Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Da Broi, Francesca (2013) Fret imaging and optogenetics shed light on neurocardiac regulation in vitro and in vivo. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible fino a 07 Giugno 2018 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

9Mb

Abstract (inglese)

The heart is densely innervated by sympathetic neurons (SN) that regulate cardiac function both through chronotropic and inotropic effects. During exercise and stress, SN-released norepinephrine activates cardiac beta adrenergic receptors (beta-ARs) on both the conduction and contractile systems. Increased cardiac sympathetic activity leads to arrhythmias in acquired (e.g. myocardial ischemia) or inherited conditions, including Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT), possibly via development of Ca2+ overload-dependent early- or delayed-afterdepolarizations (EAD, DAD, respectively). The DAD would serve as arrhythmogenic focus, leading to the onset of triggered activity in discrete groups of cardiac cells. Unbalanced sympathetic discharge to different regions of the heart has been identified as a potent arrhythmogenic condition 1. In addition to the direct cardiomyocyte damage, alteration in presynaptic NE reuptake from the autonomic neuron endings, leading to catecholamine spillover in the failing myocardium 2, inducing is an arrhythmic event. These data support a model in which autonomic control of cardiac function relies on specialized sites of direct interaction between the neurons and their target cardiomyocytes (CM).
The aims of the project are:
1. To investigate whether specific cell-cell interactions have a role in the dynamics of intercellular signaling between SN and CM, aims to understand how unbalanced SN activity leads to arrhythmic condition.
2. To understand whether the unbalanced SN modulation of a limited group of cardiac cells could be involved in generating arrhythmias in vivo, based on an optogenetic approach
3. To study in vivo, non-invasively, the critical mass of myocardium necessary to generate an arrhythmogenic focus, using optogenetics.
In the first part of the project, we used an in vitro model of sympathetic neurons/cardiomyocytes (SN-CM) co-cultures to analyze the dynamics of intercellular signaling. Upon NGF treatment, SNs extend their axons and establish direct contact with CMs. NE-synthesizing terminals developed on SN at the contact site, and beta1-ARs were enriched on the CM membrane in correspondence of the active release areas 3. We performed real-time imaging using the FRET-based biosensors EPAC1-camps and AKAR3 to assess intracellular cAMP and PKA activity, respectively. Stimulation of SN was achieved using KCl or bradykinin. We observed that activation of a specific SN lead to cAMP increase in the interacting CM (ΔR/R0 = 5.6% ± 1% mean ± SEM, n = 8, AKAR3 ΔR/R0= 5.3% ± 1.5%, mean ± SEM, n=6). The cAMP response in cardiomyocytes was not due to NE released in the medium, and was absent in cells not in direct contact with the activated neuron. We showed that in cells without SN coupled the intracellular cAMP and PKA activity were not affected.
To estimate the [NE] acting on the CM beta-AR at the contact site, we compared the amplitude of the FRET signal evoked by SN activation (ΔR/R0= 2.6 % ± 0.6%, mean ± SEM, n=13 ) to that elicited by different [NE] administered to the cell bathing solution, and we observed that the increase in the CFP/YFP ratio achieved by SN-released NE is comparable to that obtained with 3.5e-10 M NE to whole cell. Using the competitive beta-antagonist propranolol we determined the effective [NE] in the ‘synaptic’ cleft. Competition antagonism of neuronal stimulation to CM was obtained with [Propranolol] equal to that antagonizing 100 nM of NE, indicating that such concentration is achieved in the ‘synaptic cleft’. Moreover, by calculating the fraction of occupancy of the receptor at different concentration of NE we calculated that the fraction of beta-ARs activated by the SN-released NE is < 1%.
2. In the second part of the project we used an optogenetic-based strategy to modulate cardiac sympathetic neurons activity non invasively in vivo. ChR2 is a light-gated cation channel that becomes permeable mainly to Na+ upon light-stimulation, shown to enable control of neuronal activity both in vitro and in the intact brain.
We generated a mouse model expressing ChR2 in SN under the tyrosine hydroxilase (TOH) promoter. Photostimulation of the stellate ganglia neurons (SGN) was obtained in an anesthetized, open-chest model using a fiber optic to locally (1mm) deliver light (470nm) generated from a LED. ECG recording demonstrates a rapid (100-150 ms) increase (40%±6%) in heart rate (HR) upon SGN stimulation. The extremely short activation time of the cardiac response upon ChR2 depolarization of the neurons support a model in which NE acts in a short range, consistent with direct interaction between SN and CM.
3. We used ChR2 to modulate cardiac electrophysiology. We determined in cultured neonatal cardiomyocytes that photostimulation allows triggering action potential (AP). Moreover depending on when the light pulses were given we generated normal AP, early- or delayed-aferdepolarizations (EAD or DAD). We generated a mouse model with cardiac expression of ChR2, driven by the α-MHC promoter. Optical control of cardiomyocyte membrane potential was obtained with a fiber optic, while recording the ECG in the anesthesized mouse. Stimulation was applied to different regions of the heart. Atrial illumination was used to obtain non-invasive atrial pacing resulting in tachycardia with unchanged QRS, indicating as expected that the cardiac activation wave followed the natural conduction system. Ventricular photoactivation, on the contrary, bypassing the natural conduction system gave rise to premature ventricular beats.
We provide evidence of the existence of a ‘synaptic’ contact between SN and CM that forms a high agonist concentration, diffusion-restricted space allowing potent activation of a small fraction of beta-ARs on the CM membrane upon neuronal stimulation. SN stimulation leads to a rapid increase of the HR supporting the idea of the existence of the synaptic contact between SN and CM.
This close interaction has the potential of fast control of local CM signalling, suggesting that SNs control locally discrete groups of myocardial cells. Stimulation of a small fraction of the cardiac cells (< 200 microm-wide area) induced ectopic beats conducted to the whole heart

