Assaying Powdered Mixtures, Powder Diffraction, vol. 3, no. 01, pp. 26, Jan. 1988. Cerca con Google

N. V. Y. Scarlett and I. C. Madsen, Quantification of phases with partial or no known crystal structures, Powder Diffraction, vol. 21, no. 04, pp. 278284, 2006. Cerca con Google

P. Whitfield and L. Mitchell, Quantitative Rietveld analysis of the amorphous content in cements and clinkers, Journal of Materials Science, vol. 8, pp. 44154421, 2003. Cerca con Google

L. D. Mitchell, J. C. Margeson, and P. S. Whitfield, Quantitative Rietveld analysis of hydrated cementitious systems, Powder Diffraction, vol. 21, no. 2, p. 111, 2006. Cerca con Google

A. G. D. La Torre, S. Bruque, and M. A. G. Aranda, Rietveld quantitative amorphous content analysis research papers, Journal of Applied Crystallography, vol. 34, pp. 196202, 2001. Cerca con Google

L. León-Reina, a. G. De la Torre, J. M. Porras-Vázquez, M. Cruz, L. M. Ordonez, X. Alcobé, F. Gispert-Guirado, a. Larrañaga-Varga, M. Paul, T. Fuellmann, R. Schmidt, and M. a. G. Aranda, Round robin on Rietveld quantitative phase analysis of Portland cements, Journal of Applied Crystallography, vol. 42, no. 5, pp. 906916, Sep. 2009. Cerca con Google

L. Valentini, M. C. Dalconi, M. Parisatto, G. Cruciani, and G. Artioli, Towards three-dimensional quantitative reconstruction of cement microstructure by X-ray diffraction microtomography, Journal of Applied Crystallography, vol. 44, no. 2, pp. 272280, 2011. Cerca con Google

J. F. Young and W. Hansen, Volume relationships for C-S-H formation based on hydration stoichiometries, Materials Research Society Symposium Proceedings, vol. 85, pp. 313322, 1986. Cerca con Google

A. Quennoz, Hydration of C3A with Calcium Sulphate alone and in the presence of Calcium silicate, Ph.D. thesis, Ecole Polytechnique Federale de Lousanne, 2011. Cerca con Google

V. M. Malhotra and N. J. Carino, Handbook on Nondestructive Testing of Concrete. CRC Press, 2004, p. 386. Cerca con Google

J. Poole, K. Riding, and K. Folliard, Methods for calculating activation energy for Portland cement, ACI materials &, no. 104, 2007. Cerca con Google

A. Hardison, G. Lewis, A. U. D. Daniels, and R. A. Smith, Determination of the activation energies of and aggregate rates for exothermic physico-chemical changes in UHMWPE by isothermal heat-conduction microcalorimetry (IHCMC)., Biomaterials, vol. 24, no. 28, pp. 514551, Dec. 2003. Cerca con Google

R. J. Tank and N. J. Carino, Rate constant functions for strength development of concrete, ACI Materials Journal, vol. 88, no. 1, pp. 7483, 1991. Cerca con Google

M. Avrami, Kinetics of Phase Change. I General Theory, Journal of Chemical Physics, vol. 7, p. 1103, 1939. Cerca con Google

M. Avrami, Kinetics of Phase Change. II Transformation-Time Relations for Random Distribution of Nuclei, Journal of Chemical Physics, vol. 8, p. 212, 1940. Cerca con Google

M. Avrami, Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, Journal of Chemical Physics, vol. 9, p. 177, 1941. Cerca con Google

R. Berliner, M. Popovici, K. W. Herwig, M. Berliner, H. M. Jennings, and J. J. Thomas, Quasielastic Neutron Scattering Study of the Effect of Water-To-Cement Ratio on the Hydration Kinetics of Tricalcium Silicate, Cement and Concrete Research, vol. 28, no. 2, pp. 231243, 1998. Cerca con Google

J. J. Thomas, A new approach to modeling the nucleation and growth kinetics of tricalcium silicate hydration, Journal of American Ceramic Society, vol. 90, no. 10, pp. 32823288, 2007. Cerca con Google

A. Damasceni, L. Dei, E. Fratini, F. Ridi, S.-H. Chen, and P. Baglioni, A Novel Approach Based on Differential Scanning Calorimetry Applied to the Study of Tricalcium Silicate Hydration Kinetics , The Journal of Physical Chemistry B, vol. 106, no. 44, pp. 1157211578, Nov. 2002. Cerca con Google

D. Jansen, S. T. Bergold, F. Goetz-Neunhoeffer, and J. Neubauer, The hydration of alite: a time-resolved quantitative X-ray diffraction approach using the G -factor method compared with heat release, Journal of Applied Crystallography, vol. 44, no. 5, pp. 895901, Aug. 2011. Cerca con Google

