Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Guiotto, Annamaria (2013) Development of a gait analysis driven finite element model of the diabetic foot. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi di dottorato completa e definitiva)
8Mb

Abstract (inglese)

Diabetic foot is an invalidating complication of diabetes mellitus, a chronic disease increasingly frequently encountered in the aging population. The global prevalence of diabetes is predicted to double by the year 2030 from 2.8% to 4.4%. The prevalence of foot ulceration among patients with diabetes mellitus ranges from 1.3% to 4.8%.
Several studies have highlighted that biomechanical factors play a crucial role in the aetiology, treatment and prevention of diabetic foot ulcers. Recent literature on the diabetic foot indicates that mechanical stresses, high plantar pressures or/and high tangential stresses, acting within the soft tissues of the foot can contribute to the formation of neuropathic ulcers. While it is important to study the in-vivo diabetic foot-to-floor interactions during gait, models for simulations of deformations and stresses in the diabetic plantar pad are required to predict high risk areas or to investigate the performance of different insoles design for optimal pressure relief.
The finite elements (FE) models allow taking into account the critical aspects of the diabetic foot, namely the movement, the morphology, the tissue properties and the loads.
Several 2-dimensional (2D) and 3-dimensional (3D) foot models were developed recently to study the biomechanical behavior of the human foot and ankle. However, to the author knowledge, a geometrically detailed and subject specific 3D FE model of the diabetic neuropathic foot and ankle has not been reported. Furthermore 2D and 3D state-of-the-art FE foot models are rarely combined with subject specific gait analysis data both in term of ground reaction forces and kinematics as input parameters and plantar pressure for validation purposes.
The purpose of the study herein presented was to simulate the biomechanical behavior of both an healthy and a diabetic neuropathic foot in order to predict the area characterized by excessive stresses on the plantar surface. To achieve this, it has been developed an FE model of the foot by means of applying the loading and boundary conditions given by subject-specific integrated and synchronized kinematic-kinetic data acquired during gait analysis trials to a subject specific FE model (geometry was obtained through subject specific magnetic resonance images - MRI). Thus, an integrated kinematic-kinetic protocol for gait analysis which evaluates 3D kinematics and kinetics of foot subsegments together with two comprehensive FE models of an healthy and a diabetic neuropathic foot and ankle were described herein.
In order to establish the feasibility of the former approach, a 2D FE model of the hindfoot was first developed, taking into account the bone and plantar pad geometry, the soft tissues material properties, the kinematics and the kinetics of both an healthy and a diabetic neuropathic foot acquired during three different phases of the stance phase of gait. Once demonstrated the advantage of such an approach in developing 2D FE foot models, 3D FE models of the whole foot of the same subjects were developed and the simulations were run in several phases of the stance phase of gait
The validation of the FE simulations were assessed by means of comparison between the simulated plantar pressure and the subject-specific experimental ones acquired during gait with respect to different phases of the stance phase of gait.
A secondary aim of the study was to drive the healthy and the diabetic neuropathic FE foot models with the gait analysis data respectively of 10 healthy and 10 diabetic neuropathic subjects, in order to verify the possibility of extending the results of the subject specific FE model to a wider population. The validity of this approach was also established by comparison between the simulated plantar pressures and the subject-specific experimental ones acquired during gait with respect to different phases of the stance phase of gait. Comparison was also made between the errors evaluated when the FE models simulations was run with the subject specific geometry (obtained from MRI data) and the errors estimated when the FE simulations were run with the data of the 20 subjects

Abstract (italiano)

