Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Ziberna, Luca (2013) What garnet, clinopyroxene, and diamond potential can tell us about the evolution of sub-cratonic mantle sections: a case study of the Zagadochnaya kimberlite (Yakutia). [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
PDF Document - Submitted Version
20Mb

Abstract (english)

This PhD provides major and trace element compositions for a new suite of Cr-rich garnet xenocrysts and associated minerals from the diamond-free Zagadochnaya kimberlite, Daldyn Field, Yakutia (Russia). Interpreting the nature and evolution of the underlying lithospheric mantle from these samples requires a good understanding of relationships between pressures and temperatures of formation, upper mantle phase relations and trace element signatures of petrochemical processes. I addressed these issues by integrating three main lines of research.
i) Evaluation of single-clinopyroxene geobarometry for garnet peridotites. Single-clinopyroxene thermobarometry represents the most reliable method among single-mineral thermobarometric techniques for mantle rocks, but the geobarometer tends to produce considerable scatter in P–T estimates when applied to clinopyroxenes with unfavourable compositions. Multiple electron microprobe analyses on compositionally diverse clinopyroxenes, using different analytical conditions, demonstrated that this scatter is mostly related to propagation of analytical errors on the calculated Cr-in-cpx pressure. The results of this analytical tests were used to calculate model analytical errors and propagated P uncertainties for a large set of published analyses of mantle-derived, xenolith-borne clinopyroxenes. I found that the parameter aCr/Cr# [where aCr = Cr–0.81•Na•Cr#, Cr#=Cr/(Cr+Al), atoms per 6-oxygen formula unit] can be used to discriminate clinopyroxenes for which analytical errors alone will propagate unacceptable P uncertainties (i.e., higher than ±0.25 GPa) for several combinations of analytical conditions. I therefore defined a new optimized analytical procedure for single-clinopyroxene geobarometry, which significantly decreases the pressure uncertainties and allows a better definition of clinopyroxene-based geotherms.
ii) Thermodynamic modeling of natural peridotitic systems. Calculations of phase equilibria in Cr-bearing peridotitic systems were used to predict the effects of P, T and bulk compositional variations on garnet–spinel relations in fertile and depleted mantle compositions. Calculations showed that in cratonic lithospheric sections the width of the garnet–spinel transition strongly depends on bulk composition: in a fertile mantle, spinel can coexist with garnet to about 120 km depth, while in an ultra-depleted harzburgitic mantle it can be stable to over 180 km depth. In the garnet+spinel stability field the calculated modes of spinel are very low (0.1–2.8 %), suggesting that spinel grains may be easily overlooked in mantle xenoliths. The model also suggests a significant potential role of P–T conditions on the distribution of garnets in the popular Ca–Cr discrimination diagram.
iii) Interpretation of the mantle record in the Zagadochnaya kimberlite. A suite of 28 garnet xenocrysts, often containing polymineralic inclusions, were selected from a heavy-mineral concentrate of the Zagadochnaya kimberlite for detailed electron microprobe analysis and laser-ablation inductively-coupled mass spectrometry. Robust P–T estimates for the garnets and associated clinopyroxenes and the Ca and Cr contents in the garnets indicate that the kimberlite sampled only a shallow mantle portion (< 130 km), which was mainly composed by fertile to depleted lherzolites and essentially corresponds to the shallow, lherzolite-rich layer previously defined on the basis of xenoliths/xenocrysts from the neighbor, highly diamondiferous Udachnaya kimberlite. The less (Ca, Cr)-rich garnets show chondrite-normalized Rare Earth Elements (REE) patterns, characterized by very low Light REE (LREE) increasing through the Middle REE (MREE) to the Heavy REE (HREE). With increasing Ca and Cr the garnets show increasing LREE and decreasing HREE, eventually resulting in sinusoidal patterns. Numerical simulations of melt/rock reactions demonstrated that such REE variability can be produced by a unique episode of melt injection and percolation through a refractory mantle column. Most garnet grains were partially replaced by low-Cr garnets + Cr-spinel + diopside (± hydrous minerals and Ti-oxides). The textures and mineralogy of these secondary mineral assemblages, the calculated trace element compositions of the equilibrium melts, and the Ca concentration profiles across garnet zoning, indicate pervasive reaction with melts strictly related to the host kimberlite. A relatively slow ascent of the kimberlite up to shallow mantle levels before eruption is suggested, which would explain the lack of xenocrysts from depths > 130 km, the absence of diamond, the Mg-rich composition of the kimberlite, and the pervasive reactions that produced the secondary assemblages.

