Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Barbon, Silvia (2013) Cellule fibroblastoidi multipotenti da sangue eriferico: una nuova risorsa per la rigenerazione tessutale. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi di dottorato) - Versione sottomessa
16Mb

Abstract (inglese)

In the last decade, the use of multipotent adult stem cells (MSC) has paved way for the identification of new therapeutic approaches for the treatment of acquired structural tissue defects or degenerative diseases. For exploiting the maximum therapeutic potential of these cells, there is an urgent need for clear understanding of the characteristics of multipotent stem cells isolated from animal and human peripheral blood, being an ideal source, characterized by high availability and non-invasive extraction technique.
In the present work, a method for the isolation of multipotent cells from human peripheral blood (human Peripheral Blood Cells / hPBC) has been defined. The characterization of the immunophenotypic, proliferative and differentive properties of extracted fibroblast-like populations has highlighted their potential use in tissue engineering applications. The comparison with the cell populations isolated from animal peripheral blood (porcine Peripheral Blood Cells / pPBC) has demonstrated their distinctive immunophenotypic and proliferative properties.
In particular, for both cell populations, qPCR analysis showed the expression of genes of pluripotency such as Nanog, SOX2, Klf4 and c-Myc, while the Doubling Time study has highlighted a constant proliferative capacity associated to immunophenotypic stability in the culture expansion. Flow cytometry analysis showed that the animal and human populations originate from different stem cell niches: hPBC, because of the expression of markers such as NG2 and CD13, may arise from the perivascular region, while pPBC, expressing CD44, could mobilize to the peripheral blood from bone marrow. Being responsive to in vitro stimuli and differentiating towards osteogenic, chondrogenic and adipogenic lineages, pPBC and hPBC can be considered as multipotent stem cells.
Growth assays on porcine acellular valvular matrices have shown that pPBC engraft well onto the matrices expressing the specific gene profile of cell populations typically present in aortic and pulmonary heart valves. The immunomodulatory properties of hPBC were investigated by co-culture with human lymphocytes and analysis of qPCR after treatment with the proinflammatory cytokine INFγ; these studies have shown the ability of human populations to regulate the proliferation of lymphocytes, monocytes and granulocytes by the expression of genes involved in inflammatory response, such as CXCL9, IDO1 and COX2.

Abstract (italiano)

Nell’ultimo decennio, l’impiego di cellule staminali adulte multipotenti (CSM) ha consentito l’individuazione di nuovi approcci terapeutici per la cura di difetti tessutali strutturali acquisiti o di malattie degenerative. Per la realizzazione dei cosiddetti prodotti di terapia avanzata, l’identificazione di cellule staminali multipotenti circolanti animali ha suscitato un particolare interesse nei confronti del sangue periferico umano quale fonte ideale, caratterizzata da facile reperibilità e da tecnica estrattiva non invasiva. Nel presente lavoro è stata definita una metodica di isolamento di cellule multipotenti da sangue periferico umano (human Peripheral Blood Cells / hPBC). La caratterizzazione delle proprietà immunofenotipiche, proliferative e differenziative delle popolazioni fibroblastoidi estratte ne ha evidenziato la potenzialità di impiego in applicazioni di ingegneria tessutale. Il confronto con le popolazioni cellulari isolate da sangue periferico animale (porcine Peripheral Blood Cells / pPBC) ne ha dimostrato proprietà immunofenotipiche e proliferative distintive. In particolare, per entrambe le popolazioni cellulari, l’analisi di qPCR ha evidenziato l’espressione di geni di pluripotenza quali Nanog, SOX2, Klf4 e c-Myc, mentre lo studio del Doubling Time ne ha messo in luce una capacità proliferativa costante associata ad una stabilità immunofenotipica nella coltura espansiva. L’analisi mediante citofluorimetria ha definito per le popolazioni umane e animali la derivazione da nicchie staminali differenti: infatti le cellule hPBC, esprimendo marcatori quali NG2 e CD13, potrebbero derivare dalla regione perivascolare, mentre le cellule pPBC, esprimendo il CD44, potrebbero mobilitare nel sangue periferico da midollo osseo. Risultando entrambe responsive in vitro a stimoli di tre differenti linee differenziative, le cellule pPBC e hPBC possono considerarsi cellule staminali multipotenti. Studi di crescita su matrici valvolari acellulari porcine hanno dimostrato che le cellule pPBC rispondono agli stimoli del supporto esprimendo il profilo genico specifico delle popolazioni cellulari tipicamente presenti nelle valvole cardiache aortiche e polmonari. Lo studio delle proprietà immunomodulatorie delle cellule hPBC mediante co-coltura con linfociti umani e analisi di qPCR dopo trattamento con la citochina proinfiammatoria INFγ, ne ha evidenziato la capacità di regolare la proliferazione di linfociti, monociti e granulociti mediante l’espressione di geni coinvolti nella risposta infiammatoria, quali CXCL9, IDO1 e COX2.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Di Liddo, Rosa
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > BIOLOGIA E MEDICINA DELLA RIGENERAZIONE > INGEGNERIA DEI TESSUTI E DEI TRAPIANTI
Data di deposito della tesi:30 Gennaio 2013
Anno di Pubblicazione:30 Gennaio 2013
Parole chiave (italiano / inglese):cellule staminali, sangue periferico, ingegneria tessutale stem cells, peripheral blood, tissue engineering
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/16 Anatomia umana
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze del Farmaco
Codice ID:5878
Depositato il:15 Ott 2013 11:29
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 2005;105(4):1815-22. Cerca con Google

