Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Marra, Valerio (2008) A Back-Reaction Approach to Dark Energy. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
2580Kb

Abstract (inglese)

This thesis is mainly about how to set up and carry out in a physically meaningful way the idea of back-reaction, which is an alternative theory to a theory where dark energy is fundamental.
There are, broadly speaking, two distinct approaches. One is focused on how cosmological observables are affected by inhomogeneities, while the other is focused on a theoretical description of the inhomogeneous universe by means of a mean-field description. Both approaches, however, share the idea of smoothing out inhomogeneities. We developed this duality in the interpretation of the back-reaction by means of toy models based on the Lemaitre-Tolman-Bondi solution of Einstein's equations.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Matarrese, Sabino - Masiero, Antonio
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > FISICA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):back-reaction, backreaction, dark energy, inhomogeneous cosmological model, Lemaitre, Tolman, Bondi, swiss cheese
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/05 Astronomia e astrofisica
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:588
Depositato il:29 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Stephon Alexander, Tirthabir Biswas, Alessio Notari, and Deepak Vaid. Local Void vs Dark Energy: Confrontation with WMAP and Type Ia Supernovae. 2007. arXiv:0712.0370 [astro-ph]. Cerca con Google

[2] Havard Alnes and Morad Amarzguioui. Cmb anisotropies seen by an offcenter observer in a spherically symmetric inhomogeneous universe. Phys. Rev., D74:103520, 2006. astro-ph/0607334. Cerca con Google

[3] Havard Alnes, Morad Amarzguioui, and Oyvind Gron. An inhomogeneous alternative to dark energy? Phys. Rev., D73:083519, 2006. astro-ph/0512006. Cerca con Google

[4] Pantelis S. Apostolopoulos, Nikolaos Brouzakis, Nikolaos Tetradis, and Eleftheria Tzavara. Cosmological acceleration and gravitational collapse. JCAP, 0606:009, 2006. astro-ph/0603234. Cerca con Google

[5] P. P. Avelino et al. Early-universe constraints on a time-varying fine structure constant. Phys. Rev., D64:103505, 2001. astro-ph/0102144. Cerca con Google

[6] S. Baessler et al. Improved test of the equivalence principle for gravitational self-energy. Phys. Rev. Lett., 83:003585, 1999. Cerca con Google

[7] J. D. Bekenstein. Fine structure constant: Is it really a constant? Phys. Rev., D25:1527–1539, 1982. Cerca con Google

[8] Tirthabir Biswas, Reza Mansouri, and Alessio Notari. Nonlinear structure formation and apparent acceleration: an investigation. 2006. astro-ph/0606703. Cerca con Google

[9] Tirthabir Biswas and Alessio Notari. Swiss-cheese inhomogeneous cosmology and the dark energy problem. 2007. astro-ph/0702555. Cerca con Google

[10] H. Bondi. Spherically symmetrical models in general relativity. Mon. Not. Roy. Astron. Soc., 107:410–425, 1947. Cerca con Google

[11] Nikolaos Brouzakis, Nikolaos Tetradis, and Eleftheria Tzavara. The effect of large-scale inhomogeneities on the luminosity distance. JCAP, 0702:013, 2007. astro-ph/0612179. Cerca con Google

[12] Nikolaos Brouzakis, Nikolaos Tetradis, and Eleftheria Tzavara. Light Propagation and Large-Scale Inhomogeneities. JCAP, 0804:008, 2008. astroph/0703586. Cerca con Google

[13] Thomas Buchert. Averaging inhomogeneous cosmologies – a dialogue. 1996. astro-ph/9706214. Cerca con Google

[14] Thomas Buchert. On average properties of inhomogeneous fluids in general relativity. i: Dust cosmologies. Gen. Rel. Grav., 32:105–125, 2000. gr-qc/9906015. Cerca con Google

[15] Thomas Buchert. Dark energy from structure - a status report. 2007. arXiv:0707.2153 [gr-qc]. Cerca con Google

[16] Thomas Buchert and Mauro Carfora. Regional averaging and scaling in relativistic cosmology. Class. Quant. Grav., 19:6109–6145, 2002. gr-qc/0210037. Cerca con Google

[17] Thomas Buchert, Julien Larena, and Jean-Michel Alimi. Correspondence between kinematical backreaction and scalar field cosmologies: The ’morphon field’. Class. Quant. Grav., 23:6379–6408, 2006. gr-qc/0606020. Cerca con Google

[18] S. M. Carroll, W. H. Press, and E. L. Turner. The cosmological constant. Ann. Rev. Astron. Astrophys., 30:499–542, 1992. Cerca con Google

[19] Sean M. Carroll. Quintessence and the rest of the world. Phys. Rev. Lett., 81:3067–3070, 1998. astro-ph/9806099. Cerca con Google

