Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Andreucci, Benedetta (2013) Thermochronology of the Polish and Ukrainian Carpathians. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
17Mb

Abstract (inglese)

The Carpathian-Pannonian region’s geodynamic evolution has been for the last decades object of debate for the scientific community. The aim of this study is to provide a further contribution to the understanding of the evolution of this territory. In fact, low temperature thermochronometry and paleotemperature studies allow to define thermal histories, which can be used, in turn, to infer the occurrence of thermal perturbations and of their extent, as well as the timing and spatial pattern of burial and exhumation. Several different processes such as B and A-type subduction, slab roll back, mantle uprise, gravitational collapse of the lithosphere have been proposed to have played a role in the evolution of this region. Reconstruction of thermal and of burial and exhumation history was then used as a tool to support or rule out some of the processes quoted above.
Three low temperature thermochronometers were used to date rocks belonging to the Polish and Ukrainian Carpathians, and the results were inverted to model time-temperature histories. Thermal histories were then integrated with observations on the structural and topographic setting of the region and with data regarding the thermal structure of the lithosphere and discussed to extrapolate constrains on burial and exhumation. Finally a compilation of the thermochronometry datasets referred to the study area, integrated with previously published geophysical data were used to discuss their consistency with the different geodynamic processes proposed for the Carpathian Pannonian region.
The results indicate that samples of the thrust belt were heated to variable temperatures, generally lower than 165°C and cooled to surface temperature between the Early and the Late Miocene. Since no regional heat flow transients affected the Carpathian thrust belt in Miocene time, its thermal history has to be entirely ascribed to burial and exhumation history.
Three sectors, characterized by different burial-exhumation histories and topographic, structural and geophysical features were identified in the study region. Burial depths become more homogeneous E-ward. Exhumation is interpreted to have occurred by erosion of the wedge during thrusting in the western sector (23-10 Ma), by erosion and tectonic denudation during post-thrusting extension in the central sector (10-6 Ma) , and by erosion of the wedge during post thrusting uplift in the eastern sector (12-6 Ma). These exhumation processes appear to be consistent with models for the evolution of the Carpathian-Pannonian region that do not comprise slab-related dynamics, such as that based on gravitational collapse. It also appears burial-exhumation history of the Ukrainian Carpathians reflects the regional dynamics of the Carpathian-Pannonian region, whereas that of the Polish Carpathians mainly depends on crustal processes.

Abstract (italiano)

RIASSUNTO
L’evoluzione geodinamica della regione Carpato-Pannonica è stata, negli ultimi anni, oggetto di dibattito all’interno della comunità scientifica. Scopo di questa tesi è contribuire alla comprensione dei processi che hanno portato alla formazione di tale territorio. L’analisi termo cronometrica di bassa temperatura si campioni di superficie, associata ad analisi che mirino alla ricostruzione delle paleotemperature permette di definire la storia termica dei campioni, che può essere, a sua volta, utilizzata per rilevare eventuali eventi termici del passato e per ricostruire l’evoluzione temporale ed il pattern spaziale di seppellimento ed esumazione nell’area di studio.
Diversi processi sono stati proposti come rilevanti nell’evoluzione della regione in esame, quali ad esempio subduzione ti tipo A e di tipo B, roll back e break-off di slab in subduzione, risalita astenosferica, collasso gravitazionale. La ricostruzione della storia termica e di seppellimento ed esumazione sono utilizzati, in questo studio, come vincolo che permetta di supportare od escludere alcuni dei processi elencati sopra.
Tre termocronometri di bassa temperatura sono stati utilizzati per datare rocce appartenenti ai Carpazi polacchi ed ucraini; i risultati sono poi stati invertiti per modellare per ciascun campione percorsi tempo-temperatura supportati dai dati. Le storie termiche così ottenute sono poi state integrate con osservazioni sulla assetto strutturale e topografico dell’area in esame e con dati riguardanti la struttura termica della litosfera, e discussi per estrapolare vincoli sulla storia di seppellimento ed esumazione. Infine una raccolta dei dati termocronometrici riferiti all’area di studio, provenienti dal presente studio e da letteratura precedente è stata utilizzata per discuterne la consistenza con i differenti scenari geodinamici proposti per l’evoluzione Neogenica della regione Carpato-Pannonica.
I risultati indicano che i campioni della thrust belt sono stati riscaldati fino a temperature variabili, benché generalmente inferiori ai 650°C, e successivamente raffreddati tra il Miocene Inferiore e il Miocene superiore. Poiché non è stata riscontrata la presenza, nella thrust belt, di evidenze relative a perturbazioni del campo termico durante il Miocene, ne deriva che la storia termica dei campioni in esame è interamente dipendente dalla loro storia di seppellimento ed esumazione.
L’area in esame è stata suddivisa, in fase di discussione, in tre settori caratterizzati da diverse storie di seppellimento ed esumazione e da un diverso assetto strutturale, topografico e dei parametri geofisici. Le profondità di seppellimento raggiunte appaiono progressivamente più omogenee spostandosi lungo strike dal settore occidentale a quello orinetale. L’esumazione della catena è avvenuta per erosione del prisma di accrezione durante il thrusting,nel settore occidentale (23-10Ma), per erosione e denudamento tettonico durante una fase estensionale post-thrusting nel settore centrale, e per erosione del wedge durante il sollevamento post-thrusting nel settore orientale. L’insieme di questi processi esumativi e della distribuzione spaziale del seppellimento lungo la catena sono maggiormente compatibili con modelli evolutivi per la regione Carpato-Pannonica che non comprendano dinamiche legate alla presenza di slab in subduzione, come ad esempio l’ipotesi basata sul collasso gravitativo della litosfera. Infine la storia di seppellimento-esumazione dei Carpazi ucraini è legata a dinamiche litosferiche, mentre quella dei Carpazi polacchi riflette dinamiche esclusivamente crostali.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zattin, Massimiliano
Correlatore:Mazzoli, Stefano
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE DELLA TERRA
Data di deposito della tesi:31 Gennaio 2013
Anno di Pubblicazione:31 Gennaio 2013
Parole chiave (italiano / inglese):termocronologia, Carpazi; thermochronology, Carpathians
Settori scientifico-disciplinari MIUR:Area 04 - Scienze della terra > GEO/03 Geologia strutturale
Struttura di riferimento:Dipartimenti > Dipartimento di Geoscienze
Codice ID:5903
Depositato il:15 Ott 2013 10:59
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Anczkiewicz, A.A., Swierczewska, A., 2008. Thermal history and exhumation of the Polish Western Outer Carpathians: evidence from combined apatite fission track and illite-smectite data, in: Garver, J.I., Montario, M.J. (Eds.), Proceedings from the 11th International Conference on Thermochronometry Anchorage, Alaska, pp. 1–4. Cerca con Google