Abstract (italiano)

Il cuore è densamente innervato dai neuroni del sistema nervoso simpatico che regolano la funzionalità cardiaca attraverso un effetto cronotropo o inotropo positivi. Durante lo stress o l’esercizio, la noradrenalina rilasciata dai neuroni attiva i β recettori cardiaci sia sul sistema di conduzione che sul muscolo contrattile. L’aumento dell’attività del sistema nervoso simpatico cardiaco sia in condizioni normali o in presenza di patologie genetiche, come per esempio la Tachicardia Catecolaminergica Polimorfica Ventricolare, porta ad aritmie presumibilmente attraverso l’insorgere di ‘DADs’. Le ‘DADs’ sono un focus di aritmia che porta a una serie di depolarizzazioni che interessano un piccolo gruppo di cellule cardiache. E’ stato identificato un rilascio di catecolamine non bilanciato in diverese regioni del cuore da parte del sistema nervoso simpatico come possibile causa di aritmia. Inoltre alterazioni del ‘reuptake’ di noradrenalina porta a una concentrazione anomala di NE nello scompenso cardiaco che può essere coinvolto in un evento aritmico. Questi dati supportano un modello in cui il controllo della funzionalità cardiaca da parte del sistema nervoso simpatico avviene attraverso un sito d’interazione diretta e specializzata fra neurone e cardiomiocita accoppiato.
Gli scopi del progetto sono quindi:
1. Studiare se l’interazione fra neurone e cardiomiocita ha un ruolo nella trasmissione cardiaca del segnale, per capire come un’attività non bilanciata del sistema nervoso simpatico porta a un evento aritmico.
2. Capire se l’attività non bilanciata del sistema nervoso simpatico modulando l’attività di un piccolo gruppo di cellule cardiache, possa essere coinvolto nella generazione di un’aritmia in vivo. Per verificare quest’ipotesi ci serviremo di un approccio innovativo basato su proteine foto attivabili
3. Studiare in vivo e in maniera non invasiva la massa critica di cellule cardiache necessaria per scatenare un evento aritmico. Anche per questo tipo di studio abbiamo utilizzato una metodologia basata sull’optogenetica.
Nella prima parte del progetto, abbiamo creato un modello in vitro costituito da cardiomiociti neonatali e neuroni isolati dal ganglio cervicale superiore. I neuroni in seguito a trattamento con NGF sviluppano assoni che stabiliscono contatti con i cardiomiociti. Sotto terminali che sono in contatto con le cellule cardiache si osserva un maggiore accumulo di β1 recettori [3].
Abbiamo misurato l’attivazione dei β recettori monitorando in tempo reale le variazioni di AMP ciclico e attività di PKA, attraverso l’uso di sensori geneticamente codificati e che si basano sul FRET (EPAC1-camps, che ci permette di monitorare cAMP e AKAR3 che ci permette di monitorare l’attività di PKA). I neuroni del SNS sono stati stimolati con KCl o bradichinina. Abbiamo osservato che stimolando il rilascio di noradrenalina da un neurone, l’AMP ciclico e l’attività di PKA aumentano solo nei cardiomiociti accoppiati a neurone e non nei cardiomiociti senza un contatto (ΔR/R0 = 0.056 ± 0.01 mean ± SEM, n = 8, AKAR3 ΔR/R0=5.3% ± 1.5%, mean ± SEM, n=6).
Per stimare la [NE] che agisce sui β recettori nel sito di contatto abbiamo paragonato l’ampiezza del segnale FRET generato dall’attivazione neuronale (ΔR/R0= 0.026 ± SEM) con quello generato da diverse [NE] note aggiunte alla soluzione in cui si trovano le cellule. Abbiamo osservato che l’aumento del rapporto CFP/YFP ottenuto dalla noradrenalina rilasciata dai neuroni e paragonabile a quello ottenuto con 3.5e-10 M di noradrenalina che attiva tutti i recettori.
