Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Fontana, Cristiano Lino (2013) An Imaging Camera for Biomedical Application Based on Compton Scattering of Gamma Rays. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di Dottorato di Cristiano Lino Fontana) - Versione sottomessa
Available under License Creative Commons Attribution.

24Mb

Abstract (inglese)

In this thesis we present the R&D of a Compton Camera (CC) for small object imaging.
The CC concept requires two detectors to obtain the incoming direction of the gamma ray.
This approach, sometimes named ``Electronic Collimation,'' differs from the usual technique that employs collimators for physically selecting gamma-rays of a given direction.
This solution offers the advantage of much greater sensitivity and hence smaller doses.
We propose a novel design, which uses two similar Position Sensitive Photomultipliers (Hamamatsu 8500) coupled to different scintillators (one plastic and one inorganic).
Assets of just one kind of detector are the simplicity of design and operation.
Along the experimental apparatus we present our original algorithm for image reconstruction, that was tested with a Geant4 Monte Carlo code.
Employed on experimental data, we obtained a resolution of 6 mm, which is suitable for small animal imaging (such as rats or rabbits) and for small human organs imaging (thyroid and prostate).
The prototype was designed to be a compact modular element that can be extended placing more similar detectors side by side

Abstract (italiano)

In questa tesi presentiamo il lavoro di ricerca e sviluppo di una Camera Compton (CC) per imaging di piccoli oggetti.
Le CC richiedono l'utilizzo di due rivelatori per ottenere la direzione d'incidenza di raggi gamma.
Questo approccio, talvolta chiamato ``Collimazione Elettronica,'' si differenzia dalle tecniche usuali che utilizzano collimatori per selezionare fisicamente i raggi gamma di una certa direzione.
Questa soluzione offre il vantaggio di una sensibilità maggiore e quindi di dosi inferiori.
Proponiamo qui un nuovo sistema, che usa due similari Fotomoltiplicatori sensibili alla posizione (Hamamatsu 8500) accoppiati a differenti scintillatori (uno in plastica ed uno inorganico).
Avere un solo tipo di rivelatore comporta una maggiore semplicità di progettazione ed utilizzo.
Assieme all'apparato sperimentale, presentiamo il nostro algoritmo originale per la ricostruzione d'immagini, che è stato testato con un codice Monte Carlo scritto con Geant4.
Applicando l'algoritmo ai dati sperimentali, abbiamo ottenuto una risoluzione di 6 mm, che è adatta all'imaging di piccoli animali (quali ratti e conigli) e per piccoli organi umani (tiroide e prostata).
Il prototipo è stato sviluppato per per essere un elemento modulare compatto, che può essere esteso affiancando altri rivelatori simili

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Rossi, Paolo
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > FISICA
Data di deposito della tesi:31 Gennaio 2013
Anno di Pubblicazione:31 Gennaio 2013
Parole chiave (italiano / inglese):SPECT, Compont Camera, Nuclear Medicine, Molecular Imaging, Gamma Camera, Hamamatsu 8500, H8500, Compton Interaction
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/04 Fisica nucleare e subnucleare
Area 02 - Scienze fisiche > FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica e Astronomia "Galileo Galilei"
Codice ID:5908
Depositato il:15 Ott 2013 09:46
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

74HC4538, 74HCT4538; Dual retriggerable precision monostable multivibrator. Datasheet (cit. on p. 53). Cerca con Google

M. Allen-Auerbach et al. Diagnostic Nuclear Medicine. Ed. by C. Schiepers. Springer, 2006 (cit. on p. 3). Cerca con Google

S. Agostinelli et al. “Geant4—A simulation toolkit”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 506.3 (2003), pp. 250 –303. issn: 0168-9002. doi: 10.1016/S0168-9002(03)01368-8. url: http://www.sciencedirect.com/science/article/pii/S0168900203013688 (cit. on p. 39). Vai! Cerca con Google

J. Allison et al. “Geant4 developments and applications”. In: Nuclear Science, IEEE Transactions on 53.1 (2006), pp. 270 –278. issn: 0018-9499. doi: 10.1109/TNS.2006.869826 (cit. on p. 39). Cerca con Google

M.J. Berger et al. ESTAR, PSTAR, and ASTAR: Computer Programs for Calculating Stopping-Power and Range Tables for Electrons, Protons, and Helium Ions (version 1.2.3). National Institute of Standards and Technology, Gaithersburg, MD (USA). 2005. url: http://physics.nist.gov/Star[2013-01-05] (cit. on p. 15). Vai! Cerca con Google