"Babuˇska, V.,Plomerova´ , J., ˇSı´leny´ , J.,1987.Structuralmodelofthesubcrustal lithosphere inCentralEurope. GU Transactions, ed.FuchsandFroidevaux, Geodynamics Series,vol.16.pp.239–251." Cerca con Google

Barbarand J, Carter A, Wood I, Hurford T. 2003. Compositional and structural control of fission-track annealing in apatite. Chem. Geol. 198:107–37 Cerca con Google

Barker, C.E., and Pawlewicz, M.J., 1994, Calculation of vitrinite reflectance from thermal histories and peak temperatures. A comparison of methods, in Mukhopadhyay, P.K., and Dow, W.G., eds., Vitrinite Reflectance as a Maturity Parameter: Applications and Limitations: American Chemical Society Symposium Series, v. 570, p. 216–229. Cerca con Google

Bieda, F., S. Geroch, L. Koszarski, M. Ksiazkiewicz, and K. Zytko, 1963, Stratigraphie des Karpates externes polonaises: Cerca con Google

Biuletyn Instytutu Geologicznego, v. 182, p. 5–174. Cerca con Google

Bielik, M., and A. Adam, 2006, Structure of the lithospherein the C arpathian–Pannonian region, in J. Golonka and F. J. Picha, eds., The Carpathians and their foreland: Geology and hydrocarbon resources: AAPG Memoir 84, p. 699–706." Cerca con Google

Bielik, M.,Sˇ efara, J., Kova´ c, M., Beza´ k, V. and Plasˇienka, D., 2004. The Western Carpathians-interaction of Hercynian and Alpine processes. Tectonophysics, 393, 63–86." Cerca con Google

Birkenmajer, K., 2001. Pieniny Klippen Belt. Introduction, in: 12th meeting of the Association of European Geological Societies, 10–15 September, Krakow. Field Trip Guide, pp. 127–138. Cerca con Google

Birkenmajer, K., Pécskay, Z., 2000. K-Ar Dating of the Miocene andesite intrusions, Pieniny Mts, West Carpathians, Poland: a supplement. St. Geol. Pol. 117, 7-25. Cerca con Google

Brandon MT, Roden-Tice MK, Garver JI. 1998. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, Northwest Washington State. Geol. Soc. Am. Bull. 110:985–1009. Cerca con Google

Brandon MT. 1992. Decomposition of fission-track grain-age distributions. Am. J. Sci. 292:535–64" Cerca con Google

Brandon MT. 2002. Decomposition of mixed grain-age distributions using BINOMFIT. On Track 24:13–18 Cerca con Google

Braun, J., van der Beek, P., and Batt, G., 2006, Quantitative Thermochronology: Numerical Methods for the Interpretation of Thermochronological Data: Cambridge, New York, Cambridge University Press, 258 p. Cerca con Google

Broska, I., Uher, P., 2001. The whole rock chemistry and genetic typology of the West Carpathians Variscan granites. Geol. Carp. 52, 79-90. Cerca con Google

Budzyń, B., Hetherington, C.J., Williams, M.L., Jercinovic, M.J., Dumond, G., Michalik, M., 2008. Application of electron probe microanalysis Th–U–total Pb geochronology to provenance studies of sedimentary rocks: An example from the Carpathian flysch. Chem. Geol. 254, 148–163. Cerca con Google

Budzyn, B., Konecny, P., Michalik, M., Malata, T., Poprawa, P., 2006. U–Th–total Pb dating of primary and secondary monazite formation in gneiss and granulite clasts from the Silesian Unit (Western Outer Carpathians, Poland). Geol. Soc. Am. — Abstracts with Programs 38 (7), 562. Cerca con Google

Burchart, J., 1972. Fission-track age determination of accessory apatite from the Tatra mountains, Poland. Earth Cerca con Google

Planet. Sci. Lett., 15, 418–422. Cerca con Google

Bustin, R.M., Barnes, M.A. and Barnes, W.C., 1990. Determining levels of organic diagenesis in sediments and fossil fuels. In: Diagenesis. Geoscience Canada Reprint, 4th series (I.A. McIleareathand D.W. Morrow, eds), pp. 205–226. Geological Association of Canada. Cerca con Google

Carlson WD, Donelick RA, Ketcham RA. 1999. Variability of apatite fission-track annealing kinetics. I. Experimental results. Am. Mineral. 84:1213–23. Cerca con Google

Cloetingh et al., 2010. Lithosphere tectonics and thermo-mechanical properties: An integrated modelling approach for Enhanced Geothermal Systems exploration in Europe, Earth Science Reviews, doi:10.1016/j.earscirev.2010.05.003 http://www.sciencedirect.com/scidirimg/clear.gif Vai! Cerca con Google

Crowley, K.D., Cameron, M., and Schaefer, R.L. (1991) Experimental studies of annealing etched fission tracks in fluorapatite. Geochimica et Cosmochimica Acta, 55, 1449–1465. Cerca con Google

Csontos, L.,Nagymarosy,A.,Horva´ th, F.,Kova´ c, M.,1992.Tertiary evolution of the Intra-Carpathian Area:amodel.Tectonophysics208,221–241. Cerca con Google

Dallmeyer, R. D., Németh, Z., Putiš, M., 2005. Regional tectonothermal events in Gemericum and adjacent units (Western Carpathians): Contribution by the 40Ar/39Ar dating. Slovak. Geol. Mag. 11, 2-3, 155-163. Cerca con Google

Dallmeyer, R.D., Neubauer, F., Handler, R., Fritz, H., Müller, W., Pana, D., Putiš, M., 1996. Tectonothermal evolution of the internal Alps and Carpathians: evidence from 40Ar/39Ar mineral and whole-rock data. Eclogae Geol Helv. 89: 203–227. Cerca con Google

Damon, P. E., and Kulp, J. L., 1957, Determination of radiogenic helium in zircon by stable isotope dilution technique: Am. Geophys. Union Trans., v. 38, p. 945-953 Cerca con Google

Danisˇı´k, M., Kohu´ t, M., Broska, I. and Frisch, W., 2010. Thermal evolution of the Mala´ Fatra Mountains (Central Western Carpathians): insights from zircon and apatite fission track thermochronology. Geol. Carpathica, 61, 19–27. Cerca con Google