Il diabete mellito è una malattia cronica sempre più frequente. Fra le complicanze ad esso associate vi è il cosiddetto “piede diabetico”. L’incidenza del diabete a livello mondiale è destinata a raddoppiare entro il 2030 passando dal 2.8% al 4.4% della popolazione ed il numero di pazienti affetti da diabete mellito che sviluppano ulcera podalica oscilla tra l’1.3% ed il 4.8%.
Numerosi studi hanno evidenziato come i fattori biomeccanici giochino un ruolo fondamentale nell’eziologia, nel trattamento e nella prevenzione delle ulcere del piede diabetico. La letteratura recente sul piede diabetico indica che le sollecitazioni meccaniche, ossia le elevate pressioni plantari e/o gli elevati sforzi tangenziali, che agiscono all’interno dei tessuti molli del piede possono contribuire alla formazione di ulcere. È quindi importante studiare le interazioni piede-suolo durante il cammino nei pazienti diabetici, ma si rendono anche necessari dei modelli per la simulazione di sollecitazioni e deformazioni nel tessuto plantare del piede diabetico che permettano di predire le aree ad alto rischio di ulcerazione o di valutare l’efficacia di ortesi plantari nel ridistribuire in modo ottimale le pressioni plantari.
I modelli agli elementi finiti consentono di tenere conto degli aspetti critici del piede diabetico, vale a dire il movimento, la morfologia, le proprietà dei tessuti e le sollecitazioni meccaniche.
Di recente sono stati sviluppati diversi modelli bidimensionali (2D) e tridimensionali (3D) del piede con lo scopo di studiare il comportamento biomeccanico di piede e caviglia. Tuttavia, per quanto appurato dall’autore, in letteratura non è stato riportato un modello 3D agli elementi finiti del piede diabetico neuropatico con geometria dettagliata e specifica di un soggetto. Inoltre, i modelli 2D e 3D agli elementi finiti del piede presenti in letteratura sono stati raramente combinati con i dati del cammino specifici dei soggetti, sia in termini di forze di reazione al suolo e cinematica (come parametri di input) che in termini di pressioni plantari per la validazione.
L’obiettivo dello studio qui presentato è stato quello di simulare il comportamento biomeccanico sia del piede di un soggetto sano che del piede di un soggetto diabetico neuropatico per prevedere l'area della superficie plantare caratterizzata da eccessive sollecitazioni. A tal scopo, sono stati sviluppati due modelli agli elementi finiti di piede e caviglia, utilizzando le geometrie specifiche dei piedi dei due soggetti (uno sano ed uno diabetico neuropatico) ottenute attraverso immagini di risonanza magnetica (MRI). Quindi sono state effettuate delle simulazioni mediante l'applicazione di carichi e di condizioni al contorno, ottenuti da dati di cinematica e cinetica, integrati e sincronizzati, acquisiti durante il cammino, specifici dei due soggetti sui rispettivi modelli agli elementi finiti. Pertanto in questa tesi sono stati descritti un protocollo integrato di cinematica-cinetica per l'analisi del cammino che permette di valutare la cinematica e la cinetica 3D dei sottosegmenti del piede e due modelli completi agli elementi finiti di un piede sano e di un piede diabetico neuropatico.
Per stabilire la fattibilità di tale approccio, sono stati inizialmente sviluppati due modelli 2D agli elementi finiti del retropiede di un soggetto sano e di un soggetto diabetico neuropatico, tenendo conto della geometria ossea e del cuscinetto plantare, delle proprietà dei materiali dei tessuti molli, della cinematica e della cinetica. Questi ultimi sono stati acquisiti durante tre istanti della fase di appoggio del ciclo del passo. Una volta dimostrato il vantaggio di un simile approccio nello sviluppo di modelli 2D agli elementi finiti del piede, sono stati sviluppati i modelli 3D agli elementi finiti del piede intero degli stessi soggetti e sono state eseguite le simulazioni in vari istanti della fase di appoggio.
La validazione delle simulazioni è stata effettuata attraverso il confronto tra le pressioni plantari simulate e quelle acquisite sperimentalmente durante il cammino degli stessi soggetti, nei corrispondenti istanti della fase di appoggio.
Un secondo scopo dello studio qui presentato è stato quello di effettuare simulazioni del modello del piede del soggetto sano e di quello del soggetto neuropatico con dati di analisi del cammino rispettivamente di 10 soggetti sani e 10 diabetici neuropatici, al fine di verificare la possibilità di estendere i risultati dei modelli specifici dei due soggetti ad una popolazione più ampia. La validità di questo approccio è stata valutata tramite il confronto tra le pressioni plantari simulate e quelle sperimentali specifiche di ogni soggetto, acquisite durante il cammino. Inoltre gli errori delle simulazioni eseguite con i dati dei 20 soggetti sono stati confrontati con gli errori effettuati quando le simulazioni dei modelli avevano previsto l’utilizzo di dati di cammino specifici dei due soggetti la cui geometria podalica era stata ottenuta da MRI

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Cobelli, Claudio
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > INGEGNERIA DELL'INFORMAZIONE > BIOINGEGNERIA
Data di deposito della tesi:30 Gennaio 2013
Anno di Pubblicazione:30 Gennaio 2013
Parole chiave (italiano / inglese):diabetic foot; gait analysis; kinematics; kinetics; plantar pressure; finite element analysis; biomechanics; three-dimensional; integrated; multisegments
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/06 Bioingegneria elettronica e informatica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:5857
Depositato il:16 Ott 2013 09:26
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Imago s.n.c. http://www.imagortesi.com/. Vai! Cerca con Google

[2] Surface anatomy, NTUPT. http://www.pt.ntu.edu.tw/hmchai/SurfaceAnatomy/. Vai! Cerca con Google

[3] WHO j world health organization. http://www.who.int/en/. Vai! Cerca con Google

[4] C. A. Abbott, L. Vileikyte, S. Williamson, A. L. Carrington, and A. J. Boulton. Multicenter study of the incidence of and predictive risk factors for diabetic neuropathic foot ulceration. Diabetes Care, 21(7):1071-1075, July 1998. Cerca con Google

[5] F. Abouaesha, C. H. M. van Schie, D. G. Armstrong, and A. J. M. Boulton. Plantar soft-tissue thickness predicts high peak plantar pressure in the diabetic foot. Journal of the American Podiatric Medical Association, 94(1):39-42, Feb. 2004. Cerca con Google

