Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Cadel, Agnese (2008) Disordered models: Spin Glasses and Directed Polymers. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
566Kb

Abstract (inglese)

Disordered systems are among the most difficult and most fascinating problems in statistical mechanics.
One speaks of disordered (or complex) system when the dynamics, or the structures that appears within the system, exhibits a rich variety of behaviours, while the microscopic entities the system is made of, and the interactions among these entities, are a priori simple. In this thesis we consider two famous examples of these systems: spin glasses and directed polymers in random environments.
In the first part of the thesis we study a variant of the Sherrington-Kirkpatrick (SK) model, the SK model with ferromagnetic interactions. More precisely the Hamiltonian that describes the model is a combination of a SK and Curie-Weiss Hamiltonian. Our aim is to extend the well known results obtained in the SK model, trying to describe this new model in the high temperature region. The main result is that the two key parameters, the magnetization and the overlap, are asymptotically close to constants ? and q, That are the unique solutions of the so-called replica symmetric equations of this model. We then use this result to study the thermodynamical limit of the free energy and the behaviour of the Gibbs measure.
In the second part of the thesis we consider two models of directed polymers in random environment. First of all we consider a Brownian polymer in a Gaussian environment, fully determined by its covariance function. In this case it is known that the thermodynamical limit of the free energy exists and it is expected that the polymer is in the strong disorder regime for low temperatures. We give a better estimate of the limit of the free energy in order to quantify how far we are from the weak disorder regime. Then we modify the hypothesis on the covariance of the environment, to determine if one ever leaves the strong disorder regime. After this we consider a continuous time random walk in a white noise potential, making a link between the last result and this new model.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Tindel, Samy - Rovira, Carles
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MATEMATICHE > MATEMATICA COMPUTAZIONALE
Data di deposito della tesi:Gennaio 2008
Anno di Pubblicazione:Gennaio 2008
Parole chiave (italiano / inglese):disordered systems, spin glasses, SK model, directed polymers in random environment, brownian polymer in a white noise potential
Settori scientifico-disciplinari MIUR:Area 01 - Scienze matematiche e informatiche > MAT/06 Probabilità e statistica matematica
Struttura di riferimento:Dipartimenti > Dipartimento di Matematica Pura e Applicata
Codice ID:586
Depositato il:18 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] R. Adler, An introduction to continuity, extrema and related topics for general Gaussian processes, Institute of Math. statistics 12 Hayward (1990). Cerca con Google

[2] X. Bardina, D. Márquez-Carreras, C. Rovira, S. Tindel, The p-spin interaction model with external _eld, Potential Analysis 21 (2004), 311-362. Cerca con Google

[3] A. Bovier, Statistical Mechanics of Disordered Systems, Cambridge Series in Statistical and Probabilistic Mathematics (2006). Cerca con Google

[4] A. Cadel, D. Márquez-Carreras, C. Rovira, S. Tindel, A model of continuous time polymer on the lattice, In preparation (2007). Cerca con Google

[5] P. Carmona, Y. Hu, On the partition function of a directed polymer in a Gaussian random environment, Probab. Theory Relat. Fields, 124 (2002), 431-457. Cerca con Google

[6] P. Carmona, Y. Hu, Strong disorder implies strong localization for directed polymers in a random environment, ALEA Lat. Am. J. Probab. Math. Stat 2, (2006), 217_229. Cerca con Google

[7] R. Carmona, L. Koralov, S.A. Molchanov, Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem, Random Oper. Stochastic Equations 9 no. 1, (2001), 77_86. Cerca con Google

[8] R. Carmona, S.A. Molchanov, Parabolic Anderson problem and intermittency, Mem. Amer. Math. Soc. 108, (1994). Cerca con Google

[9] R. Carmona, F. Viens, Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter, Stochastics and Stochastic Reports 62, (1998), 251-273. Cerca con Google

[10] F. Comets, G. Giacomin, J. L. Lebowitz, The Sherrington-Kirkpatrick model with short range ferromagnetic interactions, C. R. Acad. Sci. Paris Sér. I Math. 328 no. 1 (1999), 57-62. Cerca con Google

[11] F. Comets, F. Guerra, F. L. Toninelli, The Ising-Sherrington-Kirkpatrick model in a magnetic _eld at high temperature, J. Stat. Phys. 120 no. 1-2 (2005), 147_165. Cerca con Google

[12] F. Comets, T. Shiga, N. Yoshida, Probabilistic analysis of directed polymers in a random environment: a review, Adv. Stud. Pure Math. (2004) 39, 115-142 (2003) Cerca con Google