D. Jansen, F. Goetz-Neunhoeffer, B. Lothenbach, and J. Neubauer, The early hydration of Ordinary Portland Cement (OPC): An approach comparing measured heat flow with calculated heat flow from QXRD, Cement and Concrete Research, vol. 42, no. 1, pp. 134138, Jan. 2012. Cerca con Google

C. Hesse, F. Goetz-Neunhoeffer, and J. Neubauer, A new approach in quantitative in-situ XRD of cement pastes: Correlation of heat flow curves with early hydration reactions, Cement and Concrete Research, vol. 41, no. 1, pp. 123128, Jan. 2011. Cerca con Google

K. Van Breugel, Prediction of Temperature Development in Hardening Concrete, in Prevention of Thermal Cracking in Concrete at Early Ages, RILEM Report 15, E. Spon, Ed. London: , 1998, pp. 5175. Cerca con Google

L. DAloia and G. Chanvillard, Determining the apparent activation energy of concrete: Eanumerical simulations of the heat of hydration of cement, Cement and Concrete Research, vol. 32, pp. 12771289, 2002. Cerca con Google

H. Kada-Benameur, E. Wirquin, and B. Duthoit, Determination of apparent activation energy of concrete by isothermal calorimetry, Cement and Concrete Research, vol. 30, no. 2, pp. 301305, Feb. 2000. Cerca con Google

L. E. Copeland, D. L. Kantro, and G. Verbeck, Part IV-3 Chemistry of Hydration of Portland Cement, in 4th International Symposium of the Chemistry of Cement, 1960, pp. 429465. Cerca con Google

G. De Schutter and L. Taerwe, Degree of Hydration-Based Description of Mechanical Properties of Early-Age Concrete, Materials and Structures, vol. 29, no. 7, pp. 335344, 1996. Cerca con Google

A. Schindler and K. Folliard, Heat of hydration models for cementitious materials, ACI Materials Journal, no. 102, 2005. Cerca con Google

G. W. Brindley, A Theory of X-ray Absorption in Mixed Powders, Philosophy Magazine, vol. 36, pp. 347369, 1945. Cerca con Google

T. M. Sabine, B. A. Hunter, W. R. Sabine, and C. J. Ball, Analytical Expressions for the transmission factor and peak shift in absorbing cylindrical specimens, Journal of Applied Crystallography, vol. 31, pp. 4751, 1998. Cerca con Google

J. C. Taylor and C. E. Matulis, Absorptron Contrast Effects in the Quandtative XRD Analysis of Powders by Full Multiphase Profile Refinement, Journal of Applied Crystallography, vol. 24, pp. 1417, 1991. Cerca con Google

R. Gordon and G. Harris, Effect of particle-size on the quantitative determination of quartz by X-ray diffraction, Nature, vol. 175, p. 1135, 1955. Cerca con Google

J. Seo, M. H. Lean, and A. Kole, Membraneless microseparation by asymmetry in curvilinear laminar flows., Journal of chromatography. A, vol. 1162, no. 2, pp. 12631, Aug. 2007. Cerca con Google

C. Hesse and F. Goetz-Neunhoeffer, Quantitative in situ X-ray diffraction analysis of early hydration of Portland cement at defined temperatures, & Diffraction, pp. 112115, 2009. Cerca con Google

G. Nagelschmidt, R. L. Gordon, and O. G. Griffin, Surface of Finely-Ground Silica, Nature, vol. 169, no. 4300, pp. 539540, Mar. 1952. Cerca con Google

S. Pourchet, L. Regnaud, J. P. Perez, and A. Nonat, Early C3A hydration in the presence of different kinds of calcium sulfate, Cement and Concrete Research, vol. 39, no. 11, pp. 989996, 2009. Cerca con Google

S. Garrault, H. Minard, and A. Nonat, Hydration of silicate phase and mechanical evolution inalite-tricalcium aluminate-gypsum'complex system, 12 th International Congress in the Chemistry of Cement, 2007. Cerca con Google

H. Minard, S. Garrault, L. Regnaud, and A. Nonat, Mechanisms and parameters controlling the tricalcium aluminate reactivity in the presence of gypsum, Cement and Concrete Research, vol. 37, pp. 14181426, 2007. Cerca con Google

H. Minard, S. Garrault, and A. Nonat, Understanding of Reactional Sequences and Limiting Stages during Tricalcium Aluminate Hydration with and without Gypsum., 12 th International Congress on the Chemistry of Cement, 2007. Cerca con Google

A. Quennoz and K. L. Scrivener, Interactions between alite and C3A-gypsum hydrations in model cements, Cement and Concrete Research, vol. 44, pp. 4654, Feb. 2013. Cerca con Google