Behairy Y, Jasty M. Bone grafts and bone substitutes in hip and knee surgery. Orthop Clin North Am, 1999; 30(4): 661-71. Cerca con Google

Bianco P, Robey PG. Marrow stromal stem cells. J Clin Invest, 2000; 105: 1663–1668. Cerca con Google

Bianco P, Robey PG. Stem cells in tissue engineering. Nature, 2001; 414: 118–121. Cerca con Google

Bifari F, Pacelli L, Krampera M. Immunological properties of embryonic and adult stem cells. World J Stem Cells, 2010; 2(3): 50–60. Cerca con Google

Björk VO. The history of the Björk-Shiley tilting disc valve. Med Instrum, 1977; 11: 80-81. Cerca con Google

Bonow RO, Carabello B, de Leon AC, Edmunds LH Jr, Fedderly BJ, Freed MD, Gaasch WH, McKay CR, Nishimura RA, O'Gara PT, O'Rourke RA, Rahimtoola SH, Ritchie JL, Cheitlin MD, Eagle KA, Gardner TJ, Garson A Jr, Gibbons RJ, Russell RO, Ryan TJ, Smith SC Jr. ACC/AHA Guidelines for the Management of Patients With Valvular Heart Disease. Executive Summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Management of Patients With Valvular Heart Disease). J Heart Valve Dis, 1998; 7(6): 672-707. Cerca con Google

Bourke ME, Healey JS. Pacemakers, recent directions and developments. Curr Opin Anaesthesiol, 2002; 15(6): 681-6. Cerca con Google

Braunwald E. Valvular heart disease. In Braunwald E. ‘Heart disease: a textbook of cardiovascular medicine’ WB Saunders Co, Philadelphia, 1997; 1007-1076. Cerca con Google

Brindley, D.A., Reeve, B.C., Sahlman, W.A., Bonfiglio, G.A., Davie N.L., Culme-Seymour E.J. and Mason C., (2011). The impact of market volatility on the Cell Therapy Industry. Cell Stem Cell, 2011; 9(5), 397-401. Cerca con Google

Brody S, Pandit A. Approaches to heart valve tissue engineering scaffold design. J Biomed Mater Res B Appl Biomater, 2007; 83: 16-43. Cerca con Google

Burdon TJ, Paul A, Noiseux N, Prakash S, Shum-Tim D. Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone Marrow Res, 2011; 2011: 207326. Cerca con Google

Butcher JT, Nerem RM. Valvular endothelial cells and the mechanoregulation of valvular pathology. Phil. Trans. R. Soc, 2007; 1445-1457. Cerca con Google

Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S. LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 2005; 132(5): 885-96. Cerca con Google

Chen PM, Yen ML, Liu KJ, Sytwu HK, Yen BL. Immunomodulatory properties of human adult and fetal multipotent mesenchymal stem cells. J Biomed Sci, 2011; 18: 18-49. Cerca con Google

Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, Risso M, Gualandi F, Mancardi GL, Pistoia V, Uccelli A. Human mesenchymal stem cells modulate B-cell functions. Blood, 2006; 107(1): 367-72. Cerca con Google

Corselli M, Chen CW, Crisan M, Lazzari L, Péault B. Perivascular ancestors of adult multipotent stem cells. Arterioscler Thromb Vasc Biol, 2010; 30(6): 1104-9. Cerca con Google