[13] F. Comets, N. Yoshida, Brownian directed polymers in random environment, Comm. Math. Phys 254 no. 2, (2005), 257_287. Cerca con Google

[14] F. Comets, N. Yoshida, Directed polymers in random environment are diffusive at weak disorder, Ann. Probab. 34 no. 5, (2006), 1746_1770. Cerca con Google

[15] B. Derrida, H. Spohn, Polymers on disordered trees, spin glasses, and traveling waves. New directions in statistical mechanics (Santa Barbara, CA, 1987), J. Statist. Phys. 51, no. 5-6, (1988), 817_840. Cerca con Google

[16] S. F. Edwards, P. W. Anderson, Theory of spin glasses, J. Phys. F. no 5, 1965 (1975). Cerca con Google

[17] D. Fisher, D. Huse, Directed paths in random potential, Phys. Rev. B. 43 no 13, (1991), 10728-10742. Cerca con Google

[18] I. Florescu, F. Viens, Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space, in press in Probab. Theory and Related Fields, (2005). Cerca con Google

[19] G. Giacomin, Random Polymer models, Imperial College Press, World Scienti_c (2007). Cerca con Google

[20] D. Huse, C. Henley, (1985). Phys. Rev. Lett. 54, 2708 Cerca con Google

[21] J. Imbrie, T. Spencer, Di_usion of directed polymers in a random environment, J. Statist. Phys. 52 no. 3-4, (1988), 609_626. Cerca con Google

[22] P. Massart, Concentration Inequalities and Model Selection. Ecole d'Eté de Probabilités de Saint-Flour XXXIII - 2003; Lecture Notes in Mathematics 1896, (2007), Springer. Cerca con Google

[23] O. Méjane, Upper bound of a volume exponent for directed polymers in a random environment, Ann. Inst. H. Poincaré Probab. Statist. 40 no. 3, (2004), 299_308. Cerca con Google

[24] H. Nishimori, Statistical Physics of Spin Glasses and Information Processing, Oxford University Press, (2001). Cerca con Google

[25] M. Petermann, Superdiffusivity of polymers in random environment. Ph.D. Thesis, Univ. Zürich, (2000). Cerca con Google

[26] M.S.T. Piza, Directed polymers in a random environment: some results on fluctuations, J. Statist. Phys. 89 no. 3-4, (1997), 581_603. Cerca con Google

[27] C. Rovira, S. Tindel, On the Brownian-directed polymer in a Gaussian random environment, J. Funct. Anal. 222 no. 1, (2005), 178_201. Cerca con Google

[28] B. Roynette, M. Yor, Penalising Brownian Paths: Rigorous Results and Meta-Theorems, Preprint, (2007). Cerca con Google

[29] D. Sherrington, S. Kirkpatrick, A solvable model of a spin glass, Phys. Rev. Lett. 35 (1975), 1792-1796. Cerca con Google

[30] M. Talagrand, Spin Glasses: A Challenge for Mathematicians, Springer- Verlag, (2003). Cerca con Google

[31] S. Tindel, C. A. Tudor, F. Viens, Sharp Gaussian regularity on the circle, and applications to the fractional stochastic heat equation, J. Funct. Anal. 217 no. 2, (2004), 280_313. Cerca con Google

[32] S. Tindel, F. Viens, On space-time regularity for the stochastic heat equations on Lie groups, J. Funct. Analysis 169 no. 2, (1999), 559-603. Cerca con Google

[33] S. Tindel, F. Viens, Almost sure exponential behaviour for a parabolic SPDE on a manifold, Stochastic Process. Appl. 100, (2002), 53_74. Cerca con Google

[34] S. Tindel, F. Viens, Relating the almost-sure Lyapunov exponent of a parabolic SPDE and its coe_cients' spatial regularity, Potential Anal. 22 no. 2, (2005), 101_125. Cerca con Google

[35] F. Viens, A. Vizcarra, Supremum Concentration Inequality and Modulus of Continuity for Sub-nth Chaos Processes, to appear in J. Functional Analysis, (2007) 27 pages. Cerca con Google

[36] M. V. Wüthrich, Scaling identity for crossing Brownian motion in a Poissonian potential, Probab. Theory Related Fields 112 (1998), no. 3, 299-319. Cerca con Google

[37] M. V. Wüthrich, Superdi_usive behavior of two-dimensional Brownian motion in a Poissonian potential, Ann. Probab. 26 (1998), no. 3, 1000- 1015. Cerca con Google

[38] M. V. Wüthrich, Fluctuation results for Brownian motion in a Poissonian potential, Ann. Inst. H. Poincaré Probab. Statist. 34 (1998), no. 3, 279-308. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record