Danisˇı´k, M., Pa´ nek, T., Maty´ sek, D., Dunkl, I. and Frisch, W., 2008. Apatite fission track and (U-Th) ⁄He dating of teschenite intrusions gives time constraints on accretionary processes and development of planation surfaces in the Outer Western Carpathians. Z. Geomorphol., 52 ⁄ 3, 273–289. Cerca con Google

Danišìk, M., Kadlec, J., Glotzbach, C., Weisheit, A., Dunkl, I., Kohùt, M., Evans, N.J., Orvošová, M., McDonald, B.J.,2011. Metamorphism, exhumation and topographic evolution in orogenic belts by multiple thermochronology: a case study from the Nìzke Tatry Mts., Western Carpathians Swiss J Geosci. 104, 285–298. Cerca con Google

"Dérerova J, Zeyen H, Bielik M and Salman K., 2006: Application of integrated geophysical modeling for determination of the continental lithospheric thermal structure in the eastern Carpathians. Tectonics 25: TC3009, doi:10.1029/2005TC001883." Cerca con Google

Dixon, W.J., 1953, Processing data for outliers: Biometrics, 9(1), 74–89. Cerca con Google

Donelick RA, Ketcham RA, CarlsonWD.1999.Variability of apatite fission-track annealing kinetics. II. Crystallographic orientation effects. Am. Mineral. 84:1224–34 Cerca con Google

Donelick, R.A., O’Sullivan, P.B., Ketcham, R.A., 2005. Apatite Fission-Track Analysis, in Reiners, P.W., Ehlers, T.A. (Eds.). Low Temperature Thermochronology: Techniques, Interpretations, and Applications: Rev. Min. Geochem. 58, 49-94. Cerca con Google

Dumitru TA (2000) Fission-Track Geochronology. In: Quaternary Geochronology: Methods and Applications. Noller JS, Sowers JM, Lettis WR (eds) Am Geophys Union Ref Shelf 4, Washington, DC, American Geophysical Union, 131-155" Cerca con Google

Dunkl, I., 2002. TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Comput. Geosc. 28/2, 3—12. Cerca con Google

Ehlers, T., Farley, K., 2003. Apatite (U–Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Plan. Sci. Let. 206, 1-14. Cerca con Google

Ehlers, T.A., Chaudhri, T., Kumar, S., Fuller, C.W., Willett, S.D., Ketcham, R.A., Brandon, M.T., Belton, D.X., Kohn, B.P., Gleadow, A.J.W., Dunai, T.J., Fu, F.Q., 2005. Computational tools for low-temperature thermochronometer interpretation. Rev.Min. Geoch. 58, 589–622. Cerca con Google

"England P, Molnar P. 1990. Surface uplift, uplift of rocks, and exhumation of rocks. Geology 18:1173–77" Cerca con Google

"Faccenna, C., Jolivet, L., Piromallo, C., Morelli, A., 2003. Subduction and the depth of convection in the Mediterranean mantle. Journal of Geophysical Research 108, 2099." Cerca con Google

"Farley (2002Farley KA. 2002. (U-Th)/He dating: techniques, calibrations, and applications. In Noble Gases in Geochemistry and Cosmochemistry, Reviews in Mineralogy and Geochemistry, 47:819–44. Chantilly, VA: Mineral. Soc. Am., Geochem. Soc." Cerca con Google

Farley, K. A., 2000. Helium diffusion from apatite: General behavior as illustrated by Durango fluorapatite. J. Geophys. Res., 105(B2), 2903–2914. Cerca con Google

Farley, K.A., 2000, (U-Th)/He dating: Techniques, calibrations, and applications: Reviews in Mineralogy and Geochemistry, v. 47, p. 819–844. Cerca con Google

Faryad, S.W., Henjes-Kunst, F., 1997. Petrological and K-Ar and 40Ar/39Ar age constraints for the tectonothermal evolution of the high-pressure Meliata unit, Western Carpathians (Slovakia). Tectonophys. 280, 141–156. Cerca con Google

Fechtig, H. and Kalbitzer, S. (1966) The diffusion of argon in potassium-bearing solids. Potassium-Argon Dating (Schaeffer, O. A. and Zähringer, J., eds.), 68–106, Springer. Cerca con Google

Fillerup, M.A.,Knapp,J.H.,Knapp,C.C.,Raileanu,V.,2010.Mantle earthquakes in the absence of subduction? Continental delamination in the Romanian Carpathians. Lithos2(5),333–340. Cerca con Google

Finger, F., Broska, I., Haunschmid, B., Hrasko, L., Kohut, M., Krenn, E., Petrik, I., Riegler, G., Uher, P., 2003. Electron-microprobe dating of monazites from Western Carpathian basement granitoids: plutonic evidence for an important Permian rifting event subsequent to Variscan crustal anatexis. Internat. J. Earth Sci. 92, 86–98. Cerca con Google

Fitzgerald, P. G., S. L. Baldwin, L. E. Webb, and P. B. O’Sullivan (2006), Interpretation of (U‐Th)/He single grain ages from slowly cooled crustal terranes: A case study from the Transantarctic Mountains of southern Victoria Land, Chem. Geol., 225, 91–120, doi:10.1016/j.chemgeo.2005.09.001. Cerca con Google

Fleischer RL, Price PB, Walker RM. 1965. Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses. J. Geophy. Res. 70:1497–502 Cerca con Google

Fleischer RL, Price PB, Walker RM. 1975. Nuclear Tracks in Solids. Berkely: Univ. Calif. Press. 605pp Cerca con Google

Fleischer, R. L. and Price, P. B. (1964a). Techniques for geological dating of minerals by chemical etching of fission fragment tracks. Geochim. Cosmochim. Acta 28, 1705)14. Cerca con Google

Flowers, R.M., Ketcham, R.A., Shuster, D.L., and Farley, K.A. (2009) Apatite (U-Th)/He thermochronometry using a radiation damage accumulation and annealing model. Geochimica et Cosmochimica Acta. Cerca con Google

Fodor, L., Horváth, F., Ustaszewski, K., Dombrádi, E., 2011. Constraints for the extrusion tectonics and back-arc extension in the Pannonian basin: a state of the art. Geophysical Research Abstracts, EGU General Assembly 2011, Vienna. 13, EGU2011-8317-2. Cerca con Google