Cossu G, Bianco P. Mesoangioblasts-vascular progenitors for extravascular mesodermal tissues. Curr Opin Genet Dev, 2003; 13: 537–542. Cerca con Google

Dalkowski A, Schuppan D, Orfanos CE, Zouboulis CC. Increased expression of tenascin C by keloids in vivo and in vitro. Br J Dermatol, 1999 Jul; 141(1): 50-6. Cerca con Google

Dare AJ, Veinot JP, Edwards WD, Tazelaar HD, Schaff HV. New observations on the etiology aortic valve disease: a surgical pathologic study of 236 cases from 1990. Hum Pathol, 1993; 24: 1330-1338. Cerca con Google

Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T, Phan TT, Volk HD, Reichenspurner H, Robbins RC, Schrepfer S. Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant, 2011; 20(5): 655-67. Cerca con Google

Diwan SB, Stevens LC. Development of teratomas from ectoderm of mouse egg cylinders. J Natl Cancer Inst, 1976; 57: 937–942. Cerca con Google

Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006; 8(4): 315-7. Cerca con Google

Donovan PJ, Gearhart J. The end of the beginning for pluripotent stem cells. Nature, 2001; 414(6859): 92-7. Cerca con Google

Dvorin EL, Wylie-Sears J, Kaushal S, Martin DP, Bischoff J. Quantitative evaluation of endothelial progenitors and cardiac valve endothelial cells: proliferation and differentiation on poly-glycolic acid/poly-4-hydroxybutyrate scaffold in response to vascular endothelial growth factor and transforming growth factor beta1. Tissue Eng, 2003; 9: 487–93. Cerca con Google

Drury JL, Mooney DJ. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 2003; 24: 4337–4351. Cerca con Google

Emery RW, Mettler E, Nicoloff DM. A new cardiac prosthesis. The St. Jude Medical cardiac valve: in vivo results. Circulation, 1979; 60: 48-54. Cerca con Google

Estes BT, Gimble JM, Guilak F. Mechanical signals as regulators of stem cell fate. Curr Top Dev Biol, 2004; 60: 91-126. Cerca con Google

Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981; 292: 154-156. Cerca con Google

Favaro G. Ricerche embriologiche ed anatomiche intorno al cuore dei vertebrati con particolare riguardo all’endocardio e alle formazionei endocardiche, 1914; Padua, Fratelli Ducher. Cerca con Google

Fayet C, Bendeck MP, Gotileb AI. Cerdiac valve interstitial cells secrete fibronectin and form fibrillar adhesions in response to injury, Cardiovascular Pathology, 2003; 16: 203-211. Cerca con Google

Filovà E, Straka F, Mirejovsk T, Masin J, Bacakoval L. Center for Cardiovascular Research, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic, Institute of Clinical and Experimental Medicine, Prague, Czech Republic, Tissue engineered heart valves, 2009. Cerca con Google

Fleg JL. Alterations in cardiovascular structure and function with advancing age. Am J Cardiol, 1986; 57: 33C-44C. Cerca con Google

Friedenstein AJ. Marrow stromal fibroblasts. Calcif Tissue Int, 1995; 56(suppl 1): S17. Cerca con Google

Friedenstein AJ. Stromal-hematopoietic interrelationships: Maximov’s ideas and modern models. Haematol Blood Transfus, 1989; 32:159 –167. Cerca con Google

Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet, 1970; 3: 393-403. Cerca con Google

Friedenstein AJ, Goskaja UF, Julagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol, 1976; 4: 267-274. Cerca con Google

Furth ME, Atala A, Van Dyke ME. Smart biomaterials design for tissue engineering and regenerative medicine. Biomaterials, 2007; 28: 5068–5073. Cerca con Google

Giordano R. Iter di un protocollo clinico sperimentale di terapia cellulare somatica. Giornale italiano di Farmacia clinica, 21(3); 147-148. Cerca con Google

Goglia G. Anatomia umana-Citologia-Istologia-Embriologia-Organi-Sistemi-Apparati.Piccin nuova Libraria, 1999, 8:331. Cerca con Google

Grauss RW, Hazekamp MG, Oppenhuizen F, Van Munsteren CJ, Gittenbergerde, Groot AC, DeRuiter M.C. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg, 2005; 27: 566-571. Cerca con Google

Guillot PV, Gotherstrom C, Chan J, Kurata H, Fisk NM. Human first-trimester fetal MSC express pluripotency markers and grow faster and have longer telomeres than adult MSC. Stem Cells, 2007; 25(3): 646-54. Cerca con Google