[6] R. L. Actis, L. B. Ventura, D. J. Lott, K. E. Smith, P. K. Commean, M. K. Hastings, and M. J. Mueller. Multi-plug insole design to reduce peak plantar pressure on the diabetic foot during walking. Medical & Biological Engineering & Computing, 46:363-371, Feb. 2008. Cerca con Google

[7] R. L. Actis, L. B. Ventura, K. E. Smith, P. K. Commean, D. J. Lott, T. K. Pilgram, and M. J. Mueller. Numerical simulation of the plantar pressure distribution in the diabetic foot during the push-off stance. Medical & Biological Engineering & Computing, 44(8):653-663, Aug. 2006. Cerca con Google

[8] J. H. Ahroni, E. J. Boyko, and R. C. Forsberg. Clinical correlates of plantar pressure among diabetic veterans. Diabetes care, 22(6):965-972, June 1999. Cerca con Google

[9] American Diabetes Association. Peripheral arterial disease in people with diabetes. Diabetes Care, 26(12):3333-3341, Jan. 2003. Cerca con Google

[10] J. P. Antunes, G. R. Dias, A. T. Coelho, F. Rebelo, and T. Pereira. Nonlinear 3D foot FEA modelling from CT scan medical images. In Computational Vision and Medical Imaging Processing, pages 135-141. Taveres, Jmrs and Jorge, R. M. N., 2011. Cerca con Google

[11] D. G. Armstrong, E. J. Peters, K. A. Athanasiou, and L. A. Lavery. Is there a critical level of plantar foot pressure to identify patients at risk for neuropathic foot ulceration? The Journal of Foot and Ankle Surgery, 37(4):303-307, Aug. 1998. Cerca con Google

[12] E. Atlas, Z. Yizhar, S. Khamis, N. Slomka, S. Hayek, and A. Gefen. Utilization of the foot load monitor for evaluating deep plantar tissue stresses in patients with diabetes: Proof-of-concept studies. Gait & Posture, 29(3):377-382, Apr. 2009. Cerca con Google

[13] Z. Barani, M. Haghpanahi, and H. Katoozian. Three dimensional stress analysis of diabetic insole: a finite element approach. Technology and Health Care: Official Journal of the European Society for Engineering and Medicine, 13(3):185-192, 2005. Cerca con Google

[14] Bertec corporation. Force plate user manual. Columbus OH, USA. Cerca con Google

[15] J. Bevans. Biomechanics and plantar ulcers in diabetes. The Foot, 2(3):166-172, Sept. 1992. Cerca con Google

[16] J. Bevans and P. Bowker. Foot structure and function: aetiological risk factors for callus formation in diabetic and non-diabetic subjects. The Foot, 9(3):120-127, Sept. 1999. Cerca con Google

[17] A. J. Boulton. Diabetic neuropathy: Is pain god's greatest gift to mankind? Seminars in Vascular Surgery, 25(2):61-65, June 2012. Cerca con Google

[18] A. J. Boulton, L. Vileikyte, G. Ragnarson-Tennvall, and J. Apelqvist. The global burden of diabetic foot disease. The Lancet, 366(9498):1719-1724, 2005. Cerca con Google

[19] A. J. M. Boulton. Diabetic neuropathy: is pain god's greatest gift to mankind? Seminars in vascular surgery, 25(2):61-65, June 2012. Cerca con Google

[20] R. J. Bourdiol. Pied et statique. Maisonneuve, 1980. Cerca con Google

[21] C. K. Bowering. Diabetic foot ulcers. pathophysiology, assessment, and therapy. Canadian Family Physician, 47:1007-1016, May 2001. Cerca con Google

[22] S. P. Budhabhatti, A. Erdemir, M. Petre, J. Sferra, B. Donley, and P. R. Cavanagh. Finite element modeling of the first ray of the foot: a tool for the design of interventions. Journal of Biomechanical Engineering, 129(5):750- 756, Oct. 2007. Cerca con Google

[23] S. A. Bus, G. D. Valk, R. W. van Deursen, D. G. Armstrong, C. Caravaggi, P. Hlavek, K. Bakker, and P. R. Cavanagh. The effectiveness of footwear and off-loading interventions to prevent and heal foot ulcers and reduce plantar pressure in diabetes: a systematic review. Diabetes/Metabolism Research and Reviews, 24(S1):S162-S180, May 2008. Cerca con Google

[24] D. L. A. Camacho, W. R. Ledoux, E. S. Rohr, B. J. Sangeorzan, and R. P. Ching. A three-dimensional, anatomically detailed foot model: a foundation for a finite element simulation and means of quantifying foot-bone position. Journal of Rehabilitation Research and Development, 39(3):401-410, June 2002. Cerca con Google

[25] A. Cappello, A. Cappozzo, and P. E. di Prampero. Bioingegneria della postura e del movimento. Patron, 2003. Cerca con Google