S. Gunay, S. Garrault, A. Nonat, and P. Termkhajornkit, Influence of calcium sulphate on hydration and mechanical strength of tricalcium silicate, Unpublished, 2012. Cerca con Google

X. Pardal, I. Pochard, and A. Nonat, Experimental study of SiAl substitution in calcium-silicate-hydrate (C-S-H) prepared under equilibrium conditions, Cement and Concrete Research, vol. 39, no. 8, pp. 637643, Aug. 2009. Cerca con Google

Y. Fu, P. Xie, P. Gu, and J. Beaudoin, Effect of temperature on sulphate adsorption/desorption by tricalcium silicate hydrates, Cement and concrete research, vol. 24, no. 8, pp. 14281432, 1994. Cerca con Google

P. Mehta, D. Pirtz, and M. Polivka, Properties of alite cements, Cement and concrete research, pp. 439450, 1979. Cerca con Google

D. Menetrier, I. Jawed, and J. Skalny, Effect of gypsum on C 3 S hydration, Cement and Concrete Research, vol. I, no. c, pp. 697701, 1980. Cerca con Google

N. Tenoutasse, The Hydration Mechanism of C3A and C3S in the Presence of Calcium Chloride and Calcium Sulphate, 1969, pp. 372378. Cerca con Google

H. Di Murro, Mécanismes délaboration de la microstructure des bétons, Université de Bourgogne, 2007. Cerca con Google

T. Matschei, B. Lothenbach, and F. Glasser, The AFm phase in Portland cement, Cement and Concrete Research, vol. 37, no. 2, pp. 118130, Feb. 2007. Cerca con Google

T. Matschei, B. Lothenbach, and F. P. Glasser, The role of calcium carbonate in cement hydration, Cement and Concrete Research, vol. 37, no. 4, pp. 551558, Apr. 2007. Cerca con Google

M. Balonis and F. P. Glasser, The density of cement phases, Cement and Concrete Research, vol. 39, no. 9, pp. 733739, Sep. 2009. Cerca con Google

T. Run Cerca con Google

evski, R. E. Dinnebier, O. V Magdysyuk, and H. Pöllmann, Crystal structures of calcium hemicarboaluminate and carbonated calcium hemicarboaluminate from synchrotron powder diffraction data., Acta crystallographica. Section B, Structural science, vol. 68, no. Pt 5, pp. 493500, Oct. 2012. Cerca con Google

P. Stutzman, Guide for X-ray powder diffraction analysis of Portland cement and clinker. 1996. Cerca con Google

R. E. Dinnebier and S. J. L. Billinge, Powder Diffraction Theory and Practice. 2008. Cerca con Google

T. Westphal, T. Füllmann, and H. Pöllmann, Rietveld quantification of amorphous portions with an internal standardMathematical consequences of the experimental approach, Powder Diffraction, vol. 24, no. 03, pp. 239243, Feb. 2012. Cerca con Google

L. León-Reina, a. G. De la Torre, J. M. Porras-Vázquez, M. Cruz, L. M. Ordonez, X. Alcobé, F. Gispert-Guirado, a. Larrañaga-Varga, M. Paul, T. Fuellmann, R. Schmidt, and M. a. G. Aranda, Round robin on Rietveld quantitative phase analysis of Portland cements, Journal of Applied Crystallography, vol. 42, no. 5, pp. 906916, Sep. 2009. Cerca con Google

A. G. D. La Torre, S. Bruque, and M. A. G. Aranda, Rietveld quantitative amorphous content analysis research papers, Journal of Applied Crystallography, vol. 34, pp. 196202, 2001. Cerca con Google

a G. de la Torre, A. Cabeza, A. Calvente, S. Bruque, and M. a Aranda, Full phase analysis of Portland clinker by penetrating synchrotron powder diffraction, Analytical chemistry, vol. 73, no. 2, pp. 1516, 2001. Cerca con Google

P. Whitfield and L. Mitchell, Quantitative Rietveld analysis of the amorphous content in cements and clinkers, Journal of Materials Science, vol. 8, pp. 44154421, 2003. Cerca con Google

B. H. OConnor and M. D. Raven, Application of the Rietveld Refinement Procedure in Assaying Powdered Mixtures, Powder Diffraction, vol. 3, no. 01, pp. 26, Jan. 1988. Cerca con Google

D. Jansen, S. T. Bergold, F. Goetz-Neunhoeffer, and J. Neubauer, The hydration of alite: a time-resolved quantitative X-ray diffraction approach using the G -factor method compared with heat release, Journal of Applied Crystallography, vol. 44, no. 5, pp. 895901, Aug. 2011. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record