He Q, Wan C, Li G. Concise Review: Multipotent Mesenchymal Stromal Cells in Blood. Stem Cells, 2007; 25:69–77. Cerca con Google

Hipp J, Atala A. Sources of Stem Cells for Regenerative Medicine. Stem Cell Rev, 2008; 4:3–11. Cerca con Google

Hoerstrup SP, Kadner A, Breymann C, Maurus CF, Guenter CI, Sodian R, Visjager JF, Zund G, Turina MI. Living, autologous pulmonary artery conduits tissue engineered from human umbilical cord cells. Ann Thorac Surg, 2002a; 74: 46–52. Cerca con Google

Hoerstrup SP, Kadner A, Melnitchouk S, Trojan A, Eid K, Tracy J, Sodian R, Visjager JF, Kolb SA, Grunenfelder J, Zund G, Turina MI. Tissue engineering of functional trileaflet heart valves from human marrow stromal cells. Circulation, 2002b; 106: I-143–50. Cerca con Google

Hufnagel CA, Villegas PD, Nahas H. Experiences with new types of aortic valvular prostheses. Ann Surg, 1958; 147: 636-644. Cerca con Google

Huss R, Lange C, Weissinger EM, Kolb HJ, Thalmeier K. Evidence of peripheral blood-derived, plastic-adherent CD34(-/low) hematopoietic stem cell clones with mesenchymal stem cell characteristics. Stem Cells, 2000; 18(4): 252-60. Cerca con Google

Ikada Y. Challenges in tissue engineering. J R Soc Interface, 2006; 3(10): 589-601. Cerca con Google

Iop L, Renier V, Naso F, Piccoli M, Bonetti A, Gandaglia A et al. The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Biomaterials, 2009; 30: 4104-4116. Cerca con Google

Jiang Y, Vaessen B, Lenvik T, Blackstad M, Reyes M, Verfaillie CM. Experimental Hematology, 2002; 30, 896–904. Cerca con Google

Kaarteenaho-Wiik R, Lakari E, Soini Y, Pöllänen R, Kinnula VL, Pääkkö P. Tenascin expression and distribution in pleural inflammatory and fibrotic diseases. J Histochem Cytochem, 2000; 48(9): 1257-68. Cerca con Google

Kassis I, Zangi L, Rivkin R, Levdansky L, Samuel S, Marx G, Gorodetsky R. Isolation of mesenchymal stem cells from G-CSF-mobilized human peripheral blood using fibrin microbeads. Bone Marrow Transplant, 2006; 37: 967-976. Cerca con Google

Kern S, Eichler H, Stoeve J, Kluter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 2006; 24: 1294-1301. Cerca con Google

Ketchedjian A, Jones AL, Krueger P, Robinson E, Crouch K, Wolfinbarger L Jr, Hopkins R. Recellularization of decellularized allograft scaffolds in ovine great vessel reconstructions. Ann Thorac Surg, 2005; 79: 888-896. Cerca con Google

Kim KM, Valigorsky JM, Mergner WJ, Jones RT, Pendergrass RF, Trump BF. Aging changes in the human aortic valve in relation to dystrophic calcification. Hum Pathol, 1976; 7(1): 47-60. Cerca con Google

Knight RL, Wilcox HE, Korossis SA, Fisher J, Ingham E. The use of acellular matrices for the tissue engineering of cardiac valves. Proc Inst Mech Eng H, 2008; 222: 129-143. Cerca con Google

Knoblich JA. Asymmetric cell division during animal development. Nat Rev Mol Cell Biol, 2001; 2(1): 11-20. Cerca con Google

Kolf CM, Cho E, Tuan. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Research e Therapy, 2007; 9: 204. Cerca con Google

Körbling M, Estrov Z. Adult stem cells for tissue repair - a new therapeutic concept? N Engl J Med, 2003; 349(6): 570-82. Cerca con Google

Kronsteiner B, Peterbauer-Scherb A, Grillari-Voglauer R, Redl H, Gabriel C, van Griensven M, Wolbank S. Human mesenchymal stem cells and renal tubular epithelial cells differentially influence monocyte-derived dendritic cell differentiation and maturation. Cell Immunol, 2011; 267(1): 30-8. Cerca con Google