[26] M. C. Carson, M. E. Harrington, N. Thompson, J. J. O'Connor, and T. N .Theologis. Kinematic analysis of a multi-segment foot model for research and clinical applications: a repeatability analysis. Journal of biomechanics, 34(10):1299-1307, Oct. 2001. Cerca con Google

[27] P. Cavanagh, A. Erdemir, M. Petre, T. Owings, G. Botek, S. Chokhandre, and R. Bafna. Biomechanical factors in diabetic foot disease. Journal of Foot and Ankle Research, 1(Suppl 1):K4, 2008. Cerca con Google

[28] P. R. Cavanagh, G. G. Simoneau, and J. S. Ulbrecht. Ulceration, unsteadiness, and uncertainty: the biomechanical consequences of diabetes mellitus. Journal of biomechanics, 26 Suppl 1:23-40, 1993. Cerca con Google

[29] W.-M. Chen, T. Lee, P. V.-S. Lee, J. W. Lee, and S.-J. Lee. Effects of internal stress concentrations in plantar soft-tissue-a preliminary three-dimensional finite element analysis. Medical Engineering & Physics, 32(4):324-331, May 2010. Cerca con Google

[30] W.-M. Chen, J. Park, S.-B. Park, V. P.-W. Shim, and T. Lee. Role of gastrocnemius-soleus muscle in forefoot force transmission at heel rise -A 3D finite element analysis. Journal of Biomechanics, 45(10):1783-1789, June 2012. Cerca con Google

[31] W.-P. Chen, C.-W. Ju, and F.-T. Tang. Effects of total contact insoles on the plantar stress redistribution: a finite element analysis. Clinical Biomechanics (Bristol, Avon), 18(6):S17-24, July 2003. Cerca con Google

[32] W. P. Chen, F. T. Tang, and C. W. Ju. Stress distribution of the foot during mid-stance to push-off in barefoot gait: a 3-d finite element analysis. Clinical Biomechanics (Bristol, Avon), 16(7):614-620, Aug. 2001. Cerca con Google

[33] J. T.-M. Cheung and B. M. Nigg. Clinical applications of computational simulation of foot and ankle. Sport-Orthopdie - Sport-Traumatologie - Sports Orthopaedics and Traumatology, 23(4):264-271, Jan. 2008. Cerca con Google

[34] J. T.-M. Cheung, J. Yu, D. W.-C.Wong, and M. Zhang. Current methods in computer-aided engineering for footwear design. Footwear Science, 1(1):31-46, 2009. Cerca con Google

[35] J. T.-M. Cheung and M. Zhang. A 3-dimensional finite element model of the human foot and ankle for insole design. Archives of Physical Medicine and Rehabilitation, 86(2):353-358, Feb. 2005. Cerca con Google

[36] J. T.-M. Cheung and M. Zhang. Parametric design of pressure-relieving foot orthosis using statistics-based finite element method. Medical Engineering & Physics, 30(3):269-277, Apr. 2008. Cerca con Google

[37] J. T.-M. Cheung, M. Zhang, A. K.-L. Leung, and Y.-B. Fan. Three-dimensional finite element analysis of the foot during standing-a material sensitivity study. Journal of Biomechanics, 38(5):1045-1054, May 2005. Cerca con Google

[38] T. M. Chu and N. P. Reddy. Stress distribution in the ankle-foot orthosis used to correct pathological gait. Journal of rehabilitation research and development, 32(4):349-360, Nov. 1995. Cerca con Google

[39] M. S. Cowley, E. J. Boyko, J. B. Shofer, J. H. Ahroni, and W. R. Ledoux. Foot ulcer risk and location in relation to prospective clinical assessment of foot shape and mobility among persons with diabetes. Diabetes research and clinical practice, 82(2):226-232, Nov. 2008. Cerca con Google

[40] F. Crawford, M. Inkster, J. Kleijnen, and T. Fahey. Predicting foot ulcers in patients with diabetes: a systematic review and meta-analysis. QJM, 100(2):65-86, Jan. 2007. Cerca con Google

[41] S. Cuccurullo. Gait analysis. http://www.ncbi.nlm.nih.gov, 2004. Vai! Cerca con Google

[42] X.-Q. Dai, Y. Li, M. Zhang, and J. T.-M. Cheung. Effect of sock on biomechanical responses of foot during walking. Clinical Biomechanics, 21(3):314-321, Mar. 2006. Cerca con Google

[43] E. D'Ambrogi, L. Giurato, M. A. D'Agostino, C. Giacomozzi, V. Macellari, A. Caselli, and L. Uccioli. Contribution of plantar fascia to the increased forefoot pressures in diabetic patients. Diabetes Care, 26(5):1525 -1529, May 2003. Cerca con Google

[44] Dassault Systemes. Abaqus theory manual, Simulia Corp., Providence, RI, USA. Cerca con Google

[45] R. B. Davis III, S. unpuu, D. Tyburski, and J. R. Gage. A gait analysis data collection and reduction technique. Human Movement Science, 10(5):575-587, Oct. 1991. Cerca con Google