Usando un antagonista competitivo dei β recettori (propranololo) abbiamo determinato la concentrazione di noradrenalina nel cleft sinaptico. La concentrazione di propranolol necessaria per abolire totalmente la risposta indotta dalla noradrenalina rilasciata dai neuroni, e pari a quella necessaria per bloccare la risposta indotta da 100 nM di noradrenalina, suggerendo che la concentrazione nel cleft sinaptico è dell’ordine di 100 nM. Sulla base di questi dati abbiamo quindi calcolato che la frazione recettoriale con cui interagisce la noradrenalina rilasciata dai neuroni che è inferiore all’1% del totale.
1.Nella seconda parte del progetto abbiamo usato una strategia che si basa sull’‘optogenetica’ per modulare l’attività del sistema nervoso simpatico in vivo e in maniera non invasiva. ChR2 è un canale la cui permeabilità è regolata dalla luce. Infatti questo canale diventa permeabile soprattutto al Na+ in seguito a stimolazione con luce blu. Negli ultimi anni è stato largamente utilizzato per il controllo dell’attività neuronale sia in vitro che in vivo [4, 5]. Abbiamo generato un modello murino che esprime ChR2 nei neuroni del sistema nervoso simpatico sotto il promotore tirosina idrossilasi. La foto stimolazione del ganglio stellato è stata ottenuta in un modello a ‘torace aperto’ di topo anestetizzato, usando una fibra ottica per indirizzare in uno specifico punto la luce generata da un LED. L’analisi dell’ECG del topo mostra un rapido (100-150 ms) aumento (40%±6%) nella frequenza di contrazione cardiaca in seguito a ‘fotostimolazione’ del ganglio stellato. Questo rapido aumento nella frequenza cardiaca supporta il modello in cui la noradrenalina agisce in uno spazio piccolo e confinato in cui neurone e cardiomiocita interagisccono direttamente.
3. Abbiamo usato ChR2 anche per modulare l’elettrofisiologia cardiaca. Abbiamo determinato che la fotostimolazione di ChR2 è sufficiente a modulare il potenziale d’azione in cardiomiociti neonatali in cultura. Inoltre a seconda di quando viene dato il pulso di luce siamo in grado di generare un battito normale, una DAD o una EAD. Abbiamo quindi generato un modello di topo che esprima ChR2 nel cuore sotto il promotore α-MHC. Abbiamo controllato tramite stimolazione luminosa il potenziale d’azione di cellule cardiache utilizzando fibre ottiche alimentate da LED, durante l’acquisizione dell’ECG del topo. La stimolazione è stata eseguita in diverse regioni del cuore.
La stimolazione atriale ci ha permesso di mimare un pacing atriale sfociato poi una tachicardia. Abbiamo osservato che il QRS non ha variazioni rispetto al normale, indicando che l’onda di depolarizzazione segue il sistema di conduzione cardiaco. La foto attivazione ventricolare invece genera un battito prematuro dato che non segue il sistema di conduzione.
Abbiamo qui dimostrato l’esistenza di un contatto sinaptico fra i neuroni e i cardiomiociti che forma un sito a elevata concentrazione di neurotrasmettitore, uno spazio a diffusione limitata permettendo quindi l’attivazione di un ristretto gruppo di recettori β localizzati nella membrana della cellula cardiaca.
La stimolazione neuronale genera un rapido aumento nella frequenza cardiaca avvalorando l’ipotesi dell’esistenza di un contatto sinaptico fra neuroni e cardiomiociti.
Questa interazione è importante per un controllo rapido del segnale locale dei cardiomiociti, suggerendo che i neuroni controllino un gruppo ristretto di cellule cardiache.
La stimolazione di una frazione di cardiomiociti è sufficiente a indurre un battito condotto in tutto il cuore