Kuçi S, Kuçi Z, Latifi-Pupovci H, Niethammer D, Handgretinger R, Schumm M, Bruchelt G, Bader P, Klingebiel T. Adult stem cells as an alternative source of multipotential (pluripotential) cells in regenerative medicine. Curr Stem Cell Res Ther. 2009 May;4(2):107-17. Cerca con Google

Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M, Majka M, Ratajczak J, Rezzoug F, Ildstad ST, Bolli R, Ratajczak MZ. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res, 2004; 95(12): 1191-9. Cerca con Google

Kucia M, Ratajczak J, Ratajczak MZ. Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biol Cell, 2005; 97(2): 133-46. Cerca con Google

Kucia MJ, Wysoczynski M, Wu W, Zuba-Surma EK, Ratajczak J, Ratajczak MZ. Evidence that very small embryonic-like stem cells are mobilized into peripheral blood. Stem Cells, 2008; 26(8): 2083-92. Cerca con Google

Kuznetsov SA, Mankani MH, Gronthos S, Satomura K, Bianco P, Robey PG. Circulating skeletal stem cells. J Cell Biol, 2001; 153(5): 1133-40. Cerca con Google

La Rocca G, Anzalone R, Corrao S, Magno F, Loria T, Lo Iacono M, Di Stefano A, Giannuzzi P, Marasà L, Cappello F, Zummo G, Farina F. Isolation and characterization of Oct-4+/HLA-G+ mesenchymal stem cells from human umbilical cord matrix: differentiation potential and detection of new markers. Histochem Cell Biol. 2009; 131(2): 267-82. Cerca con Google

Langer R, Vacanti JP. Tissue engineering. Science, 1993; 260(5110): 920-6. Cerca con Google

Le Blanc K, Ringden O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant, 2005; 11: 321-334. Cerca con Google

Lekanne Deprez RH, Fijnvandraat AC, Ruijter JM, Moorman AF. Sensitivity and accuracy of real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Anal. Biochem., 2002; 307: 63-69. Cerca con Google

Li Y, Qu YH, Wu YF, Wang XP, Wei J, Huang WG, Zhou DH, Fang J, Huang K, Huang SL. Bone marrow mesenchymal stem cells reduce the antitumor activity of cytokine-induced killer/natural killer cells in K562 NOD/SCID mice. Ann Hematol, 2011; 90(8): 873-85. Cerca con Google

Lim JH, Kim JS, Yoon IH, Shin JS, Nam HY, Yang SH, Kim SJ, Park CG. Immunomodulation of delayed-type hypersensitivity responses by mesenchymal stem cells is associated with bystander T cell apoptosis in the draining lymph node. J Immunol, 2010; 185(7): 4022-9. Cerca con Google

Liu J, Sato C, Cerletti M, Wagers A. Notch signaling in the regulation of stem cell self-renewal and differentiation. Curr Top Dev Biol, 2010; 92: 367-409. Cerca con Google

Lloyd AW, Faragher RG, Denyer SP. Ocular biomaterials and implants. Biomaterials, 2001; 22(8): 769-85. Cerca con Google

Loges S, Fehse B, Brockmann MA et al. Identification of the adult human hemangioblast. Stem Cells Dev, 2004; 13: 229 –242. Cerca con Google

Mackie EJ, Halfter W, Liverani D. Induction of tenascin in healing wounds. J Cell Biol, 1988; 107(6 Pt 2): 2757-67. Cerca con Google

Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzón IM, Nepomnaschy I, Costa H, Cañones C, Raiden S, Vermeulen M, Geffner JR. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One, 2010; 5(2): e9252. Cerca con Google

Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981; 78: 7634-7638. Cerca con Google

Matsuda T, Nakamura T, Nakao K, Arai T, Katsuki M, Heike T, Yokota T. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J, 1999; 18: 4261-4269. Cerca con Google

Maximow AA. Culture of blood leucocytes: from lymphocyte and monocyte to connective tissues. Arch Exp Zellforsch, 1928; 5: 169 –268. Cerca con Google

McBrearty, B. A., L. D. Clark, X-M, Zhang, E. P. Blankenhorn, and E. Heber-Katz. Genetic analysis of a mammalian woundhealing trait. Proc Natl Aca. Sci USA, 1998; 95:11792–11797. Cerca con Google

Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. 2006; 34(12): 1799-819. Cerca con Google