[46] K. Deschamps, F. Staes, P. Roosen, F. Nobels, K. Desloovere, H. Bruyninckx, and G. A. Matricali. Body of evidence supporting the clinical use of 3D multisegment foot models: a systematic review. Gait & posture, 33(3):338-349, Mar. 2011. Cerca con Google

[47] A. Erdemir, J. J. Saucerman, D. Lemmon, B. Loppnow, B. Turso, J. S. Ulbrecht, and P. R. Cavanagh. Local plantar pressure relief in therapeutic footwear: design guidelines from finite element models. Journal of Biomechanics, 38(9):1798-1806, Sept. 2005. Cerca con Google

[48] A. Erdemir, M. L. Viveiros, J. S. Ulbrecht, and P. R. Cavanagh. An inverse finite-element model of heel-pad indentation. Journal of Biomechanics, 39(7):1279-1286, 2006. Cerca con Google

[49] E. L. Feldman, M. J. Stevens, P. K. Thomas, M. B. Brown, N. Canal, and D. A. Greene. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes care, 17(11):1281-1289, Nov. 1994. Cerca con Google

[50] J. Fernandez, M. Ul Haque, P. Hunter, and K. Mithraratne. Mechanics of the foot part 1: A continuum framework for evaluating soft tissue stiffening in the pathologic foot. International Journal for Numerical Methods in Biomedical Engineering, 28(10):1056-1070, 2012. Cerca con Google

[51] D. J. Fernando, E. A. Masson, A. Veves, and A. J. Boulton. Relationship of limited joint mobility to abnormal foot pressures and diabetic foot ulceration. Diabetes care, 14(1):8-11, Jan. 1991. Cerca con Google

[52] A. Gefen. Stress analysis of the standing foot following surgical plantar fascia release. Journal of Biomechanics, 35(5):629-637, May 2002. Cerca con Google

[53] A. Gefen. Plantar soft tissue loading under the medial metatarsals in the standing diabetic foot. Medical Engineering & Physics, 25(6):491-499, July 2003. Cerca con Google

[54] A. Gefen, M. Megido-Ravid, Y. Itzchak, and M. Arcan. Biomechanical analysis of the three-dimensional foot structure during gait: a basic tool for clinical applications. Journal of Biomechanical Engineering, 122(6):630-639, Dec. 2000. Cerca con Google

[55] C. Giacomozzi, V. Macellari, A. Leardini, and M. G. Benedetti. Integrated pressure-force-kinematics measuring system for the characterisation of plantar foot loading during locomotion. Medical & biological engineering & computing, 38(2):156-163, Mar. 2000. Cerca con Google

[56] C. Giacomozzi and F. Martelli. Peak pressure curve: An effective parameter for early detection of foot functional impairments in diabetic patients. Gait & Posture, 23(4):464-470, June 2006. Cerca con Google

[57] S. Goske, A. Erdemir, M. Petre, S. Budhabhatti, and P. R. Cavanagh. Reduction of plantar heel pressures: Insole design using finite element analysis. Journal of Biomechanics, 39(13):2363-2370, Jan. 2006. Cerca con Google

[58] H. Gray. Anatomy of the human body. Lea & Febiger, 1918. Cerca con Google

[59] Y. Gu, J. Li, X. Ren, M. J. Lake, and Y. Zeng. Heel skin stiffness effect on the hind foot biomechanics during heel strike. Skin Research and Technology., 16(3):291-296, Aug. 2010. Cerca con Google

[60] Y. D. Gu, X. J. Ren, J. S. Li, M. J. Lake, Q. Y. Zhang, and Y. J. Zeng. Computer simulation of stress distribution in the metatarsals at different inversion landing angles using the finite element method. International Orthopaedics, 34(5):669-676, June 2010. Cerca con Google

[61] A. Guiotto, Z. Sawacha, G. Guarneri, G. Cristoferi, A. Avogaro, and C. Cobelli. The role of foot morphology on foot function in diabetic subjects with or without neuropathy. Gait & posture, Nov. 2012. Cerca con Google

[62] J. P. Halloran, M. Ackermann, A. Erdemir, and A. J. van den Bogert. Concurrent musculoskeletal dynamics and finite element analysis predicts altered gait patterns to reduce foot tissue loading. Journal of Biomechanics, 43(14):2810-2815, Oct. 2010. Cerca con Google

[63] J. P. Halloran, A. Erdemir, and A. J. van den Bogert. Adaptive surrogate modeling for efficient coupling of musculoskeletal control and tissue deformation models. Journal of Biomechanical Engineering, 131(1):011014, Jan. 2009. Cerca con Google

[64] C.-C. Hsu, W.-C. Tsai, C.-L. Wang, S.-H. Pao, Y.-W. Shau, and Y.-S.Chuan. Microchambers and macrochambers in heel pads: are they functionally different? Journal of Applied Physiology, 102(6):2227 -2231, June 2007. Cerca con Google