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Mongillo, Marco
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > BIOSCIENZE E BIOTECNOLOGIE > BIOLOGIA CELLULARE
Data di deposito della tesi:31 Gennaio 2013
Anno di Pubblicazione:31 Gennaio 2013
Parole chiave (italiano / inglese):neurocardiac regulation, FRET, Channelrhodopsin, heart activity, arrhythmias, myocardial infarction
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:5901
Depositato il:08 Ott 2013 15:50
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Arora, R.C., et al. (2003) Intrinsic cardiac nervous system in tachycardia induced heart failure. Am J Physiol Regul Integr Comp Physiol 285, R1212-23 DOI: 10.1152/ajpregu.00131.2003. Cerca con Google

2. Esler M Fau - Jennings, G., et al. Assessment of human sympathetic nervous system activity from measurements of norepinephrine turnover. Hypertension, . Cerca con Google

3. Shcherbakova, O.G., et al. (2007) Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. J Cell Biol 176, 521-33 DOI: 10.1083/jcb.200604167. Cerca con Google

4. Zhang F Fau - Wang, L.-P., et al. (2006 Oct) Channelrhodopsin-2 and optical control of excitable cells. Nat, Methods Cerca con Google

5. Zhang F Fau - Wang, L.-P., et al. (2007 Apr 5) Multimodal fast optical interrogation of neural circuitry. Nature, . Cerca con Google

6. Shimada T Fau - Kawazato, H., et al. (2004 Oct) Cytoarchitecture and intercalated disks of the working myocardium and the conduction system in the mammalian heart. Anat Rec, A. Discov Mol Cell Evol Biol Cerca con Google

7. Sheikh F Fau - Ross, R.S., J. Ross Rs Fau - Chen, and J. Chen ( 2009 Aug) Cell-cell connection to cardiac disease. Trends Cardiovasc, Med. Cerca con Google

8. Jamora C Fau - Fuchs, E. and E. Fuchs (Nat Cell, Biol 2002 Apr) Intercellular adhesion, signalling and the cytoskeleton. Nat Cell,x. Cerca con Google

9. Yamada S Fau - Pokutta, S., et al. (2005 Dec 2) Deconstructing the cadherin-catenin-actin complex. Cell, . Cerca con Google

10. Severs Nj Fau - Bruce, A.F., et al. (2008 Oct 1) Remodelling of gap junctions and connexin expression in diseased myocardium. Cardiovasc, Res Cerca con Google

11. Anderson Rh Fau - Yanni, J., et al. The anatomy of the cardiac conduction system. Clin, Anat. Cerca con Google

12. Fabiato A Fau - Fabiato, F. and F. Fabiato ( 1975 Aug) Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J. Physiol. Cerca con Google

13. Berridge, M.J. Cardiac calcium signalling. Cerca con Google

14. Chen-Izu Y Fau - McCulle, S.L., et al. (2006 Jul 1) Three-dimensional distribution of ryanodine receptor clusters in cardiac myocytes. Biophys, J. Cerca con Google

15. Yatani A Fau - Codina, J., et al. (, 1987 Nov 27) A G protein directly regulates mammalian cardiac calcium channels. Science, . Cerca con Google