Abstract (italian)

Nella presente tesi di dottorato vengono riportate le composizioni chimiche in elementi maggiori e in tracce di una nuova serie di xenocristalli a granato e minerali associati provenienti dalla kimberlite di Zagadochnaya, Daldyn Field, Yakutia (Russia). Per interpretare la natura e l’evoluzione geochimica del mantello litosferico sottostante è importante capire le condizioni di temperatura e pressione di formazione dei vari frammenti di mantello, le relazioni di fase nel mantello superiore, e le evidenze dei processi petrogenetici registrate negli elementi in tracia. In questa tesi, queste problematiche sono state affrontate in tre diverse linee di ricerca.
i) Valutazione del geobarometro a clinopirosseno per le peridotiti a granato. Tra i vari metodi termobarometrici basati sulla composizione di una singola fase mineralogica, il termobarometro a clinopirosseno rappresenta il metodo più affidabile per le rocce di mantello. Nonostante ciò, è stato visto che il geobarometro può essere molto impreciso se applicato a certi clinopirosseni con composizione sfavorevole, e questo si riflette in una considerevole incertezza nella stime delle geoterme. In questo lavoro ho effettuato ripetute analisi tramite microsonda elettronica su clinopirosseni a diverse composizioni, utilizzando diverse condizioni analitiche. I risultati dimostrano che le buona parte delle incertezze sono legate alla propagazione degli errori analitici sulle pressioni calcolate con il geobarometro. I dati ottenuti dal test analitico sono stati poi utilizzati per stimare gli le incertezze analitiche e la loro propagazione sulle pressioni calcolate per un gran numero di analisi di clinopirosseni di mantello riportate in letteratura. Il parametro aCr/Cr# [dove aCr = Cr–0.81•Na•Cr#, Cr#=Cr/(Cr+Al), atomi per unità di formula, 6 ossigeni] può essere utilizzato per discriminare i clinopirosseni per i quali la propagazione dell’errore analitico è troppo elevata (i.e., deviazione standard > 0.25 GPa). Ciò mi ha permesso di definire una nuova procedura analitica che permette di diminuire notevolmente le incertezze sulle pressioni calcolate e quindi definire meglio le geoterme basate su clinopirosseni di mantello.
ii) Modellizzazione termodinamica di sistemi peridotitici con composizioni naturali. Per comprendere l’effetto della pressione, temperatura e composizione sulle relazioni tra granato e spinello nel mantello superiore, ho effettuato dei calcoli termodinamici per sistemi peridotitici contenenti Cr. I calcoli hanno mostrato che nella litosfera cratonica la transizione da facies a spinello a facies a granato dipende dalla composizione totale della peridotite: in un mantello fertile, lo spinello può coesistere con il granato fino a ca. 120 km di profondità, mentre in un mantello molto impoverito lo spinello può essere stabile fino a 180 km di profondità. Nella facies granato+spinello, l’abbondanza modale dello spinello è molto bassa (0.1–2.8%). Il modello suggerisce anche un maggiore influenza della pressione e della temperatura nella distribuzione dei granati nei classici diagrammi classificativi basati sul contenuto in Cr e Ca.
iii) Interpretazione dei campioni di mantello della kimberlite di Zagadochnaya. Una serie rappresentativa di 28 xenocristalli di granato, spesso contenenti inclusioni di diverse fasi mineralogiche, è stata caratterizzata per gli elementi maggiori e in tracce tramite microsonda elettronica e spettrometria di massa associata a microsonda laser. Le stime termobarometriche più affidabili per i granati e i clinopirosseni associati, assieme al contenuto in Cr e Ca dei granati, indicano che la kimberlite ha campionato solo una porzione superficiale del mantello (< 130 km), composta da lherzoliti variamente fertili fino a impoverite. In termini litologici, questa porzione è equivalente a alla porzione più superficiale del mantello campionato dalla vicina kimberlite diamantifera di Udachnaya. I granati meno ricchi in Cr e Ca mostrano dei pattern normalizzati delle terre rare (REE) con un aumento progressivo dalle terre rare leggere (LREE) alle pesanti (HREE). Con l’aumento di Ca e Cr, si nota anche un arricchimento in LREE e impoverimento delle HREE, fino ad avere dei pattern delle REE sinusoidali. Grazie alle simulazioni numeriche delle reazioni fuso/roccia, è stato possibile dimostrare che queste variazioni delle REE possono essere il risultato di un unico episodio di percolazione di fuso in una colonna di mantello originariamente refrattaria. La maggior parte dei granati mostrano evidenze di ricristallizzazione con formazione di granato impoverito in Cr + cromite + diopside (± minerali idrati e ossidi di Ti). La tessitura e la mineralogia di questi domini secondari, la composizione calcolata dei fusi in equilibrio, e i profili di concentrazione attraverso le zonature del granato, indicano che questi sono dei prodotti di reazione con fusi strettamente legati alla kimberlite di Zagadochnaya. Viene qui suggerita una risalita relativamente lenta della kimberlite fino ai livelli superficiali del mantello prima dell’evento eruttivo. Questo spiegherebbe la mancanza di xenocristalli da profondità > 130 km, l’assenza di diamante, l’arricchimento in Mg della kimberlite, e le reazioni spinte che hanno prodotto gli assemblaggi secondari.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Nimis, Paolo
Ph.D. course:Ciclo 25 > Scuole 25 > SCIENZE DELLA TERRA
Data di deposito della tesi:31 January 2013
Anno di Pubblicazione:30 January 2013
Key Words:Lithospheric mantle, Chromium diopside, Geobarometry, Chromium garnet, Mantle metasomatism, Kimberlite, Rare Earth Elements, Thermodynamic modeling
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/07 Petrologia e petrografia
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:5890
Depositato il:14 Oct 2013 13:49
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Afonso JC, Ranalli G, Fernàndez M, Griffin WL, O’Reilly SY, Faul, U (2010) On the Vp/Vs–Mg# correlation in mantle peridotites: Implications for the identification of thermal and compositional anomalies in the upper mantle. Earth Planet Sci Lett 289:606–618 Cerca con Google