Fowler, C. M. R. and Nisbet, E. G.: The thermal background to metamorphism II. Simple two-dimensional conductive models, Geosci. Canada, 9, 208–214, 1982. Cerca con Google

Fuchs, K., et al., 1979, The Romanian earthquake of March 4, 1977: II. Aftershocks and migration of seismic activity: Cerca con Google

Tectonophysics, v. 53, p. 225–247. Cerca con Google

Gagała, L., Vergés, J., Saura, E., Malata, T., Ringenbach, J.C., Werner, P., Krzywiec, P., 2012. Architecture and orogenic evolution of the northeastern Outer Carpathians from cross-section balancing and forward modeling. Tectonophys. 532-535, 223-241. Cerca con Google

Galbraith RF, Green PF. 1990. Estimating the component ages in a finite mixture. Nucl. Tracks Radiation Meas. 17:197–206. Cerca con Google

Galbraith, R., 1981, On statistical models for fission track counts: Mathematical Geology, v. 13, p. 471–488. Cerca con Google

Galbraith, R.F., Laslett, G.M, 1993. Statistical models for mixed fission track ages. Nucl. Tracks. 5, 3–14. Cerca con Google

Gallagher K, Brown R, Johnson C (1998) Fission track analysis and its applications to geological problems. Ann Rev Earth Planet Sci 26:519-572. Cerca con Google

Gemmer L; Houseman GA (2007) Convergence and extension driven by lithospheric gravitational instability: evolution of the Alpine-Carpathian-Pannonian system, GEOPHYS J INT, 168, pp.1276-1290. doi: 10.1111/j.1365-246X.2006.03327.x Cerca con Google

Gleadow AJW, Belton DX, Kohn BP, Brown RW (2002) Fission track dating of phosphate minerals and the Cerca con Google

thermochronology of apatite. Rev Mineral Geochem 48:579-630. Cerca con Google

Gleadow AJW, Duddy IR, Green PF, Lovering JF (1986) Confi ned fi ssion track lengths in apatite: a diagnostic Cerca con Google

tool for thermal history analysis. Contrib Mineral Petrol 94:405-415. Cerca con Google

Golonka, J., Gahagan, L., Krobicki, M., Marko, F., Oszczypko, N.& Slaczka, A., 2006. Plate Tectonic Evolution and Paleogeography of the Circum-Carpathian Region. In: Golonka, J. & Picha, F. (eds.) The Carpathians and their foreland: Geology and hydrocarbon resources: American Association of Petroleum Geologists, Memoir. 84, 11-46. Cerca con Google

Green PF, Duddy IR, Gleadow AJW, Tingate PR, Laslett GM (1986) Thermal annealing of fi ssion tracks in apatite: A qualitative description. Chem Geol 59:237-253. Cerca con Google

Green PF, Duddy IR, Gleadow AJW, Tingate PR. 1985. Fission track annealing in apatite: track length measurements and the form of the Arrhenius plot. Nucl. Tracks Radiation Meas. 10:323–28. Cerca con Google

Green PF, Duddy IR, Laslett GM, Hegarty KA, Gleadow AJW, Lovering JF. 1989. Thermal annealing of fission tracks in apatite, 4. Quantitative modeling techniques and extension to geological timescales. Chem. Geol. (Isotope Geosci. Sec.) 79:155–82. Cerca con Google

Grubbs F. E., 1950, Sample Criteria for Testing Outlying Observations, Annals of Math. Statistics, vol. 21, pp. 27-58. Cerca con Google

Grubbs F. E., 1969, Procedures for Detecting Outlying Observations in Samples, Technometrics, vol. 11, No. 1, pp. 13-14. Cerca con Google

Harangi, S., Lenkey, L., 2007. Genesis of the Neogene to Quaternary volcanism in the Carpathian-Pannonian region: Role of subduction, extension, and mantle plume. Geol. Soc. of Am. Special Papers. 418, 67-92. Cerca con Google

Harangi, Sz., Luka´cs, R., Czuppon, Gy., Szabo´ , Cs., 2002. Magma mixing in a compositionally layered magma chamber: a silicate melt inclusion study. Workshop on Volcanic Systems, Seiano, Italy, Proceedings, pp. 101– 106. Cerca con Google

Horv´ath, F., D¨ov´enyi, P., and Lacz´o, I.: Geothermal effects of magmatism and its contribution to the maturation of organic matter in sedimentary basins, in: Lecture Notes in Earth Sciences, Vol. 5, Buntebarth, G. and Stegena, L. eds., Paleogeothermics: Springer-Verlag, Berlin/Heidelberg, 173–183, 1986. Cerca con Google

Horva´ th, F.,Bada,G.,Szafia´ n, P.,Tari,G.,A´ da´m, A.,Cloetingh,S.,2006. Formation and deformation of the Pannonian Basin: constraints from observational data. In: Gee,D.,Stephensen,R.(Eds.),European Lithosphere Dynamics. Geological Society ofLondonMemoirs,vol.32.GeologicalSocietyofLondon,pp.191–206. Cerca con Google

Horváth, F., 1993. Towards a mechanical model for the formation of the Pannonian basin, Tectonophys., 226, 333 – 357. Cerca con Google

Horvath, F., and S. Cloetingh, 1996, Stress-induced late-stage subsidence anomalies in the Pannonian Basin: Tectonophysics, v. 266, p. 287–300. Cerca con Google

Hourigan, J.K, Reiners, P.W, Brandon, M.T, 2005. U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry. Geoch. Cosm. Acta, 69, 3349–3365. Cerca con Google

Houseman,G.A.,Gemmer,L.,2007.Intra-orogenic extension driven by gravitational instability: Carpathian–Pannonian orogeny.Geology35(12),1135–1138. Cerca con Google

Hraško, L., Broska, I., Finger, F., 2002. Permian Granitic magmatism and disintegration of the Lower Paleozoic basement in the SW veporicum near Klenovec (Western Carpathians), in Michalik, J., Šimon, L., Vozár, J. (Eds), Proceedings of XVII. Congress of Carpathian-Balkan Geological Association Bratislava, September 1st - 4th. 53. Cerca con Google

Huismans, R.S., Podladchikov, Y.Y., and Cloething, S., 2001. Dynamic modelling of the transition from passive to active rifting, application to the Pannonian Basin: Tectonics, v. 20, p. 1021–1039. Cerca con Google

Hurai, V., Marko, F., Tokarski, A.K., Świerczewska, A., Kotulová, J., Biroň A., 2006. Fluid inclusion evidence for deep burial of the Tertiary accretionary wedge of the Carpathians. Terra Nova. 18, 440-446. Cerca con Google