16. Hulme Jt Fau - Lin, T.W.C., et al. (2003 Oct 28) Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci, U. S. A. . Cerca con Google

17. Reiken S Fau - Lacampagne, A., et al. ( 2003 Mar 17) PKA phosphorylation activates the calcium release channel (ryanodine receptor) in skeletal muscle: defective regulation in heart failure. J. Cell Biol. Cerca con Google

18. Brittsan Ag Fau - Carr, A.N., et al. (2000 Apr 21) Maximal inhibition of SERCA2 Ca(2+) affinity by phospholamban in transgenic hearts overexpressing a non-phosphorylatable form of phospholamban. J. Biol Chem. Cerca con Google

19. Hildreth V Fau - Anderson, R.H., et al. (2009 Jan) Autonomic innervation of the developing heart: origins and function. Clin, Anat Cerca con Google

20. Ieda M Fau - Kanazawa, H., et al. (2007 May) Sema3a maintains normal heart rhythm through sympathetic innervation patterning. Nat, Med Cerca con Google

21. Snider, W.D. (1994 Jun 3) Functions of the neurotrophins during nervous system development: what the knockouts are teaching us. Cell, . Cerca con Google

22. Lockhart St Fau - Turrigiano, G.G., S.J. Turrigiano Gg Fau - Birren, and S.J. Birren (2008 Jun) Nerve growth factor modulates synaptic transmission between sympathetic neurons and cardiac myocytes. J. Neurosci Cerca con Google

23. Murad F Fau - Chi, Y.M., et al. Adenyl cyclase. III. The effect of catecholamines and choline esters on the formation of adenosine 3',5'-phosphate by preparations from cardiac muscle and liver. J. Biol Chem. Cerca con Google

24. Sculptoreanu A Fau - Scheuer, T., W.A. Scheuer T Fau - Catterall, and W.A. Catterall (1993 Jul 15) Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature, . Cerca con Google

25. Yoshida A Fau - Takahashi, M., et al. (1992 Feb) Phosphorylation of ryanodine receptors in rat myocytes during beta-adrenergic stimulation. J. Biochem Cerca con Google

26. Toyofuku T Fau - Kurzydlowski, K., et al. (1993 Feb 5) Identification of regions in the Ca(2+)-ATPase of sarcoplasmic reticulum that affect functional association with phospholamban. Cerca con Google

27. Cao, J.M., et al. (2000) Relationship between regional cardiac hyperinnervation and ventricular arrhythmia. Circulation 101, 1960-9. Cerca con Google

28. Xiang, Y. and B.K. Kobilka (2003) Myocyte adrenoceptor signaling pathways. Science 300, 1530-2 DOI: 10.1126/science.1079206. Cerca con Google

29. Chruscinski Aj Fau - Rohrer, D.K., et al. (1999 Jun 11) Targeted disruption of the beta2 adrenergic receptor gene. J. Biol Chem. Cerca con Google

30. Bernstein D Fau - Fajardo, G., et al. Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Cerca con Google

31. Zheng M Fau - Zhu, W., et al. ( 2005 Dec) Emerging concepts and therapeutic implications of beta-adrenergic receptor subtype signaling. Pharmacol, Ther. Cerca con Google

32. Rohrer Dk Fau - Desai, K.H., et al. (1996 Jul 9) Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci, U. S. A. . Cerca con Google

33. Devic, E., et al. (2001) Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol 60, 577-83. Cerca con Google

34. Nikolaev Vo Fau - Moshkov, A., et al. (2010 Mar 26) Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation. Science, . Cerca con Google

35. Nikolaev, V.O., et al. (2006) Cyclic AMP imaging in adult cardiac myocytes reveals far-reaching beta1-adrenergic but locally confined beta2-adrenergic receptor-mediated signaling. Circ Res 99, 1084-91 DOI: 10.1161/01.RES.0000250046.69918.d5. Cerca con Google

36. Meredith It Fau - Eisenhofer, G., et al. (1993 Jul) Cardiac sympathetic nervous activity in congestive heart failure. Evidence for increased neuronal norepinephrine release and preserved neuronal uptake. Circulation, . Cerca con Google