Andersen T, O’Reilly SY, Griffin WL (1984) The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism. Contrib Mineral Petrol 88:72–85. Cerca con Google

Arndt NT, Coltice N, Helmstaedt H, Gregoire M (2009) Origin of Archean subcontinental lithospheric mantle: some petrological constraints. Lithos 109:61–71 Cerca con Google

Arndt NT, Guitreau M, Boullier AM, Le Roex A, Tommasi A, Cordier P, Sobolev A (2010) Olivine, and the origin of kimberlite. J Petrol 51:573–602 Cerca con Google

Ashchepkov IV (2006) Empirical garnet thermobarometer for mantle peridotites. Russ Geol Geophys 47:1071–1085 Cerca con Google

Aulbach S, Griffin WL, Pearson NJ, O'Reilly SY, Doyle BJ (2007) Lithosphere formation in the central Slave Craton (Canada): Plume subcretion or lithosphere accretion? Contrib Mineral Petrol 154:409–427 Cerca con Google

Bascou J, Doucet LS, Saumet S, Ionov DA, Ashchepkov IV, Golovin AV (2011) Seismic velocities, anisotropy and deformation in Siberian cratonic mantle: EBSD data on xenoliths from the Udachnaya kimberlite. Earth Planet Sci Lett 304:71–84 Cerca con Google

Batumike JM, Griffin WL, O'Reilly SY (2009) Lithospheric mantle structure and the diamond potential of kimberlites in southern D.R. Congo. Lithos 112:166–176 Cerca con Google

Bleeker W (2003) The late Archean record: a puzzle in ca. 35 pieces. Lithos 71:99–134 Cerca con Google

Boyd FR (1973) A pyroxene geotherm. Geochim Cosmochim Acta 37:2533–2546 Cerca con Google

Boyd FR (1989). Compositional distinction between oceanic and cratonic lithosphere. Earth Planet Sci Lett 96 (1999). Cerca con Google

Boyd FR, Mertzman SA (1987) Composition and structure of the Kaapvaal lithosphere, Southern Africa. In: Mysen, B.O. (ed.) Magmatic Processes: Physicochemical Principles. Geochem Soc Spec Publ 1:3–12 Cerca con Google

Boyd FR, Pokhilenko NP, Pearson DG, Mertzman SA, Sobolev NV, Finger LW (1997) Composition of the Siberian cratonic mantle: evidence from Udachnaya peridotite xenoliths. Contrib Mineral Petrol 128:228–246 Cerca con Google

Brey GP, Köhler T (1990) Geothermobarometry in four-phase lherzolites. II. New thermobarometers, and practical assessment of existing thermobarometers. J Petrol 31:1353–1378 Cerca con Google

Brey G, Köhler T, Nickel K (1990) Geothermobarometry in four-phase lherzolites I. Experimental results from 10 to 60 kb. J Petrol 31:1313–1352 Cerca con Google

Brey GP, Bulatov VK, Girnis V (2008) Geobarometry for Peridotites: Experiments in simple and natural systems from 6 to 10 GPa. J Petrol 49:3–24 Cerca con Google

Brey GP, Doroshev AM, Girnis AV, Turkin AI (1999) Garnet-spinel-olivine-orthopyroxene equilibria in the FeO-MgO-Al2O3-SiO2-Cr2O3 system: I. Composition and molar volumes of minerals. Eur J Mineral 11:599–617 Cerca con Google