[65] T. C. Hsu, C. L. Wang, Y. W. Shau, F. T. Tang, K. L. Li, and C. Y. Chen. Altered heelpad mechanical properties in patients with type 2 diabetes mellitus. Diabetic Medicine, 17(12):854-859, Dec. 2000. Cerca con Google

[66] J. M. Iaquinto and J. S. Wayne. Computational model of the lower leg and foot/ankle complex: application to arch stability. Journal of Biomechanical Engineering, 132(2):021009, Feb. 2010. Cerca con Google

[67] S. Jacob and M. K. Patil. Stress analysis in three-dimensional foot models of normal and diabetic neuropathy. Frontiers of Medical and Biological Engineering, 9(3):211-227, 1999. Cerca con Google

[68] J. W. Klaesner, M. K. Hastings, D. Zou, C. Lewis, and M. J. Mueller. Plantar tissue stiffness in patients with diabetes mellitus and peripheral neuropathy. Archives of Physical Medicine and Rehabilitation, 83(12):1796-1801, Dec. 2002. Cerca con Google

[69] L. A. Lavery, D. G. Armstrong, R. P. Wunderlich, J. Tredwell, and A. J. M. Boulton. Predictive value of foot pressure assessment as part of a population-based diabetes disease management program. Diabetes care, 26(4):1069-1073, Apr. 2003. Cerca con Google

[70] A. Leardini, M. G. Benedetti, L. Berti, D. Bettinelli, R. Nativo, and S. Giannini. Rear-foot, mid-foot and fore-foot motion during the stance phase of gait. Gait & posture, 25(3):453-462, Mar. 2007. Cerca con Google

[71] A. Leardini, M. G. Benedetti, F. Catani, L. Simoncini, and S. Giannini. An anatomically based protocol for the description of foot segment kinematics during gait. Clinical biomechanics (Bristol, Avon), 14(8):528-536, Oct. 1999. Cerca con Google

[72] A. Leardini, L. Chiari, U. Della Croce, and A. Cappozzo. Human movement analysis using stereophotogrammetry. part 3. soft tissue artifact assessment and compensation. Gait & posture, 21(2):212-225, Feb. 2005. Cerca con Google

[73] W. R. Ledoux, E. S. Rohr, R. P. Ching, and B. J. Sangeorzan. Effect of foot shape on the three-dimensional position of foot bones. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 24(12):2176-2186, Dec. 2006. Cerca con Google

[74] W. R. Ledoux, J. B. Shofer, J. H. Ahroni, D. G. Smith, B. J. Sangeorzan, and E. J. Boyko. Biomechanical differences among pes cavus, neutrally aligned, and pes planus feet in subjects with diabetes. Foot & ankle international / American Orthopaedic Foot and Ankle Society [and] Swiss Foot and Ankle Society, 24(11):845-850, Nov. 2003. Cerca con Google

[75] W. R. Ledoux, J. B. Shofer, D. G. Smith, K. Sullivan, S. G. Hayes, M. Assal, and G. E. Reiber. Relationship between foot type, foot deformity, and ulcer occurrence in the high-risk diabetic foot. Journal of rehabilitation research and development, 42(5):665-672, Oct. 2005. Cerca con Google

[76] D. Lemmon, T. Shiang, A. Hashmi, J. S. Ulbrecht, and P. R. Cavanagh. The effect of insoles in therapeutic footwear: A finite element approach. Journal of Biomechanics, 30(6):615-620, June 1997. Cerca con Google

[77] S. LTD. ScanIP, +FE and +CAD reference guide, 2011. Cerca con Google

[78] B. A. MacWilliams, M. Cowley, and D. E. Nicholson. Foot kinematics and kinetics during adolescent gait. Gait & posture, 17(3):214-224, June 2003. Cerca con Google

[79] A. Malanthara and W. Gerstle. Comparative study of unstructured meshes made of triangles and quadrilaterals. In In Proceedings of the 6th International Meshing Roundtable, pages 437-447, 1997. Cerca con Google

[80] K. Mithraratne, H. Ho, P. Hunter, and J. Fernandez. Mechanics of the foot part 2: A coupled solid uid model to investigate blood transport in the pathologic foot. International Journal for Numerical Methods in Biomedical Engineering, 28(10):1071-1081, 2012. Cerca con Google

[81] E. Morag and P. R. Cavanagh. Structural and functional predictors of regional peak pressures under the foot during walking. Journal of biomechanics, 32(4):359-370, Apr. 1999. Cerca con Google

[82] M. J. Mueller, J. E. Diamond, A. Delitto, and D. R. Sinacore. Insensitivity, limited joint mobility, and plantar ulcers in patients with diabetes mellitus. Physical therapy, 69(6):453-459; discussion 459-462, June 1989. Cerca con Google

[83] M. J. Mueller, M. Hastings, P. K. Commean, K. E. Smith, T. K. Pilgram, D. Robertson, and J. Johnson. Forefoot structural predictors of plantar pressures during walking in people with diabetes and peripheral neuropathy. Journal of biomechanics, 36(7):1009-1017, July 2003. Cerca con Google