37. Kiuchi K Fau - Shannon, R.P., et al. (1993 Mar) Myocardial beta-adrenergic receptor function during the development of pacing-induced heart failure. J. Clin Invest Cerca con Google

38. Engelhardt S Fau - Bohm, M., et al. Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. J. Am Coll Cardiol 0735-1097 (Print). Cerca con Google

39. Ponsioen B Fau - Zhao, J., et al. (2004 Dec) Detecting cAMP-induced Epac activation by fluorescence resonance energy transfer: Epac as a novel cAMP indicator. Embo Rep Cerca con Google

40. Zhang J Fau - Ma, Y., et al. (2001 Dec 18) Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci, U. S. A. . Cerca con Google

41. de Rooij J Fau - Zwartkruis, F.J., et al. (1998 Dec 3) Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature, . Cerca con Google

42. Allen, M.D. and J. Zhang (2006) Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters. Biochem Biophys Res Commun 348, 716-21 DOI: 10.1016/j.bbrc.2006.07.136. Cerca con Google

43. Landis, S.C. (1976 Nov) Rat sympathetic neurons and cardiac myocytes developing in microcultures: correlation of the fine structure of endings with neurotransmitter function in single neurons. Proc Natl Acad Sci, U. S. A. Cerca con Google

44. Potter, D.D., et al. (1986) Synaptic functions in rat sympathetic neurons in microcultures. II. Adrenergic/cholinergic dual status and plasticity. J Neurosci 6, 1080-98. Cerca con Google

45. Zaika, O., J. Zhang, and M.S. Shapiro (2011) Functional role of M-type (KCNQ) K(+) channels in adrenergic control of cardiomyocyte contraction rate by sympathetic neurons. J Physiol 589, 2559-68 DOI: 10.1113/jphysiol.2010.204768. Cerca con Google

46. Ogawa, S., et al. (1992) Direct contact between sympathetic neurons and rat cardiac myocytes in vitro increases expression of functional calcium channels. J Clin Invest 89, 1085-93 DOI: 10.1172/jci115688. Cerca con Google

47. Marvin Wj Jr Fau - Atkins, D.L., et al. (1984 Jul) In vitro adrenergic and cholinergic innervation of the developing rat myocyte. Circ, Res Cerca con Google

48. Conforti L Fau - Tohse, N., N. Tohse N Fau - Sperelakis, and N. Sperelakis (1991 Apr) Influence of sympathetic innervation on the membrane electrical properties of neonatal rat cardiomyocytes in culture. J. Dev Physiol. Cerca con Google

49. Meredith, I.T., et al. (1991) Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias. N Engl J Med 325, 618-24 DOI: 10.1056/nejm199108293250905. Cerca con Google

50. Dae, M.W., et al. (1997) Heterogeneous sympathetic innervation in German shepherd dogs with inherited ventricular arrhythmia and sudden cardiac death. Circulation 96, 1337-42. Cerca con Google

51. Chen, L.S., et al. (2007) New perspectives on the role of autonomic nervous system in the genesis of arrhythmias. J Cardiovasc Electrophysiol 18, 123-7 DOI: 10.1111/j.1540-8167.2006.00590.x. Cerca con Google

52. Du Xj Fau - Cox, H.S., et al. (1999 Sep) Sympathetic activation triggers ventricular arrhythmias in rat heart with chronic infarction and failure. Cerca con Google

53. Akutsu, Y., et al. (2008) Cardiac sympathetic nerve abnormality predicts ventricular tachyarrhythmic events in patients without conventional risk of sudden death. Eur J Nucl Med Mol Imaging 35, 2066-73 DOI: 10.1007/s00259-008-0879-x. Cerca con Google

54. Paul, M., et al. (2006) Impact of sympathetic innervation on recurrent life-threatening arrhythmias in the follow-up of patients with idiopathic ventricular fibrillation. Eur J Nucl Med Mol Imaging 33, 866-70 DOI: 10.1007/s00259-005-0061-7. Cerca con Google

55. Keller, N.R., et al. (2004) Norepinephrine transporter-deficient mice exhibit excessive tachycardia and elevated blood pressure with wakefulness and activity. Circulation 110, 1191-6 DOI: 10.1161/01.cir.0000141804.90845.e6. Cerca con Google