Burgess SR, Harte B (1999) Tracing lithosphere evolution through the analysis of heterogeneous G9/G10 garnet in peridotite xenoliths, I: Major element chemistry. In: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (eds) Proceedings of the 7th Kimberlite Conference (Dawson volume). Cape Town, Red Roof Design, 66–80 Cerca con Google

Burgess SR, Harte B (2004) Tracing lithosphere evolution through the analysis of heterogeneous G9-G10 garnets in peridotite xenoliths, II: REE chemistry. J Petrol 45:609–634 Cerca con Google

Canil D (2004) Mildly incompatible elements in peridotites and the origins of mantle lithosphere. Lithos 77:375–93 Cerca con Google

Carswell DA (1991) The garnet–orthopyroxene Al barometer: problematic application to natural garnet lherzolite assemblages. Mineral Mag 55:19–31 Cerca con Google

Cawood PA, Hawkesworth CJ, Dhuime B (2013) The continental record and the generation of continental crust. GSA Bulletin 125:14–32 Cerca con Google

Chatterjee ND, Terhart L (1985) Thermodynamic calculation of peridotite phase relations in the system MgO-Al2O3-SiO2-Cr2O3, with some geological applications. Contrib Mineral Petrol 89:273–284 Cerca con Google

Connolly JAD (1990) Multivariable phase diagrams: An algorithm based on generalized thermodynamics. Am J Sci 290:666–718 Cerca con Google

Connolly JAD, Petrini K (2002) An automated strategy for calculation of phase diagram sections and retrieval of rock properties as a function of physical conditions. J Metamorph Geol 20: 697–708 Cerca con Google

Cookenboo HO, Grütter HS (2010) Mantle-derived indicator mineral compositions as applied to diamond exploration. Geochemistry: Exploration, Environment, Analysis, 10:81–95 Cerca con Google

Creighton S, Stachel T, McLean H, Muehlenbachs K, Simonetti A, Eichenberg D, Luth R (2008) Diamondiferous peridotitic microxenoliths from the Diavik Diamond Mine, NT. Contrib Mineral Petrol 155:541-554 Cerca con Google

Creighton S, Stachel T, Matveev S, Höfer HE, McCammon C, Luth RW (2009) Oxidation of the Kaapvaal lithospheric mantle driven by metasomatism. Contrib Mineral Petrol 157:491–504 Cerca con Google

Dawson JB (1984) Contrasting types of upper mantle metasomatism. In: Kornprobst J (ed) Kimberlites II: The Mantle and Crust-Mantle Relationships. Amsterdam, Elsevier, pp 289–294 Cerca con Google

Dawson JB, Stephens WE (1975) Statistical classification of garnets from kimberlite and associated xenoliths J Geol 83:589–607 Cerca con Google

Doroshev A, Brey G, Girnis A, Turkin A, Kogarko L (1997) Pyrope-knorringite garnets in the Earth’s mantle: Experiments in the MgO-Al2O3-SiO2-Cr2O3 system. Russ Geol Geophys 38:559-586 Cerca con Google

Doucet LS, Ionov DA, Golovin AV, Pokhilenko NP (2012) Depth, degrees and tectonic settings of mantle melting during craton formation: Inferences from major and trace element compositions of spinel harzburgite xenoliths from the Udachnaya kimberlite, central Siberia. Earth Planet Sci Lett 359-360:206–218 Cerca con Google

Ellis DJ and Green DH (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe–Mg exchange equilibria. Contrib Mineral Petrol 71:13–22 Cerca con Google

Erlank AJ, Waters FG, Hawkesworth CJ, Haggerty SE, Allsopp HL, Rickard RS, Menzies M (1987) Evidence for mantle metasomatism in peridotite nodules from the Kimberley pipes, South Africa. In: Menzies M, Hawkesworth CJ (eds) Mantle metasomatism. New York, Academic, pp 221–311 Cerca con Google

Gasparik T (1984) Two-pyroxene thermobarometry with new experimental data in the system CaO-MgO-Al2O3-SiO2. Contrib Miner Petrol 87:87–97 Cerca con Google

Gibson SA, Malarkey J, Day AA (2008) Melt Depletion and Enrichment beneath the Western Kaapvaal Craton: Evidence from Finsch Peridotite Xenoliths. J Petrol 49:1817–1852 Cerca con Google

Girnis AV, Brey GP, Doroshev AM, Turkin AI, Simon N (2003) The system MgO-Al2O3-SiO2-Cr2O3 revisited: reanalysis of Doroshev et al.’s (1997) experiments and new experiments. Eur J Mineral 15:953–964 Cerca con Google