Hurford AJ, Green PF (1983) The zeta age calibration of fi ssion-track dating. Isotope Geoscience 1:285-317 Cerca con Google

Janák, M., Plašienka, D., Frey, M., Cosca, M., Schmidt, S., Lupták, B., Méres. Š., 2001. Cretaceous evolution of a metamorphic core complex, the Veporic unit, Western Carpathians (Slovakia) P-T conditions and in situ 40Ar/39Ar UV laser probe dating of metapelites. J. Metamorph. Geol. 19, 197–216. Cerca con Google

Janik, T., Grad, M., Guterch, A., Vozár, J., Bielik, M., Vozárova, A., Hegedüs, E., Kovác, C.A., Kovác, I., Keller, G.R. and Cerca con Google

CELEBRATION 2000 Working Group, 2011. Crustal structure of the Western Carpathians and Pannonian Basin: Cerca con Google

Seismic models from CELEBRATION 2000 data and geological implications. Journal of Geodynamics, v. 52, Cerca con Google

p. 97-113. Cerca con Google

Jankowski, L. (2007). Chaotic complexes in Gorlice region (Polish outer Carpathians), Biuletyn Państwowego Instytutu Geologicznego,Vol. 426: 27-52. Cerca con Google

Jankowski, L., Kopciowski, R., Rylko, W., 2004. Geological map of the Outer Carpathians: borderlands of Poland, Ukraine and Slovakia, 1:200.000. Pol. Geol. Inst., Warszawa. Cerca con Google

Jiricek, R., 1979. Tectonic development of the Carpathian arc in the Oligocene and Neogene, in Machel, M. (Ed.), Tectonic Profiles through the Western Carpathians: Bratislava, Geological Institute of Dionýz Stúr, pp. 205–214. Cerca con Google

Ketcham R. A., Carter A. C., Donelick R. A., Barbarand J., Hurford A. J.,2007. Improved modeling of fission-track annealing in apatite. Am. Mineral. 92, 799–810. Cerca con Google

Ketcham RA, Donelick RA, Carlson WD. 1999. Variability of apatite fission-track annealing kinetics. III. Extrapolation to geological time scales. Am. Mineral. 84:1235–55 Cerca con Google

Ketcham, R. A., 2005, Forward and inverse modelling of low‐temperature thermochronology data. Rev. Mineral. Geochem., 58, 275–314. Cerca con Google

Knapp, J.H.,Knapp,C.C.,Raileanu,V.,Matenco, L.,Mocanu,V.,Dinu,C.,2005. Crustal constraints on the origin of mantle seismicity in the Vrancea Zone, Romania: the case for active continental lithospheric delamination. Tectono- physics 410,311–323. Cerca con Google

Kohút, M., 2002. The Hercynian Granitic Rocks of the Western Carpathians in the Frame of European Hercynides, in Michalik, J., Šimon, L., Vozár, J. (Eds), Proceedings of XVII. Congress of Carpathian-Balkan Geological Association Bratislava, September 1st - 4th. 53. Cerca con Google

Konečny, V., Kováč, M., Lexa, J., Šefara, J., 2002. Neogene evolution of the Carpatho-Pannonian region: an interplay of subduction and back-arc diapiric uprise in the mantle. EGU Stephan Mueller Spec. Pub. Series. 1, 105–123. Cerca con Google

Koszarski L., and A. Slaczka, 1976, The Outer (Flysch) Carpathians: The Cretaceous, in S. Cieslinski, ed., Geology of Poland, v. I, Stratigraphy part 2: Instytut Geologiczny, Warszawa, p. 495–498, 657–679, 740–748. Cerca con Google

Kotarba, M. J. & Koltun, Y. V., 2006. The origin and habitat of hydrocarbons of the Polish and Ukrainian Parts of the Carpathian Province. In: Golonka, J. & Picha, F. J. (eds), The Carpathians and their fore land: geology and hydrocarbon resources. American Association of Petroleum Geologists, Memoir, 84: 395–442. Cerca con Google

Kova´ cs, I., Falus, G., Stuart, G., Hidas, K., Szabo´ , C., Flower, M.F.J., Heged¨ us, E., Posgay, K., Zilahi-Sebess,L.,2012.Seismic anisotropy and deformation patterns in upper mantle xenoliths from the central Carpathian–Pannonian region: asthenospheric flow as a driving force for Cenozoic extension and extrusion? Tectonophysics514–517,168–179. Cerca con Google

Kova´cs, I., Szabo´, C.,2008.Middle Miocene volcanism in the vicinity of the Middle Hungarian Zone: evidence for an inherited enriched mantle source. J.Geody- nam. 45,1–17. Cerca con Google

Kovac, M., Marko, F., Nemcok, M., 1990. Neogene history of intramontane basins in the western part of the Carpathians. Riv. It. Paleont. Strat. 96, 381–404. Cerca con Google

Ksiazkiewicz, M., 1977, Tectonics of the Carpathians, in W. Pozaryski, ed., Geology of Poland, Tectonics: Warsaw, Poland, Wydawnictwa Geologiczne, v. 4, p. 476–604. Cerca con Google

Ksiazkiewicz, M., ed., 1962, Geological atlas of Poland: Stratigraphic and facial problems: Warsaw, Poland, Cerca con Google

Instytut Geologiczny, Wydawnictwa Geologiczne, 24 p. Cerca con Google

Kusiak, M.A., Paszkowski, M., Dziubinska, B., 2004. The First Precambrian Detrital Monazites from the Polish Eastern Carpathian, Appl. Min. 1, 141-144. Cerca con Google

LaslettGM,Green PF, Duddy IR, Gleadow AJW. 1987. Thermal annealing of fission tracks in apatite 2. A quantitative analysis. Chem. Geol. (Isotope Geosci. Sect.) 65:1– 13 Cerca con Google

Lenkey, L., Dovenyi, P., Horva´th, F., Cloetingh, S.A.P.L., 2002. Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephen Mueller Special PublicationSeries3,pp.29–41. Cerca con Google

Lenkey, L.: Geothermics of the Pannonian basin and its bearing on the tectonics of basin evolution, PhD thesis, Vrije Universiteit, Amsterdam, 215pp, 1999. Cerca con Google

Linzer, H.G., 1996. Kinematics of retreating subduction along the Carpathian arc, Romania. Geol. 24,167 I70. Cerca con Google