[20] Sean M. Carroll. The cosmological constant. Living Rev. Rel., 4:1, 2001. astroph/0004075. Cerca con Google

[21] Marie-Noelle Celerier. Do we really see a cosmological constant in the supernovae data ? Astron. Astrophys., 353:63–71, 2000. astro-ph/9907206. Cerca con Google

[22] Marie-Noelle Celerier. Inhomogeneities in the universe and the fitting problem. 2007. arXiv:0706.1029 [astro-ph]. Cerca con Google

[23] Hum Chand, Patrick Petitjean, Raghunathan Srianand, and Bastien Aracil. Probing the time-variation of the fine-structure constant: Results based on si iv doublets from a uves sample. 2004. astro-ph/0408200. Cerca con Google

[24] Daniel J. H. Chung and Antonio Enea Romano. Mapping luminosity-redshift relationship to ltb cosmology. Phys. Rev., D74:103507, 2006. astro-ph/0608403. Cerca con Google

[25] E. J. Copeland, N. J. Nunes, and M. Pospelov. Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha. Phys. Rev., D69:023501, 2004. hep-ph/0307299. Cerca con Google

[26] Edmund J. Copeland, M. Sami, and Shinji Tsujikawa. Dynamics of dark energy. Int. J. Mod. Phys., D15:1753–1936, 2006. hep-th/0603057. Cerca con Google

[27] T. Damour, F. Piazza, and G. Veneziano. Violations of the equivalence principle in a dilaton- runaway scenario. Phys. Rev., D66:046007, 2002. hep-th/0205111. Cerca con Google

[28] Thibault Damour and Freeman Dyson. The oklo bound on the time variation of the fine-structure constant revisited. Nucl. Phys., B480:37–54, 1996. hepph/9606486. Cerca con Google

[29] G. R. Dvali and Matias Zaldarriaga. Changing alpha with time: Implications for fifth-force-type experiments and quintessence. Phys. Rev. Lett., 88:091303, 2002. hep-ph/0108217. Cerca con Google

[30] Albert Einstein and Ernst G. Straus. The influence of the expansion of space on the gravitation fields surrounding the individual stars. Rev. Mod. Phys., 17:120–124, 1945. Cerca con Google

[31] G.F.R. Ellis. Relativistic cosmology – its nature, aims and problems. In General Relativity and Gravitation (D. Reidel Publishing Co., Dordrecht), ed. B. Bertotti, F. de Felice and A. Pascolini, pages 215–288, 1984. Cerca con Google

[32] G.F.R. Ellis and W. Stoeger. The “fitting problem” in cosmology. Class. Quantum Gravit., 4:1697, 1987. Cerca con Google

[33] J. Gasser and H. Leutwyler. Quark masses. Phys. Rept., 87:77–169, 1982. Cerca con Google

[34] Charles Hellaby. Volume matching in tolman models. Gen. Rel. Grav., 20:1203– 1217, 1988. Cerca con Google

[35] Tomohiro Kai, Hiroshi Kozaki, Ken-ichi Nakao, Yasusada Nambu, and Chul- Moon Yoo. Can inhomogeneties accelerate the cosmic volume expansion? Prog. Theor. Phys., 117:229–240, 2007. gr-qc/0605120. Cerca con Google

[36] Edward W. Kolb, S. Matarrese, and A. Riotto. On cosmic acceleration without dark energy. New J. Phys., 8:322, 2006. astro-ph/0506534. Cerca con Google

[37] Seokcheon Lee, Keith A. Olive, and Maxim Pospelov. Quintessence models and the cosmological evolution of alpha. Phys. Rev., D70:083503, 2004. astroph/0406039. Cerca con Google

[38] G. Lemaitre. The expanding universe. Gen. Rel. Grav., 29:641–680, 1997. Cerca con Google

[39] S. A. Levshakov, M. Centurion, P. Molaro, and S. D’Odorico. Vlt/uves constraints on the cosmological variability of the fine-structure constant. 2004. astro-ph/0408188. Cerca con Google

[40] Reza Mansouri. Structured frw universe leads to acceleration: A non- perturbative approach. 2005. astro-ph/0512605. Cerca con Google

[41] H. Marion et al. A search for variations of fundamental constants using atomic fountain clocks. Phys. Rev. Lett., 90:150801, 2003. physics/0212112. Cerca con Google

[42] Valerio Marra. The fundamental constants and their variation induced by a cosmological scalar. 2004. Laurea’s Thesis, 115 pages, in Italian. Advisors: Prof A. Masiero and Dr F. Rosati, University of Padua. Cerca con Google

[43] Valerio Marra, Edward W. Kolb, and Sabino Matarrese. Light-cone averages in a swiss-cheese universe. Phys. Rev., D77:023003, 2008. arXiv:0710.5505 [astro-ph]. Cerca con Google