Giuliani A, Kamenetsky VS, Kendrick MA, Phillips D, Goemann K (2013) Nickel-rich metasomatism of the lithospheric mantle by pre-kimberlitic alkali-S-Cl-rich C-O-H fluids. Contrib Miner Petrol, 165:155–171 Cerca con Google

Grégoire M, Bell DR, Le Roex AP (2002) Trace element geochemistry of phlogopite-rich mafic mantle xenoliths: their classification and their relationship to phlogopite-bearing peridotites and kimberlites revisited. Contrib Mineral Petrol 142:603–625 Cerca con Google

Griffin WL, Ryan CG (1995) Trace elements in indicator minerals: area selection and target evaluation in diamond exploration. J Geochem Explor 53:311–337 Cerca con Google

Griffin WL, O'Reilly SY, Ryan CG, (1999a) The composition and origin of subcontinental lithospheric mantle. In: Fei Y, Bertka CM, Mysen BO (Eds) Mantle Petrology: Field Observations and High Pressure Experimentation: a Tribute to Francis R. (Joe) Boyd. The Geochemical Society, Special Publication, pp 13–45 Cerca con Google

Griffin WL, Shee SR, Ryan CG, Win TT, Wyatt BA (1999b) Harzburgite to lherzolite and back again: metasomatic processes in ultramafic xenoliths from the Wesselton kimberlite, Kimberley, South Africa. Contrib Mineral Petrol 134:232–250 Cerca con Google

Griffin WL, Ryan CG, Kaminsky FV, O’Reilly SY, Natapov LM, Win TT, Kinny PD, Ilupin IP (1999c) The Siberian lithosphere traverse. Mantle terranes and the assembly of the Siberian craton. Tectonophysics 310:1–35 Cerca con Google

Griffin WL, Fisher NI, Friedman JH, Ryan CG, O’Reilly SY (1999d) Cr-pyrope garnets in the lithospheric mantle: I. Compositional systematics and relations to tectonic setting. J Petrol 40:679–704 Cerca con Google

Griffin WL, Fisher NI, Friedman JH, O'Reilly SY, Ryan CG (2002) Cr-pyrope garnets in the lithospheric mantle 2. Compositional populations and their distribution in time and space. Geochemistry Geophysics Geosystems 3, doi:10.1029/2002GC000298 Cerca con Google

Griffin WL, O’Reilly SY, Abe N, Aulbach S, Davies RM, Pearson NJ, Doyle BJ, Kivi K (2003a) The origin and evolution of Archean lithospheric mantle. Precambrian Res 127:19–41 Cerca con Google

Griffin WL, O’Reilly SY, Natapov LM, Ryan CG (2003b) The evolution of lithospheric mantle beneath the Kalahari Craton and its margins. Lithos 71:215–242 Cerca con Google

Griffin WL, O’Reilly SY, Doyle BJ, Pearson NJ, Coopersmith H, Kivi K, Malkovets V and Pokhilenko N (2004). Lithosphere mapping beneath the North American plate. Lithos 77:873–922 Cerca con Google

Griffin WL, Natapova LM, O’Reilly SY, van Achterbergh E, Cherenkova AF, Cherenkov VG (2005) The Kharamai kimberlite field, Siberia: Modification of the lithospheric mantle by the Siberian Trap event. Lithos 81:167–187 Cerca con Google

Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857 Cerca con Google

Grütter H (2006) Cr-saturation arrays in concentrate garnet compositions from kimberlite and their use in mantle barometry. J Petrol 47:801-820 Cerca con Google

Grütter HS (2009) Pyroxene xenocryst geotherms: techniques and application. Lithos 112:1167–1178 Cerca con Google

Gurney JJ (1984) A correlation between garnets and diamonds in kimberlites. In: Glover JE, Harris PG (Eds) Kimberlites: Occurrence and Origin: A Basis for Conceptual Models in Exploration. University of Western Australia, Extension Services, Perth, pp 143–166 Cerca con Google

Harley SL, Green DH (1982) Garnet-orthopyroxene barometry for granulites and garnet peridotites. Nature 300:697–700. Cerca con Google

Harte B (1983) Mantle peridotites and processes – the kimberlite sample. In: Hawkesworth CJ, Norry M J (eds) Continental Basalts and Mantle Xenoliths. Nantwich, Shiva, pp. 46–91 Cerca con Google

Herzberg C, Rudnick R (2012) Formation of cratonic lithosphere: An integrated thermal and petrological model. Lithos 149:4–15 Cerca con Google

Hoal KEO, Hoal BG, Erlank AJ, Shimizu N (1994) Metasomatism of the mantle lithosphere recorded by rare earth elements in garnets. Earth Planet Sci Lett 126:303–313 Cerca con Google

Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343 Cerca con Google

Ionov DA, Doucet LS, Ashchepkov IV (2010) Composition of the Lithospheric Mantle in the Siberian Craton: New Constraints from Fresh Peridotites in the Udachnaya-East Kimberlite. J Petrol 51:2177–2210 Cerca con Google

James DE, Boyd FR, Schutt D, Bell DR, Carlson RW (2004) Xenolith constraints on seismic velocities in the upper mantle beneath southern Africa. Geochem Geophys Geosyst 5, doi:10.1029/2003GC000551 Cerca con Google

Jenkins DM, Newton RC (1979) Experimental determination of the spinel peridotite to garnet peridotite inversion at 900°C and 1000°C in the system CaO-MgO-Al2O3-SiO2, and at 900°C with natural garnet and olivine. Contrib Mineral Petrol 68:407–419 Cerca con Google

Kahoui M, Kaminsky FV, Griffin WL, Belousova E, Mahdjoub Y, Chabane M (2012) Detrital pyrope garnets from the El Kseibat area, Algeria: A glimpse into the lithospheric mantle beneath the north-eastern edge of the West African Craton. J Afr Earth Sci 63:1–11 Cerca con Google

Kargin AV, Golubeva Yu. Yu. & Kononova VA (2011) Kimberlites of the Daldyn–Alakit Region (Yakutia): Spatial Distribution of the Rocks with Different Chemical Characteristics. Petrology 19:496–520 Cerca con Google

Kinny PD, Dawson JB (1992) A mantle metasomatic injection event linked to late Cretaceous kimberlite magmatism. Nature 360:726–728 Cerca con Google

Klemme S (2004) The influence of Cr on the garnet–spinel transition in the Earth’s mantle: experiments in the system MgO–Cr2O3–SiO2 and thermodynamic modelling. Lithos 77:639–646 Cerca con Google

Klemme S, Ivanic TJ, Connolly JAD, Harte B (2009) Thermodynamic modelling of Cr-bearing garnets with implications for diamond inclusions and peridotite xenoliths. Lithos 112:986–991 Cerca con Google

Klemme S, O’Neill HSC (2000) The near-solidus transition from garnet lherzolite to spinel lherzolite. Contrib Mineral Petrol 138:237–248 Cerca con Google

Kober L (1921) Der Bau der Erde (The construction of the Earth). Gebrüder Borntraeger, Berlin, 353 pp Cerca con Google

Kostrovitsky SI, de Bruin D (2004) Chromium assemblage of minerals in micaceous kimberlites of Yakutian province. Russ Geol Geophys 45:565–576 Cerca con Google

Lee C-TA, Luffi P, Chin EJ (2011) Buliding and destroying continental mantle. An Rev Earth Planet Sci 39:59–90 Cerca con Google

Lee C-TA (2006) Geochemical/petrologic constraints on the origin of cratonic mantle. In: Benn K, Mareschal J-C, Condie KC (eds) Archean Geodynamics and Environments. Geophys Monogr. Washington DC, AGU, pp 89–114 Cerca con Google

Lenardic A, Moresi L-N, Muhlhaus H-B (2003) Longevity and stability of cratonic lithosphere: insights from numerical simulations of coupled mantle convection and continental tectonics. J Geophys Res B Solid Earth 108:9–15 Cerca con Google

MacGregor ID (1965) Stability fields of spinel and garnet peridotites in the synthetic system MgO–CaO–Al2O3–SiO2. Carnegie Inst Wash Year Book 64:126–134 Cerca con Google

MacGregor ID (1974) The system MgO–Al2O3–SiO2: solubility of Al2O3 in enstatite for spinel and garnet peridotite compositions. Am Mineral 59:110–119 Cerca con Google

MacKenzie JM, Canil D (1999) Composition and thermal evolution of cratonic mantle beneath the central Archean Slave Province, NWT, Canada. Contrib Mineral Petrol 134:313–324 Cerca con Google

Malkovets VG, Griffin WL, O'Reilly SY, Wood BJ (2007) Diamond, subcalcic garnet, and mantle metasomatism: Kimberlite sampling patterns define the link. Geology 35:339–342 Cerca con Google

Mather KA, Pearson DG, McKenzie D, Kjarsgaard BA, Priestley K (2011) Constraints on the depth and thermal history of cratonic lithosphere from peridotite xenoliths, xenocrysts and seismology. Lithos 125:729–742 Cerca con Google

Menzies MA (1983) Mantle ultramafic xenoliths in alkaline magmas: evidence for mantle heterogeneity modified by magmatic activity. In: Hawkesworth CJ, Norry MJ (eds) Continental Basalts and Mantle Xenoliths. Nantwich, Shiva, pp 92–110 Cerca con Google