Lorinczi, P.,Houseman,G.A.,2009.Lithospheric gravitational instability beneath the Southeast Carpathians. Tectonophysics474,322–336. Cerca con Google

Mahel, M., et al., 1968, Regional geology of Czechoslovakie: Part II. The West Carpathians: Praha, Geological Survey Cerca con Google

of Czechoslovakia, p. 1–723. Cerca con Google

Maluski, P., Rajlich, P., Matte, P., 1993. 40Ar=39Ar dating of the Inner Carpathian Variscan basement and Alpine mylonitic overprinting. Tectonophys. 223, 313–337. Cerca con Google

Matenco, L., Bertotti, G., 2000.Tertiary tectonic evolution of the external East Carpathians (Romania).Tectonophys. 316, 255–286. Cerca con Google

Mazzoli, S., Jankowski, L., Szaniawski, R. and Zattin, M., 2010. Low-T thermochronometric evidence for post-thrusting (<11 Ma) exhumation in the Western Outer Carpathians, Poland. Compte Rendue Geosci. 342, 162-169. Cerca con Google

McKenzie, D.P.,1970.Plate tectonics of the Mediterranean region.Nature226, 239–243. Cerca con Google

Meulenkamp, J. E., M. Kovac, and I. Cicha, 1996, On late Oligocene to Pliocene depocenter migrations and the evolution of Carpathian–Pannonian system: Tectonophysics, v. 266, p. 301–317. Cerca con Google

Michalik, M., Budzyń, B., Gehrels, G., 2006. Cadomian granitoid clasts derived from the Silesian Ridge (results of the study of gneiss pebbles from Gródek at the Jezioro Rożnowskie Lake). Min. Pol. — Special Papers. 29, 168–171. Cerca con Google

Murray, K. E.; Orme, D. A.; Reiners, P. W., 2011. Apatite (U-Th)/He Date Dispersion Due to Secondary Grain Boundary Phases: An Example from the Henry Mountains, Utah. American Geophysical Union, Fall Meeting 2011, abstract #V23A-2556 Cerca con Google

Naeser CW (1967) The use of apatite and sphene for fi ssion track age determinations. Bull Geol Soc Am 78: Cerca con Google

1523-1526 Cerca con Google

Naeser ND, McCulloh TH (eds) (1989) Thermal History of Sedimentary Basins: Methods and Case Histories, Cerca con Google

Springer-Verlag, Berlin Cerca con Google

Nemčok, M., Pospìšil, L., Hrušecky, I., Zsìros, T., 2006. Subduction in the remnant Carpathian Flysch Basin, in Golonka, J., Picha F. J. (Eds.), The Carpathians and their foreland: Geology and hydrocarbon resources. AAPG Memoir, pp. 767 – 785. Cerca con Google

Nemčok, M., Pospíšil, L., Lexa, J., Donelick, R.A., 1998. Tertiary subduction and slab break-off model of the Carpathian–Pannonian region. Tectonophys. 295, 307-340. Cerca con Google

Németh Z., Grecula P., Gazdačko Ľ., Kobulský, J., Hraško, L’.,2011. Gemericum (Inner W. Carpathians): Variscan and Alpine tectonic overprint expressed in a new geological map of the Spiš-Gemer Ore Mts. at a scale 1 : 50 000. Acta of the Otevřený kongres, Bratislav, 21-25 September 2011. Cerca con Google

Németh, Z., Putiš, M., 2002. Some topics of Geodynamics evolution of Inner Western Carpathian. Proceedings of XVII Congress of Carpathian-Balkan Geological Association Bratislava, September 1st - 4th 2002. 53 Cerca con Google

Ondrejka, M., Uher, P.,2001. Composition and Origin of Triassic Potassium-Rich. Rhyolites of the Silicicum Superunit, Western Carpathians, Central Slovakia. GeoLines.13 98-99. Cerca con Google

Orme D.A., Reiners P. W., 2010; Effects of External Parent Nuclides on Apatite Helium Dates: Sources and Solutions. Proceedings og the Thermo 2010 congress. Glasgow Cerca con Google

Oszczypko, N., Krzywiec, P., Lemberger, M., Stefaniuk, M., Pietsch, K. and Trygar, H., 1998. Integrated geological-geophysical interpretation of the Rzeszow-Smilno profile (Western Carpathians). Carpathian–Balkan Geological Association XVI Congress, Vienna, Abstracts. 446. Cerca con Google

Oszczypko, N., Krzywiec, P., Lemberger, M., Stefaniuk, M., Pietsch, K. and Trygar, H., 1998. Integrated geological geophysical interpretation of the Rzeszow-Smilno profile (Western Carpathians). Carpathian–Balkan Geological Association XVI Congress, 30 August - 2 September, Vienna, Abstracts, 446. Cerca con Google

Pécskay, Z., Lexa, J., Szakács, A., Seghedi, I., Balogh, K., Konečny, V., Zelenka, T., Kovacs, M., Poka, T., Fulop, A.,Márton, E., Panaiotu, C. Cvetkovic, V., 2006. Geochronology of Neogene magmatism in the Carpathian arc and intra-Carpathian area. Geol. Carpathica, 57, 511–530. Cerca con Google

Pharaoh, T.C., 1999. Paleozoic terranes and their lithospheric boundaries within theTrans-European Suture Zone (TESZ): a review, Tectonophysics, 314, 17–41. Cerca con Google

Piromallo, C.,Morelli,A.,2003.P wave tomography of the mantle under the Alpine-Mediterranean area.J.Geophys.Res.108(B2),2065,http://dx.doi.org/ 10.1029/2002JB001757. Vai! Cerca con Google

Plašienka, D., Broska, I., Kissová, D., Dunkl, I., 2007. Zircon fission-track dating of granites from the Vepor–Gemer Belt (Western Carpathians): constraints for the Early Alpine exhumation History. J. Geosci. 52, 113–123. Cerca con Google

Plašienka, D., Grecula, P., Putiš, M., Kováč, M., Hovorka, D., 1997. Evolution and structure of the Western Carpathians: an overview. in: Grecula, P., Hovorka, D., Putiš, M. (Eds), Geological evolution of the Western Carpathians. Mineralnia Slov., pp1-24. Cerca con Google

Pollack, H. N., Hurter, S. J., and Johnson, J. R.: Heat loss from the Earth’s interior: analysis of the global data set, Reviews of Geophysics, 31, 267–280, 1993. Cerca con Google