[84] M. J. Mueller, D. R. Sinacore, S. Hoogstrate, and L. Daly. Hip and ankle walking strategies: effect on peak plantar pressures and implications for neuropathic ulceration. Archives of physical medicine and rehabilitation, 75(11):1196-1200, Nov. 1994. Cerca con Google

[85] M. J. Mueller, D. Zou, K. L. Bohnert, L. J. Tuttle, and D. R. Sinacore. Plantar stresses on the neuropathic foot during barefoot walking. Physical therapy, 88(11):1375-1384, Nov. 2008. Cerca con Google

[86] A. Natali, A. Forestiero, E. Carniel, P. Pavan, and C. Dal Zovo. Investigation of foot plantar pressure: experimental and numerical analysis. Medical and Biological Engineering and Computing, 48(12):1167-1174, Dec. 2010. Cerca con Google

[87] C. Nester, R. K. Jones, A. Liu, D. Howard, A. Lundberg, A. Arndt, P. Lundgren, A. Stacoff, and P. Wolf. Foot kinematics during walking measured using bone and surface mounted markers. Journal of biomechanics, 40(15):3412-3423, 2007. Cerca con Google

[88] M. Oosterwaal, S. Telfer, S. Trholm, S. Carbes, L. W. v. Rhijn, R. Macduff, K. Meijer, and J. Woodburn. Generation of subject-specific, dynamic, multisegment ankle and foot models to improve orthotic design: a feasibility study. BMC Musculoskeletal Disorders, 12(1):256, Nov. 2011. Cerca con Google

[89] D. Parker, G. Cooper, S. Pearson, D. Howard, G. Crofts, and C. Nester. In vivo measurement of the biomechanical properties of plantar soft tissues under simulated gait conditions. Journal of Foot and Ankle Research, 5(Suppl 1):O39, 2012. Cerca con Google

[90] K. M. Patil, L. H. Braak, and A. Huson. Stresses in a simplified two dimensional model of a normal foot - a preliminary analysis. Mechanics Research Communications, 20(1):1-7, 1993. Cerca con Google

[91] K. M. Patil, L. H. Braak, and A. Huson. Analysis of stresses in two-dimensional models of normal and neuropathic feet. Medical and Biological Engineering and Computing, 34(4):280-284, July 1996. Cerca con Google

[92] S. P. Pendsey. Understanding diabetic foot. International Journal of Diabetes in Developing Countries, 30(2):75-79, 2010. Cerca con Google

[93] J. Perry. Gait Analysis: Normal and Pathological Function. Slack, 1992. Cerca con Google

[94] M. Petre, A. Erdemir, and P. R. Cavanagh. An MRI-compatible foot-loading device for assessment of internal tissue deformation. Journal of biomechanics, 41(2):470-474, 2008. Cerca con Google

[95] Z.-h. Qian, L. Ren, Y. Ding, and L. Ren. A three-dimensional musculoskeletal model of the human foot complex using finite element method. ISB 2011- Bruxelles, 2011. Cerca con Google

[96] T.-X. Qiu, E.-C. Teo, Y.-B. Yan, and W. Lei. Finite element modeling of a 3D coupled foot-boot model. Medical Engineering & Physics, June 2011. Cerca con Google

[97] S. Rao, C. Saltzman, and H. J. Yack. Segmental foot mobility in individuals with and without diabetes and neuropathy. Clinical biomechanics (Bristol, Avon), 22(4):464-471, May 2007. Cerca con Google

[98] S. Rao, C. L. Saltzman, and H. J. Yack. Relationships between segmental foot mobility and plantar loading in individuals with and without diabetes and neuropathy. Gait & posture, 31(2):251-255, Feb. 2010. Cerca con Google

[99] K. Rome, R. Campbell, A. Flint, and I. Haslock. Reliability of weight-bearing heel pad thickness measurements by ultrasound. Clinical Biomechanics, 13(4-5):374-375, June 1998. Cerca con Google

[100] I. C. Sacco and A. C. Amadio. A study of biomechanical parameters in gait analysis and sensitive cronaxie of diabetic neuropathic patients. Clinical biomechanics (Bristol, Avon), 15(3):196-202, Mar. 2000. Cerca con Google

[101] Z. Sawacha, G. Cristoferi, G. Guarneri, S. Corazza, G. Don, P. Denti, A. Facchinetti, A. Avogaro, and C. Cobelli. Characterizing multisegment foot kinematics during gait in diabetic foot patients. Journal of NeuroEngineering and Rehabilitation, 6:37-37, Oct. 2009. Cerca con Google

[102] Z. Sawacha, G. Gabriella, G. Cristoferi, A. Guiotto, A. Avogaro, and C. Cobelli. Diabetic gait and posture abnormalities: a biomechanical investigation through three dimensional gait analysis. Clinical Biomechanics (Bristol, Avon), 24(9):722-728, Nov. 2009. Cerca con Google