56. Myles, R.C., et al. (2012) Local beta-adrenergic stimulation overcomes source-sink mismatch to generate focal arrhythmia. Circ Res 110, 1454-64 DOI: 10.1161/circresaha.111.262345. Cerca con Google

57. Priori Sg Fau - Napolitano, C., et al. (2002 Jul 2) Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation, . Cerca con Google

58. Priori Sg Fau - Napolitano, C., et al. ( 2001 Jan 16) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation, . Cerca con Google

59. Postma Av Fau - Denjoy, I., et al. Absence of calsequestrin 2 causes severe forms of catecholaminergic polymorphic ventricular tachycardia. Circ Res. 18;91(8):e21-6. Cerca con Google

60. Bers, D.M. Macromolecular complexes regulating cardiac ryanodine receptor function. Cerca con Google

61. Marx So Fau - Reiken, S., et al. (2000 May 12) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell, . Cerca con Google

62. Wehrens Xh Fau - Lehnart, S.E., et al. (2003 Jun 27) FKBP12.6 deficiency and defective calcium release channel (ryanodine receptor) function linked to exercise-induced sudden cardiac death. Cell, . Cerca con Google

63. Wehrens Xh Fau - Lehnart, S.E., et al. ( 2004 Apr 2) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ, Res. Cerca con Google

64. Lehnart Se Fau - Mongillo, M., et al. (2008 Jun) Leaky Ca2+ release channel/ryanodine receptor 2 causes seizures and sudden cardiac death in mice. J. Clin Invest Cerca con Google

65. Jiang D Fau - Xiao, B., et al. (2004 Aug 31) RyR2 mutations linked to ventricular tachycardia and sudden death reduce the threshold for store-overload-induced Ca2+ release (SOICR). Proc Natl Acad Sci, U. S. A. . Cerca con Google

66. George Ch Fau - Higgs, G.V., F.A. Higgs Gv Fau - Lai, and F.A. Lai (Circ, Res 2003 Sep 19) Ryanodine receptor mutations associated with stress-induced ventricular tachycardia mediate increased calcium release in stimulated cardiomyocytes. Circ, Res. Cerca con Google

67. Leenhardt A Fau - Lucet, V., et al. (1995 Mar 1) Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation, . Cerca con Google

68. Nagel G Fau - Szellas, T., et al. (2003 Nov 25) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci, U. S. A. . Cerca con Google

69. Foster Kw Fau - Saranak, J., et al. (1984 Oct 2) A rhodopsin is the functional photoreceptor for phototaxis in the unicellular eukaryote Chlamydomonas. Nature, 5-31. Cerca con Google

70. Boyden Es Fau - Zhang, F., et al. (2005 Sep) Millisecond-timescale, genetically targeted optical control of neural activity. Nat, Neurosci. Cerca con Google

71. Arenkiel Br Fau - Peca, J., et al. In vivo light-induced activation of neural circuitry in transgenic mice expressing channelrhodopsin-2. Cerca con Google

72. Wang H Fau - Peca, J., et al. (Proc Natl Acad Sci, U. S. A.2007 May 8) High-speed mapping of synaptic connectivity using photostimulation in Channelrhodopsin-2 transgenic mice. Proc Natl Acad Sci, U. S. A.x. Cerca con Google

73. Katzel D Fau - Zemelman, B.V., et al. ( 2011 Jan) The columnar and laminar organization of inhibitory connections to neocortical excitatory cells. Nat, Neurosci. Cerca con Google

74. Bruegmann T Fau - Malan, D., et al. (2010 Nov) Optogenetic control of heart muscle in vitro and in vivo. Nat, Methods. Cerca con Google

75. Bohm M Fau - La Rosee, K., et al., Evidence for reduction of norepinephrine uptake sites in the failing human heart. (0735-1097 (Print)). Cerca con Google

76. Zaglia T Fau - Milan, G., et al., Cardiac sympathetic neurons provide trophic signal to the heart via beta2-adrenoceptor-dependent regulation of proteolysis. (1755-3245 (Electronic)). Cerca con Google

77. Shcherbakova Og Fau - Hurt, C.M., et al., Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. (0021-9525 (Print)). Cerca con Google