Poller, U., Janák, M., Kohút, M., Todt,W., 2000. Early Variscan magmatism in theWestern Carpathians: U–Pb zircon data from granitoids and orthogneisses of the Tatra Mountains (Slovakia). International Journal of Earth Sciences 89, 336–349. Cerca con Google

Poprawa, P., Kusiak, M.A.,Malata, T., Paszkowski, M., Pecskay, Z., Skulich, J., 2005. Th-U-Pb chemical dating of monazite and K/Ar dating of mica combined: preliminary study of “exotic” crystalline clasts from the Western Outer Carpathian flysch (Poland). Min. Soc. Pol., Special Papers. 25 345-351. Cerca con Google

Poprawa, P., Malata, T., Pécskay, Z., Banas, M., Skulich, J., Paszkowski, M., Kusiak, M.A., 2004. Geochronology of crystalline basement of the Western Outer Carpathians’ sediment source areas – preliminary data. Min. Soc. Pol. – Special Papers, 24: 329-332. Cerca con Google

Poprawa, P., Malata, T., Pécskay, Z., Kusiak, M.A., Banaś, M., Paszkowski, M., 2006. Geochronology of the crystalline basement of the Western Outer Carpathians' source areas — constraints from the K/Ar dating of mica and Th–U–Pb chemical dating of monazite from the crystalline ‘exotic’ pebbles. Geolines 20, 110–112. Cerca con Google

Poprawa, P.,Malata, T.,Oszczypko, N., 2002. Tectonic evolution of the Polish part of Outer Carpathian’s sedimentary basins – constraints from subsidence analysis. Prz. Geol. 50, 1092-1108. Cerca con Google

Pospišil, L., Adám A., Bimka, J., Bodlak, P., Bodoky, T., Dövényi, P., Granser, H., Hegedüs, E., Joò, I., Kendzera, A., Lenkey, L., Nemčok, M., Posgay, k., Pylypyshyn, B., Sedlák, J., Stanley, W.D., Starodub, G., Szalaiová, V., Šály, B., Šutora, A., Várga, G., Zsìros, D., 2006. Crustal and lithospheric structure of the Carpathian –Pannonian region — A geophysical perspective: Regional geophysical data on the Carpathian – Pannonian lithosphere, in Golonka, J., Picha F.J. (Eds), The Carpathians and their foreland: Geology and hydrocarbon resources: AAPG Memoir 84, pp. 651 – 697. Cerca con Google

Putiš, M., Sergeev, S., Ondrejka, M., Larionov, A., Siman, P., Spišiak, J., Uher, P., Paderin, I., 2008. Cambrian–Ordovician metaigneous rocks associated with Cadomian fragments in the West-Carpathian basement dated by SHRIMP on zircons: a record from the Gondwana active margin setting. Geol. Carp. 59, 1. Cerca con Google

Reiners PW, Campbell IH, Nicolescu S, Allen CM, Hourigan JK, et al. 2005a. (U-Th)/(He-Pb) double dating of detrital zircons. Am. J. Sci. 305:259–311 Cerca con Google

Reiners PW, Ehlers TA, eds. 2005. Low-Temperature Thermochronology: Techniques, Interpretations, Applications. Reviews in Mineralogy and Geochemistry, Vol. 58. Chantilly, VA: Mineral. Soc. Am., Geochem. Soc. 622pp. Cerca con Google

Reiners, P.W., and Farley, K.A., 2001, Influence of crystal size on apatite (U-Th)/He thermochronology: An example from the Bighorn Mountains, Wyoming, Earth and Planetary Science Letters, v. 188, p. 413-420. Cerca con Google

Reiners, P.W., Brandon, M.T., 2006, Using Thermochronology to Understand Orogenic Erosion, Ann. Rev. Earth Plan. Sci., v. 34, p. 419-466. Cerca con Google

Reiners, P.W., Spell, T.L., Nicolescu, S., Zanetti, K.A., 2004. Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating. Geochim. Cosmochim. Acta. 68:1857–87 Cerca con Google

Reiners, P.W., Thomson, S.N., McPhillips, D., Donelick, R.A., and Roering, J.J., 2007, Wildfire thermochronology and the fate and transport of apatite in hillslope and fluvial environments, Journal of Geophysical Research-Earth Surface, v. 112, F04001, doi:10.1029/2007JF000759. Cerca con Google

Ren Y; Stuart GW; Houseman GA; Dando B; Ionescu C; Hegedus E; Radovanovic S; Shen Y (2012) Upper mantle structures beneath the Carpathian-Pannonian region: Implications for the geodynamics of continental collision, Earth and Planetary Science Letters, 349-350, pp.139-152. doi: 10.1016/j.epsl.2012.06.037 Cerca con Google

Royden, L. H., F. Horvath, and B. C. Burchfiel, 1982, Transform faulting, extension and subduction in the Carpathian– Cerca con Google

Pannonian region: Geological Society of America Bulletin, v. 93, p. 717–725. Cerca con Google

Schiattarella M., Di Leo P., Beneduce P., Giano S.I. & Martino C. 2006: Tectonically driven exhumation of a young orogen: an example from southern Apennines, Italy. In: Willett S.D., Hovius N., Brandon M.T. & Fisher D. (Eds.): Tectonics, climate, and landscape evolution. Geol. Soc. Amer., Spec. Pap. 398, Penrose Conference Series, 371—385. Cerca con Google

Seghedi, I., Downesb, H., Szakacsa, D., Masonc, P.R.D., Thirlwalld, M.F., Rosue, E.,Pecskayf, Z., Marton, E., Panaiotuh, C., 2004. Neogene–Quaternary magmatism and geodynamics in the Carpathian–Pannonian region: a synthesis. Lithos. 72, 117–146. Cerca con Google

Shuster D.L. and Farley, K.A., (2009) The influence of artificial radiation damage and thermal annealing on helium diffusion kinetics in apatite, Geochimica Et Cosmochimica Acta 73(1),6183-196 Cerca con Google

Shuster, D.L., Flowers, R.M., and Farley, K.A., 2006, The influence of natural radiation damage on helium diffusion kinetics in apatite: Earth and Planetary Science Letters, v. 249, p. 148–161, doi: 10.1016/j.epsl.2006.07.028. Cerca con Google

Slaczka, A., S. Kruglow, J. Golonka, N. Oszczypko, and I. Popadyuk, 2006, Geology and hydrocarbon resources of the Outer Carpathians, Poland, Slovakia, and Ukraine: The general geology of the Outer Carpathians, Poland, Slovakia, and Ukraine, in J. Golonka and F. J. Picha, eds., The Carpathians and their foreland: Geology and hydrocarbon resources: AAPG Memoir 84, p. 221–258. Cerca con Google