[103] Z. Sawacha, G. Guarneri, A. Avogaro, and C. Cobelli. A new classification of diabetic gait pattern based on cluster analysis of biomechanical data. Journal of Diabetes Science and Technology, 4(5):1127-1138, Sept. 2010. Cerca con Google

[104] Z. Sawacha, G. Guarneri, G. Cristoferi, A. Guiotto, A. Avogaro, and C. Cobelli. Integrated kinematics kinetics plantar pressure data analysis: A useful tool for characterizing diabetic foot biomechanics. Gait & Posture, 36(1):20-26, May 2012. Cerca con Google

[105] Z. Sawacha, A. Guiotto, A. Avogaro, D. Boso, B. Schrefler, A. Scarton, and C. Cobelli. Foot biomechanics model for diabetic ulcer prevention. Volume Proceedings, page A120, Bethesda, Maryland, 2012. Cerca con Google

[106] Z. Sawacha, F. Spolaor, G. Guarneri, P. Contessa, E. Carraro, A. Venturin, A. Avogaro, and C. Cobelli. Abnormal muscle activation during gait in diabetes patients with and without neuropathy. Gait & Posture, 35(1):101-105, Jan. 2012. Cerca con Google

[107] J. E. Shaw, C. H. van Schie, A. L. Carrington, C. A. Abbott, and A. J. Boulton. An analysis of dynamic forces transmitted through the foot in diabetic neuropathy. Diabetes care, 21(11):1955-1959, Nov. 1998. Cerca con Google

[108] J. A. Stebbins, M. E. Harrington, C. Giacomozzi, N. Thompson, A. Zavatsky, and T. N. Theologis. Assessment of sub-division of plantar pressure measurement in children. Gait & posture, 22(4):372-376, Dec. 2005. Cerca con Google

[109] S. C. Tadepalli, A. Erdemir, and P. R. Cavanagh. Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and footwear. Journal of Biomechanics, 44(12):2337-2343, Aug. 2011. Cerca con Google

[110] V. J. Thomas, K. M. Patil, and S. Radhakrishnan. Three-dimensional stress analysis for the mechanics of plantar ulcers in diabetic neuropathy. Medical & Biological Engineering & Computing, 42(2):230-235, Mar. 2004. Cerca con Google

[111] J. Tong, C. Lim, and O. Goh. Technique to study the biomechanical properties of the human calcaneal heel pad. The Foot, 13(2):83-91, June 2003. Cerca con Google

[112] L. Uccioli, A. Caselli, C. Giacomozzi, V. Macellari, L. Giurato, L. Lardieri, and G. Menzinger. Pattern of abnormal tangential forces in the diabetic neuropathic foot. Clinical Biomechanics, 16(5):446-454, June 2001. Cerca con Google

[113] C. H. M. van Schie. A review of the biomechanics of the diabetic foot. The international journal of lower extremity wounds, 4(3):160-170, Sept. 2005. Cerca con Google

[114] C. L. Vaughan, B. L. Davis, and J. C. O'Connor. Dynamics of Human Gait. Kiboho Publishers, Cape Town, South Africa, 2nd edition, 1992. Cerca con Google

[115] A. Veves, J. M. Giurini, and F. W. LoGerfo. The Diabetic Foot. Springer, June 2006. Cerca con Google

[116] WHO. Chapter 1 - burden: mortality, morbidity and risk factors. In Global status report on NCDs 2010. 2010. Cerca con Google

[117] D. A. Winter. Biomechanics and Motor Control of Human Movement. John Wiley & Sons, Oct. 2009. Cerca con Google

[118] J. S.Wrobel and B. Najafi. Diabetic foot biomechanics and gait dysfunction. Journal of Diabetes Science and Technology, 4(4):833-845, July 2010. Cerca con Google

[119] L.Wu. Nonlinear finite element analysis for musculoskeletal biomechanics of medial and lateral plantar longitudinal arch of virtual chinese human after plantar ligamentous structure failures. Clinical Biomechanics, 22(2):221-229, Feb. 2007. Cerca con Google

[120] G. Yarnitzky, Z. Yizhar, and A. Gefen. Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis. Journal of Biomechanics, 39(14):2673-2689,2006. Cerca con Google

[121] M. Yavuz, A. Tajaddini, G. Botek, and B. L. Davis. Temporal characteristics of plantar shear distribution: relevance to diabetic patients. Journal of Biomechanics, 41(3):556-559, 2008. Cerca con Google

[122] P. Young, T. Beresford-West, S. Coward, B. Notarberardino, B.Walker, and A. Abdul-Aziz. An efficient approach to converting three-dimensional image data into highly accurate computational models. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 366(1878):3155 -3173, 2008. Cerca con Google

[123] Y. Zheng, Y. Choi, K. Wong, S. Chan, and A. Mak. Biomechanical assessment of plantar foot tissue in diabetic patients using an ultrasound indentation system. Ultrasound in Medicine & Biology, 26(3):451-456, Mar. 2000. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record