Menzies M, Xu Y, Zhang H, Fan W (2007) Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos 96:1–21 Cerca con Google

Mitchell RH (1995) Kimberlites, Orangeites and Related Rocks. Plenum Press, New York, N.Y. Cerca con Google

Nickel KG, Green DH (1985) Empirical geothermobarometry for garnet peridotites and implications for the nature of the lithosphere, kimberlites and diamonds. Earth Planet Sci Lett 73:158–170 Cerca con Google

Nickel KG (1986) Phase equilibria in the system SiO2–MgO–Al2O3–CaO–Cr2O3 (SMACCR) and their bearing on spinel/garnet lherzolite relationships. Neues Jahrb Mineral Abh 155:259–287 Cerca con Google

Nickel KG (1989) Garnet-pyroxene equilibria in the system SMACCR (SiO2–MgO–Al2O3–CaO–Cr2O3): The Cr-geobarometer. In: Ross J, Jaques AL, Ferguson J, Green DH, O’Reilly SY, Danchin RV, Janse AJA (eds) Kimberlites and Related Rocks, Vol. 2, Their Mantle/Crust Setting, Diamonds and Diamond Exploration. Geological Society of Australia Special Publication 14. Blackwell Scientific, Victoria, pp 901–912 Cerca con Google

Nimis P (2002) The pressures and temperatures of formation of diamond based on thermobarometry of chromian diopside inclusions. Can Mineral 40:871–884 Cerca con Google

Nimis P, Grütter H (2010) Internally consistent geothermometers for garnet peridotites and pyroxenites. Contrib Mineral Petrol 159:411–427 Cerca con Google

Nimis P, Taylor WR (2000) Single-clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554 Cerca con Google

Nimis P, Zanetti A, Dencker I, Sobolev NV (2009) Major and trace element composition of chromian diopsides from the Zagadochnaya kimberlite (Yakutia, Russia): Metasomatic processes, thermobarometry and diamond potential. Lithos 112:397–412 Cerca con Google

Nimis P, Grütter H (2012) Discussion of “The applicability of garnet–orthopyroxene geobarometry in mantle xenoliths”, by Wu C.-M. and Zhao G. (Lithos, v. 125, p. 1–9). Lithos 142–143:285–287 Cerca con Google

Nixon PH (1987) Mantle xenoliths. John Wiley, Chichester. Cerca con Google

O’Neill HSC (1981) The transition between spinel lherzolite and garnet lherzolite, and its use as a geobarometer. Contrib Mineral Petrol 77:185–194 Cerca con Google

O’Reilly SY, Griffin WL, Poudjom Djomani YH and Morgan P (2010). Are lithosphere forever? Tracking changes in subcontinental lithospheric manle through time. GSA Today 11:4–10 Cerca con Google

Parman SW, Grove TL, Dann JC, de Wit MJ (2004) A subduction origin for komatiites and cratonic lithospheric mantle. S Afr J Geol 107:107–118 Cerca con Google

Pearson DG, Nowell GM (2002) The continental lithospheric mantle: characteristics and significance as a mantle reservoir. Philosoph Trans Royal Soc Lond 360:2383–2410 Cerca con Google

Pearson DG, Wittig N (2008) Formation of Archean continental lithosphere and its diamonds: the root of the problem. J Geol Soc 165:895–914 Cerca con Google

Pearson DG, Canil D, Shirey SB (2003) Mantle Samples Included in Volcanic Rocks : Xenoliths and Diamonds. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry. Elsevier, Amsterdam, pp 171–275 Cerca con Google

Pearson DG, Shirey SB, Carlson RW, Boyd FR, Pokhilenko NP, Shimizu N (1995) Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. Geochim Cosmochim Acta 59:959–77 Cerca con Google

Pivin M, Féménias O and Demaiffe D (2009) Metasomatic mantle origin for Mbuji-Mayi and Kundelungu garnet and clinopyroxene megacrysts (Democratic Republic of Congo). Lithos 112:951–960 Cerca con Google

Robinson JAC, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164:277–284 Cerca con Google

Ryan CG, Griffin WL, Pearson NJ (1996) Garnet geotherms: pressure–temperature data from Cr-pyrope garnet xenocrysts in volcanic rocks. J Geophys Res 101:5611–5625 Cerca con Google

Shimizu N, Richardson SH (1987) Trace element abundance patterns of garnet inclusions in peridotite suite diamonds. Geochim Cosmochim Acta 51:755–758 Cerca con Google