[44] Valerio Marra, Edward W. Kolb, Sabino Matarrese, and Antonio Riotto. On cosmological observables in a swiss-cheese universe. Phys. Rev., D76:123004, 2007. arXiv:0708.3622 [astro-ph]. Cerca con Google

[45] Valerio Marra and Francesca Rosati. Cosmological evolution of alpha driven by a general coupling with quintessence. JCAP, 0505:011, 2005. astro-ph/0501515. Cerca con Google

[46] C. J. A. P. Martins. New constraints on varying alpha. 2004. astro-ph/0405630. Cerca con Google

[47] M. T. Murphy, J. K. Webb, and V. V. Flambaum. Further evidence for a variable fine-structure constant from keck/hires qso absorption spectra. Mon. Not. Roy. Astron. Soc., 345:609, 2003. astro-ph/0306483. Cerca con Google

[48] S. C. C. Ng, N. J. Nunes, and Francesca Rosati. Applications of scalar attractor solutions to cosmology. Phys. Rev., D64:083510, 2001. astro-ph/0107321. Cerca con Google

[49] Stefan Nobbenhuis. The cosmological constant problem, an inspiration for new physics. 2006. gr-qc/0609011. Cerca con Google

[50] K. M. Nollett and R. E. Lopez. Primordial nucleosynthesis with a varying fine structure constant: An improved estimate. Phys. Rev., D66:063507, 2002. astro-ph/0204325. Cerca con Google

[51] Nelson J. Nunes and James E. Lidsey. Reconstructing the dark energy equation of state with varying alpha. Phys. Rev., D69:123511, 2004. astro-ph/0310882. Cerca con Google

[52] Keith A. Olive et al. Constraints on the variations of the fundamental couplings. Phys. Rev., D66:045022, 2002. hep-ph/0205269. Cerca con Google

[53] Keith A. Olive and Maxim Pospelov. Evolution of the fine structure constant driven by dark matter and the cosmological constant. Phys. Rev., D65:085044, 2002. hep-ph/0110377. Cerca con Google

[54] T. Padmanabhan. Cosmological constant: The weight of the vacuum. Phys. Rept., 380:235–320, 2003. hep-th/0212290. Cerca con Google

[55] David Parkinson, Bruce A. Bassett, and John D. Barrow. Mapping the dark energy with varying alpha. Phys. Lett., B578:235–240, 2004. astro-ph/0307227. Cerca con Google

[56] P. J. E. Peebles and Bharat Ratra. The cosmological constant and dark energy. Rev. Mod. Phys., 75:559–606, 2003. astro-ph/0207347. Cerca con Google

[57] Miguel Quartin, Mauricio O. Calvao, Sergio E. Joras, Ribamar R. R. Reis, and Ioav Waga. Dark Interactions and Cosmological Fine-Tuning. 2008. arXiv:0802.0546 []. Cerca con Google

[58] Syksy Rasanen. Backreaction in the lemaitre-tolman-bondi model. JCAP, 0411:010, 2004. gr-qc/0408097. Cerca con Google

[59] Adam G. Riess et al. Type ia supernova discoveries at z¿1 from the hubble space telescope: Evidence for past deceleration and constraints on dark energy evolution. Astrophys. J., 607:665–687, 2004. astro-ph/0402512. Cerca con Google

[60] Paul J. Steinhardt, Li-Min Wang, and Ivaylo Zlatev. Cosmological tracking solutions. Phys. Rev., D59:123504, 1999. astro-ph/9812313. Cerca con Google

[61] Richard C. Tolman. Effect of imhomogeneity on cosmological models. Proc. Nat. Acad. Sci., 20:169–176, 1934. Cerca con Google

[62] Kenji Tomita. Analyses of type ia supernova data in cosmological models with a local void. Prog. Theor. Phys., 106:929–939, 2001. astro-ph/0104141. Cerca con Google

[63] Jean-Philippe Uzan. The fundamental constants and their variation: Observational status and theoretical motivations. Rev. Mod. Phys., 75:403, 2003. hep-ph/0205340. Cerca con Google

[64] R. Ali Vanderveld, Eanna E. Flanagan, and Ira Wasserman. Mimicking dark energy with lemaitre-tolman-bondi models: Weak central singularities and critical points. Phys. Rev., D74:023506, 2006. astro-ph/0602476. Cerca con Google

[65] S. Weinberg. The cosmological constant problem. Rev. Mod. Phys., 61:1–23, 1989. Cerca con Google

[66] C. Wetterich. Crossover quintessence and cosmological history of fundamental “constants”. Phys. Lett., B561:10–16, 2003. hep-ph/0301261. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record