Minasi MG, Riminucci M, De Angelis L, Borello U, Berarducci B, Innocenzi A, Caprioli A, Sirabella D, Baiocchi M, De Maria R, Boratto R, Jaffredo T, Broccoli V, Bianco P, Cossu G. The meso-angioblast: a multipotent, self-renewing cell that originates from the dorsal aorta and differentiates into most mesodermal tissues. Development, 2002; 129(11): 2773-83. Cerca con Google

Moffatt-Bruce SD, Jamieson WR. Long-term performance of prostheses in mitral valve replacement. J Cardiovasc Surg (Torino), 2004; 45(5): 427-47. Cerca con Google

Mueller SM, Glowacki J. Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. J Cell Biochem, 2001; 82: 583-590. Cerca con Google

Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science, 1998 ; 281(5380): 1191-3. Cerca con Google

Najar M, Raicevic G, Fayyad-Kazan H, De Bruyn C, Bron D, Toungouz M, Lagneaux L. Immune-related antigens, surface molecules and regulatory factors in human-derived mesenchymal stromal cells: the expression and impact of inflammatory priming. Stem Cell Rev, 2012; 8(4): 1188-98. Cerca con Google

Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood, 2007; 110(10): 3499-506. Cerca con Google

Neuenschwander S, Hoerstrup SP. Heart valve tissue engineering. Transpl Immunol, 2004; 12: 359-365. Cerca con Google

Nichols J, Zevnik B, Anastassiadis K, Niwa H, Klewe-Nebenius D, Chambers I, Schöler H, Smith A. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998; 95: 379-391. Cerca con Google

Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE. Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. J Bone Miner Metab, 1999; 17: 171-177. Cerca con Google

Olson LJ, Subramanian R, Edwards WD.Surgical pathology of pure aortic insufficiency: a study of 225 cases. Majo Clin Proc, 1984; 59: 835-841. Cerca con Google

Perez-Moreno M, Jamora C, Fuchs E. Sticky business: orchestrating cellular signals at adherens junctions. Cell, 2003; 112(4): 535-48. Cerca con Google

Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol, 2002; 3(7): 687-94. Cerca con Google

Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science, 1999; 284(5411): 143-7. Cerca con Google

Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater, 2009; 8: 457–470. Cerca con Google

Polchert D, Sobinsky J, Douglas G, Kidd M, Moadsiri A, Reina E, Genrich K, Mehrotra S, Setty S, Smith B, Bartholomew A. IFN-gamma activation of mesenchymal stem cells for treatment and prevention of graft versus host disease. Eur J Immunol, 2008; 38(6): 1745-55. Cerca con Google

Prelle K, Zink N, Wolf E. Pluripotent stem cells--model of embryonic development, tool for gene targeting, and basis of cell therapy. Anat Histol Embryol, 2002; 31(3): 169-86. Cerca con Google

Presnell SC, Petersen B, Heidaran M. Seminars in Cell & Developmental Biology, 2002; 13, 369–376. Cerca con Google

Rasmusson I. Immune modulation by mesenchymal stem cells. Exp Cell Res, 2006; 312(12): 2169-79. Cerca con Google

Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J. Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells 'hide out' in the bone marrow. Leukemia, 2004; 18: 29-40. Cerca con Google

Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska-Wieczorek A Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells, 2003; 21(3): 363-71. Cerca con Google

Ratajczak MZ, Zuba-Surma EK, Wysoczynski M, Wan W, Ratajczak J, Wojakowski W, Kucia M. Hunt for pluripotent stem cell -- regenerative medicine search for almighty cell. J Autoimmun, 2008; 30(3): 151-62. Cerca con Google

Raz R, Lee CK, Cannizzaro LA, d'Eustachio P, Levy DE. Essential role of STAT3 for embryonic stem cell pluripotency. Proc Natl Acad Sci U S A, 1999; 96(6): 2846-51. Cerca con Google

Reza HM, Ng BY,Phan TT, Tan DT, Beuerman RW, Ang LP. Characterization of a novel umbelical cord lining cell with CD227 positiuvity and unique pattern of P63 expression and function. Stem Cell Rev, 2011; 7(3): 624-38. Cerca con Google

Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E, Simon P, Weigel G. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg, 2004; 127: 399-405. Cerca con Google

Ries C, Egea V, Karow M, Kolb H, Jochum M, Neth P. MMP2, MT1-MMP, and TIMP2 are essential for the invasive capacity of human mesenchymal stem cells: differential regulation by infiammatory cytokines. Blood, 2007; 109(9): 4055-63. Cerca con Google

Rizzino A. Sox2 and Oct-3/4: a versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst Biol Med, 2009; 1(2): 228-36. Cerca con Google