78. Klemm M Fau - Hirst, G.D., G. Hirst Gd Fau - Campbell, and G. Campbell, Structure of autonomic neuromuscular junctions in the sinus venosus of the toad. (0165-1838 (Print)). Cerca con Google

79. Bennett Mr Fau - Gibson, W.G., J. Gibson Wg Fau - Robinson, and J. Robinson, Probabilistic secretion of quanta: spontaneous release at active zones of varicosities, boutons, and endplates. (0006-3495 (Print)). Cerca con Google

80. Aravanis Am Fau - Wang, L.-P., et al., An optical neural interface: in vivo control of rodent motor cortex with integrated fiberoptic and optogenetic technology. J. Neural Eng 2007 Sep(1741-2560 (Print)). Cerca con Google

81. Greene La Fau - Tischler, A.S. and A.S. Tischler, Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci, U. S. A., 1976 Jul(0027-8424 (Print)). Cerca con Google

82. Greene La Fau - Rein, G. and G. Rein, Synthesis, storage and release of acetylcholine by a noradrenergic pheochromocytoma cell line. Nature, , 1977 Jul 28(0028-0836 (Print)). Cerca con Google

83. Nagel G Fau - Brauner, M., et al., Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr, Biol 2005 Dec 20(0960-9822 (Print)). Cerca con Google

84. Caron Mg Fau - Lefkowitz, R.J. and R.J. Lefkowitz, Catecholamine receptors: structure, function, and regulation. Recent Prog Horm, , Res 1993(0079-9963 (Print)). Cerca con Google

85. Zipes Dp Fau - Wellens, H.J. and H.J. Wellens, Sudden cardiac death. (0009-7322 (Print)). Cerca con Google

86. Rubart M Fau - Zipes, D.P. and D.P. Zipes, Mechanisms of sudden cardiac death. (0021-9738 (Print)). Cerca con Google

87. Huikuri Hv Fau - Castellanos, A., R.J. Castellanos A Fau - Myerburg, and R.J. Myerburg, Sudden death due to cardiac arrhythmias. (0028-4793 (Print)). Cerca con Google

88. Verkerk Ao Fau - Veldkamp, M.W., et al., Effects of cell-to-cell uncoupling and catecholamines on Purkinje and ventricular action potentials: implications for phase-1b arrhythmias. (0008-6363 (Print)). Cerca con Google

89. Wier Wg Fau - ter Keurs, H.E., et al., Ca2+ 'sparks' and waves in intact ventricular muscle resolved by confocal imaging. (0009-7330 (Print)). Cerca con Google

90. Baader Ap Fau - Buchler, L., et al. Real time, confocal imaging of Ca(2+) waves in arterially perfused rat hearts. Cerca con Google

91. Tanaka H Fau - Oyamada, M., et al., Excitation-dependent intracellular Ca2+ waves at the border zone of the cryo-injured rat heart revealed by real-time confocal microscopy. (0022-2828 (Print)). Cerca con Google

92. Kaneko T Fau - Tanaka, H., et al., Three distinct types of Ca(2+) waves in Langendorff-perfused rat heart revealed by real-time confocal microscopy. (1524-4571 (Electronic)). Cerca con Google

93. Wikswo Jp Jr Fau - Lin, S.F., R.A. Lin Sf Fau - Abbas, and R.A. Abbas, Virtual electrodes in cardiac tissue: a common mechanism for anodal and cathodal stimulation. (0006-3495 (Print)). Cerca con Google

94. Campbell Rw Fau - Murray, A., D.G. Murray A Fau - Julian, and D.G. Julian, Ventricular arrhythmias in first 12 hours of acute myocardial infarction. Natural history study. (0007-0769 (Print)). Cerca con Google

95. Adgey Aa Fau - Devlin, J.E., et al., Initiation of ventricular fibrillation outside hospital in patients with acute ischaemic heart disease. (0007-0769 (Print)). Cerca con Google

96. Johnston Km Fau - MacLeod, B.A., M.J. MacLeod Ba Fau - Walker, and M.J. Walker, Responses to ligation of a coronary artery in conscious rats and the actions of antiarrhythmics. (0008-4212 (Print)). Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record