Shimizu N, Pokhilenko NP, Boyd FR, Pearson DG (1997) Geochemical characteristics of mantle xenoliths from the Udachnaya kimberlite pipe. Russ Geol Geophys 38:205–217 Cerca con Google

Schulze DJ (1989) Constraints on the abundance of eclogite in the upper mantle. J Geophys Res 94:4205–4212 Cerca con Google

Schulze DJ (2003) A classification scheme for mantle-derived garnet in kimberlite: a tool for investigating the mantle and exploring for diamonds. Lithos 71:195–213 Cerca con Google

Simakov SK (2008) Garnet–clinopyroxene and clinopyroxene geothermobarometry of deep mantle and crust eclogites and peridotites. Lithos 106:125–136 Cerca con Google

Simakov SK (2012) A New Garnet Thermometer for Mantle Peridotites and Estimation of the Diamond Potential on Its Basis. Dokl Earth Sci 445: 1003–1005 Cerca con Google

Simon NSC, Carlson RW, Pearson DG, Davies GR (2007) The origin and evolution of the Kaapvaal cratonic lithospheric mantle. J Petrol 48:589–625 Cerca con Google

Sleep NH (2004) Evolution of the continental lithosphere. Ann Rev Earth Planet Sci 33:369–93 Cerca con Google

Sobolev NV, Kuznetsova IK, Zyuzin NI (1968) Petrology of grospydite xenoliths from the Zagadochnaya kimberlite pipe in Yakutia. J Petrol 9:253–280 Cerca con Google

Sobolev NV, Lavrent’ev YG, Pokhilenko NP, Usova LV (1973) Chrome-rich garnets from the kimberlites of Yakutia and their paragenesis. Contrib Mineral Petrol 40:39–52 Cerca con Google

Sobolev NV, Mankenda SA, Kaminskiy FV, Sobolev VN (1990) Garnets from kimberlites of Northeastern Angola and correlations between their compositions and diamond content. Dokl Earth Sci 315:238–242 Cerca con Google

Stachel T, Harris JW, (2008) The origin of cratonic diamonds – constraints from mineral inclusions. Ore Geol Rev 34:5–32 Cerca con Google

Stachel T, Aulbach S, Brey GP, Harris JW, Leost I, Tappert R, Viljoen KS (2004) The trace element composition of silicate inclusions in diamonds: a review. Lithos 77:1–19 Cerca con Google

Tappert R, Foden J, Muehlenbachs K, Wills K (2011) Garnet peridotite xenoliths and xenocrysts from the Monk Hill kimberlite, South Australia: Insights into the lithospheric mantle beneath the Adelaide Fold Belt. J Petrol 52:1965–1986 Cerca con Google

Taylor WR (1998) An experimental test of some geothermometer and geobarometer formulations for upper mantle peridotites with application to the thermobarometry of fertile lherzolite and garnet websterite. N Jb Min Abh 172:381–408 Cerca con Google

Turkin AI, Sobolev NV (2009) Pyrope–knorringite garnets: overview of experimental data and natural parageneses: Russ Geol Geophys 50:1169–1182 Cerca con Google

Vernières J, Godard M, Bodinier J-L (1997) A plate model for the simulation of trace element fractionation during partial melting and magma transport in the Earth's upper mantle. J Geophys Res 102:24771–24784 Cerca con Google

Walter M, Katsura T, Kubo A, Shinmei T, Nishikawa O, Ito E, Lesher C, Funakoshi K (2002) Spinel–garnet lherzolite transition in the system CaO-MgO-Al2O3-SiO2 revisited: an in situ X-ray study. Geochim Cosmochim Acta 66:2109–2121 Cerca con Google

Walter MJ (1998) Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. J Petrol 39:29–60 Cerca con Google

Webb SAC, Wood BJ (1986) Spinel-pyroxene-garnet relationships and their dependence on Cr/Al ratio. Contrib Mineral Petrol 92:471–480 Cerca con Google

Weiss Y, Griffin WL, Bell DR, Navon O (2011) High-Mg carbonatitic melts in diamonds, kimberlites and the sub-continental lithosphere. Earth Planet Sci Lett 309:337–347 Cerca con Google

Woolley AR, Bergman SC, Edgar AD, Le Bas MJ, Mitchell RH, Rock NMS, Scott Smith BH (1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. Can Mineral 34:175–186 Cerca con Google

Wu C, Zhao G, (2011) The applicability of garnet–orthopyroxene geobarometry in mantle xenoliths. Lithos 125:1–9 Cerca con Google

Zheng J, Griffin WL, O'Reilly SY, Yang J, Li T, Zhang M, Zhang RY, Liou JG (2006) Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath Eastern China. J Petrol 47:2233–2256 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record