Rubinstein P, Rosenfield RE, Adamson JW, Stevens CE. Stored placental blood for unrelated bone marrow reconstitution. Blood, 1993; 81: 1679-1690. Cerca con Google

Saiman Y, Friedman SL. The role of chemokines in acute liver injury. Front Physiol, 2012; 3: 213. Cerca con Google

Schmidt D, Hoerstrup SP. Tissue engineered heart valves based on human cells. Swiss Med Wkly, 2007; 137 Suppl 155: 80S-85S. Cerca con Google

Schofield R. The relationship between the spleen colonyforming cell and the haemopoietic stem cell. Blood Cells, 1978; 4: 7-25. Cerca con Google

Selmani Z, Naji A, Zidi I, Favier B, Gaiffe E, Obert L, Borg C, Saas P, Tiberghien P, Rouas-Freiss N, Carosella ED, Deschaseaux F. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+regulatory T cells. Stem Cells. 2008 Jan;26(1):212-22. Cerca con Google

Semedo P, Burgos-Silva M, Donizetti-Oliveira C, Olsen Saraiva Camara N. How do Mesenchymal Stem Cells Repair?, Stem Cells in Clinic and Research, Dr. Ali Gholamrezanezhad (Ed.), 2011; ISBN: 978-953-307-797-0, InTech, Available from: http://www.intechopen.com/books/stem-cells-in-clinicand-research/how-do-mesenchymal-stem-cells-repairwww. Vai! Cerca con Google

Seta N, Kuwana M. Human circulating monocytes as multipotential progenitors. Keio J Med, 2007; 56(2): 41-7. Cerca con Google

Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res, 2003; 18(4): 696-704. Cerca con Google

Shieh SJ, Vacanti JP. State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery, 2005; 137(1):1-7. Cerca con Google

Simon P, Kasimir MT, Seebacher G, Weigel G, Ullrich R, Salzer-Muhar U, Rieder E, Wolner E. Early failure of the tissue engineered porcine heart valve synergraft in pediatric patients. Eur J Cardiothorac Surg, 2003; 23: 1002-1006. Cerca con Google

Sng J, Lufkin T. Emerging stem cell therapies: treatment, safety, and biology. Stem Cells Int. 2012; 2012: 521343. Cerca con Google

Solter D, Skreb N, Damjanov I. Extrauterine growth of mouse egg cylinders results in malignant teratoma. Nature, 1970; 227: 503-504. Cerca con Google

Spina M, Ortolani F, El Messlemani A, Gandaglia A, Bujan J, Garcia- Honduvilla N et al. Isolation of intact aortic valve scaffolds for heart-valve bioprostheses: extracellular matrix structure, prevention from calcification, and cell repopulation features. J Biomed Mater Res A, 2003; 67: 1338-1350. Cerca con Google

Spradling A, Drummond-Barbosa D, Kai T. Stem cells find their niche. Nature, 2001; 414, 98–104. Cerca con Google

Stein D, Kloster FE. Valvular heart disease in osteogenesis imperfecta. Am Heart J, 1977; 94: 637-641. Cerca con Google

Stenderup K, Justesen J, Clausen C, Kassem M. Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone, 2003; 33(6): 919-26. Cerca con Google

Stevens A, Lowe J. Human Histology, Second Edition. Casa Editrice Ambrosiana, 1997, 147-160. Cerca con Google

Suga H, Matsumoto D, Eto H, Inoue K, Aoi N, Kato H, Araki J, Yoshimura K. Functional implications of CD34 expression in human adipose-derived stem/progenitor cells. Stem Cells Dev, 2009; 18(8): 1201-10. Cerca con Google

Surani MA, Hayashi K, Hajkova P. Genetic and epigenetic regulators of pluripotency. Cell, 2007; 128: 747-762. Cerca con Google

Swanson WM, Clark RE. Dimensions and geometric relatiomnships of the human aortic valves as a function of pressure. Circ Res, 1974, 25: 871-8 Cerca con Google

Taylor PM, Batten P, Brand NJ, Thomas PS, Yacoub MH. The cardiac valve interstitial cell. Int J Biochem Cell Biol, 2003; 35(2): 113-8. Cerca con Google

Tabata Y. Tissue regeneration based on growth factor release. Tissue Eng, 2003; 9 Suppl 1: S5-15. Cerca con Google