Sperner, B., Ratschbacher, L., Nemčok, M., 2002. Interplay between subduction retreat and lateral extrusion: tectonics of the Western Carpathians. Tectonics, 21, 1051. Cerca con Google

Sperner, B., Lorentz, F., Bonjer, K.P., Hettel, S., Muller, B., Wenzel, F., 2001. Slab break-off—abrupt cut or gradual detachment? New insights from the Vrancea region (SE-Carpathians, Romania).TerraNova13,172–179. Cerca con Google

Steiger RH, Jäger E (1977) Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359-362 Cerca con Google

Suranyi, G., Konya, B., and Lenkey, L.: Concentrations of natural radioactive isotopes in Neogene volcanic rocks from the Pannonian basin, EGS 2002, XXVII General Assembly, Nice, France, 21–26 April 2002, SE2.10-1FR5P-022, 2002. Cerca con Google

Swierczewska, A., 2005. The interplay of the thermal and structural histories of the Magura Nappe (Outer Carpathians) in Poland and Slovakia. Min. Pol. 36, 91-144. Cerca con Google

Syrek, M., 2009. Stopień uwęglenia rozproszonego materiału organicznego w jednostce magurskiej i strefie okiennej (Karpaty Zewnętrzne). Materiały Krakowskiej Konferencji Młodych Uczonych 2009, Kraków, 17–19 września 2009, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, 195–202. Cerca con Google

Tagami T, O’Sullivan PB (2005) Fundamentals of fi ssion-track thermochronology. Rev Mineral Geochem 58: Cerca con Google

19-47 Cerca con Google

Tasarova, A., Afonso, J.C., Bielik, M., Gotze, H.J., Hok, J., 2009. The lithospheric structure of the Western Carpathian–Pannonian Basin region based on the CELEBRATION 2000 seismic experiment and gravity modeling. Tectonophysics. 475, 454–469 Cerca con Google

Tesauro, M.; Kaban, M. K.; Cloetingh, S. (2009): A new thermal and rheological model of the European lithosphere. Tectonophysics, 476, 3-4, 478-495. Cerca con Google

Thomson, S.N., Brandon, M.T., Reiners, P.W., Zattin, M., Isaacson, P.J. & Balestrieri, M.L. (2010). Thermochronologic evidence for orogen-parallel variability in wedge kinematics during extending convergent orogenesis of the northern Apennines, Italy, Geological Society of America, Bulletin, 122, p. 1160-1179, doi: 10.1130/B26573.1 Cerca con Google

Tokarski A., Swierczewska, A., Zuchiewicz, W., Márton, E., Hurai, V., Anczkiewicz, A., Michalik, M., Szeliga, W., Rauch-Wlodarska, M., 2006.Conference Excursion 1: Structural Development of the Magura Nappe (Outer Carpathians): From Subduction to Collapse. GeoLines. 20, 145-164 Cerca con Google

Uher, P., Broska, I., Ondrejka, M., 2002. Permian to Triassic granitic and Rhyolitic magmatism in the Western Carpathians: composition, evolution and origin, in Michalik, J., Šimon, L., Vozár, J. (Eds), Proceedings of XVII. Congress of Carpathian-Balkan Geological Association Bratislava, September 1st - 4th. 53. Cerca con Google

Ustaszewski, K., Schmid, S., Fugenschuh, B., Tischler, M., Kissling, E., Spakman, W., 2008. A map-view restoration of the Alpine–Carpathian–Dinaridic system for the Early MioceneSwiss.J.Geocsci.101,273–294. Cerca con Google

Van den haute, P., De Corte, F., Jonckheere, R., Bellemans, F. (1998). The parameters that govern the accuracy of fission-track age determinations: a re-appraisal. In: Van den haute, P., De Corte, F. (Eds) Advances in Fission-Track Geochronology. Kluwer Academic Publishers, Dordrecht, 33-46. Cerca con Google

Vermeesch, P (2012) On the visualisation of detrital age distributions. Chemical Geology , 312–313 10.1016/j.chemgeo.2012.04.021. Cerca con Google

Vermeesch, P., 2008. Three new ways to calculate average (U-Th)/He ages. Chemical Geology 249, 339–347. Cerca con Google

Vermeesch, P., Seward, D., Latkoczy, C., Wipf, M., Guenther, D., Baur, H.,2007. Alpha-emitting mineral inclusions in apatite, their effect on (U–Th)/He ages, and how to reduce it. Geoch. Cosm. Acta. 71, 1737–1746. Cerca con Google

Vityk M. O., Bodnar R. J. and Dudok I. V. (1996) — Fluid inclusions in “Marmarosh Diamonds”: evidence for tectonic history of the folded Carpathian Mts, Ukraine. Tectonophysics, 255: 163–174. Cerca con Google

Wagner GA (1968) Fission track dating of apatites. Earth Planet Sci Lett 4:411-415 Cerca con Google

Wagner GA (1969) Spuren der spontanen Kernspaltung des 238Urans als Mittel zur Datierung von Apatiten und ein Beitrag zur Geochronologie des Odenwaldes. N Jahrb Mineral Abh 110:252-286 Cerca con Google

Wagner GA, van den Haute P. 1992. Fission-Track Dating. Dordrecht: Kluwer Acad. Publ. 285pp. Cerca con Google

Wolf, R.A., Farley, K.A., Kass, D.M. Modeling of the temperature sensitivity of the apatite _ U–Th/ rHe thermochronometer DiÍision of Geological and Planetary Sciences, California Institute of Technology, MS 170-25, Pasadena, CA 91125, USA Received 13 August 1997; accepted 30 January 1998 Cerca con Google

Wortel, M.,Spakman,W.,2000.Subduction and slab detachment in the Mediterranean Carpathian region. Science290,1910–1917. Cerca con Google

Zattin, M., Andreucci, B., Jankowski L., Mazzoli S., Szaniawski, R.,2011. Neogene exhumation in the Outer Western Carpathians. Terra Nova. 23, 283–291. Cerca con Google

Zeyen, H., J. Dererova´, and M. Bielik (2002), Determination of the continental lithosphere thermal structure in the western Carpathians: Integrated modelling of surface heat flow, gravity anomalies and topography, Phys. Earth Planet. Inter., 134, 89 – 104. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record