Tondreau T, Meuleman N, Delforge A, Dejeneffe M, Leroy R, Massy M, Mortier C, Bron D, Lagneaux L. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells, 2005; 23:1105–1112. Cerca con Google

Traktuev DO, Merfeld-Clauss S, Li J, Kolonin M, Arap W, Pasqualini R, Johnstone BH, March KL. A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res, 2008; 102(1): 77-85. Cerca con Google

Tuan RS, Boland G, Tuli R. Adult mesenchymal stem cells and cell-based tissue engineering. Cerca con Google

Arthritis Res Ther, 2003; 5(1): 2-45. Cerca con Google

Vesely I. Heart valve tissue engineering. Circ Res, 2005; 97: 743-755. Cerca con Google

Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol, 2008; 8(7): 523-32. Cerca con Google

Waller BF, Zoltick JM, Rosen JH et al.Severe aortic regurgitation from systemic hypertension (without aortic dissection) requiring aortic valve replacement: analysis of four patients.Am J Cardiol, 1982; 49: 473-477. Cerca con Google

Wan C, He Q, Li G. Allogenic peripheral blood derived mesenchymal stem cells (MSCs) enhance bone regeneration in rabbit ulna criticalsized bone defect model. J Orthop Res, 2006; 24: 610–618. Cerca con Google

Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, Fu YS, Lai MC, Chen CC. Mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord. Stem Cells, 2004; 22: 1330–7. Cerca con Google

Wang X, Moutsoglou D. Osteogenic and adipogenic differentiation potential of an immortalized fibroblast-like cell line derived from porcine peripheral blood. In Vitro Cell Dev Biol Anim, 2009; 45(10): 584-91. Cerca con Google

Wassenaar C, Bax WA, Suylen RJ, Vuzeski VD, Bos E. Effects of cryopreservation on contractile properties of porcine isolated aortic valve leaflets and aortic wall. Thorac Cardiovasc Surg, 1997; 113: 165-72. Cerca con Google

Watt FM, Hogan BL. Out of Eden: Stem cells and their niches. Science, 2000; 287:1427–1430. Cerca con Google

Weber B, Emmert MY, Hoerstrup SP. Stem cells for heart valve regeneration. Swiss Med Wkly, 2012; 142:w13622. Cerca con Google

Wilcox HE, Korossis SA, Booth C, Watterson KG, Kearney JN, Fisher J, Ingham E. Biocompatibility and recellularization potential of an acellular porcine heart valve matrix. J Heart Valve Dis, 2005; 14: 228-236 Cerca con Google

Williams DF. To engineer is to create: the link between engineering and regeneration. Trends Biotechnol, 2006; 24(1): 4-8. Cerca con Google

Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM. Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 1988; 336(6200): 684-7. Cerca con Google

Wong VW, Rustad KC, Longaker MT, Gurtner GC. Tissue engineering in plastic surgery: a review. Plast Reconstr Surg, 2010; 126(3): 858-68. Cerca con Google

Wu GD, Nolta JA, Jin YS et al. Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation, 2003; 75: 679–685. Cerca con Google

Yoo KH, Jang IK, Lee MW, Kim HE, Yang MS, Eom Y, Lee JE, Kim YJ, Yang SK, Jung HL, Sung KW, Kim CW, Koo HH. Comparison of immunomodulatory properties of mesenchymal stem cells derived from adult human tissues. Cell Immunol, 2009; 259(2): 150-6. Cerca con Google

Zhang P, Andrianakos R, Yang Y, Liu C, Lu W. Kruppel-like factor 4 (Klf4) prevents embryonic stem (ES) cell differentiation by regulating Nanog gene expression. J Biol Chem, 2010; 285(12): 9180-9. Cerca con Google

Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell, 2002; 13(12): 4279-95. Cerca con Google

Zünd G, Hoerstrup SP, Schoeberlein A, Lachat M, Uhlschmid G, Vogt PR, Turina M. Tissue engineering: a new approach in cardiovascular surgery: Seeding of human fibroblasts followed by human endothelial cells on resorbable mesh. Eur J Cardiothorac Surg, 1998; 13(2): 160-4. Cerca con Google

Siti internet consultati: Cerca con Google

http://www.ascrnetwork.com Vai! Cerca con Google

http://www.ior.it/RegMed/Web/Home.aspx Vai! Cerca con Google

http://repository.upenn.edu/ime_papers/29 Vai! Cerca con Google

http://www.mate.tue.nl/mate/showabstract.php/5300 Vai! Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record