C. J. Borkowski and M. K. Kopp. “Some Applications and Properties of One- and Two-Dimensional Position-Sensitive Proportional Counters”. In: IEEE Trans. Nucl. Sci. 17.3 (1970), pp. 340–349 (cit. on p. 45). Cerca con Google

R. Brechner and M. Sigh. “Iterative Reconstruction of Electronically Collimated SPECT Images”. In: IEEE Trans. Nucl. Sci. 37.3 (1990), pp. 1328–1332 (cit. on p. 21). Cerca con Google

M. Candilera. Algebra Lineare e Geometria. Edizioni Libreria Progetto, 1996 (cit. on pp. 8, 25). Cerca con Google

Valentino Orsolini Cencelli, Francesco de Notaristefani, and Enrico D’Abramo. “High-speed readout for the H8500 flat panel PSPMT”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 571.1–2 (2007). Proceedings of the 1st International Conference on Molecular Imaging Technology, EuroMedIm 2006, pp. 389 –391. issn: 0168-9002. doi: 10.1016/j.nima.2006.10.116. url: http://www.sciencedirect.com/science/article/pii/S0168900206019140 (cit. on p. 19). Vai! Cerca con Google

Arthur H. Compton. “A Quantum Theory of the Scattering of X-Rays by Light Elements”. In: Phys. Rev. 21.5 (1923), pp. 483–502 (cit. on p. 21). Cerca con Google

Geoff Dougherty. Digital Image Processing for Medical Applications. Cambridge University Press, 2009 (cit. on p. 3). Cerca con Google

D. Doria and M. Singh. “COmparison od Reconstruction Algorithms for an Electronically Collimated Gamma Camera”. In: IEEE Trans. Nucl. Sci. NS-29.1 (1982), pp. 447–451 (cit. on p. 21). Cerca con Google

G. D. Domenico and G. Zavattini. Technetium-99m radiopharmaceuticals: Status and trends. IAEA Radioisotopes and Radiopharmaceuticals Series 1. IAEA, 2009 (cit. on p. 4). Cerca con Google

S.D. Figueroa et al. “Performance characteristics of an integrated small animal SPECT/CT unit”. In: Nuclear Science Symposium Conference Record, 2005 IEEE. Vol. 3. 2005, 5 pp. doi: 10.1109/NSSMIC.2005.1596659 (cit. on p. 19). Cerca con Google

C. L. Fontana et al. “Tomographic back-projection algorithm for “incomplete” Compton x-rays detector”. In: AIP Conference Proceedings 1336 (2011), p. 197 (cit. on pp. 13, 21, 109). Cerca con Google

Chris Guy and Dominic ffytche. An Introduction to The Principles of Medical Imaging. Imperial College Press, 2005 (cit. on p. 2). Cerca con Google

A. del Guerra. Ionizing Radiation Detectors for Medical Imaging. World Scientific, 2004 (cit. on p. 7). Cerca con Google

Flat panel type multianode photomultiplier tube assembly H10966 series. Datasheet (cit. on p. 19). Cerca con Google

Photomultiplier Tubes, Basics and Applications. Tech. rep. Hamamatsu Photonics, 2006 (cit. on p. 7). Cerca con Google

Paul Horowitz and Winfield Hill. The Art of Electronics. Cambridge University Press, 1989 (cit. on p. 51). Cerca con Google

T. Hebert, R. Leahy, and M. Singh. “Three Dimensional MaximumLikelihood Reconstruction for an Electronically Collimated SinglePhoton-Emission Imaging System”. In: Optical Society of America 7.7 (1990), pp. 1305–1313 (cit. on p. 21). Cerca con Google

AN-1515 A Comprehensive Study of the Howland Current Pump. Tech. rep. SNOA474. Texas Instruments, 2008 (cit. on p. 62). Cerca con Google

A.V. Hristova et al. “Compton edge energy calibration of organic detectors”. In: International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes 41.9 (1990), pp. 887 –889. issn: 0883-2889. doi: 10.1016/0883-2889(90)90068-R. url: http://www.sciencedirect.com/science/article/pii/088328899090068R (cit. on p. 82). Vai! Cerca con Google

Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools for Python. 2001–. url: http://www.scipy.org/ (cit. on p. 77). Vai! Cerca con Google

Jaan Kiusalaas. Numerical Methods in Engineering with Python. 2nd edition. Ca, 2010 (cit. on p. 77). Cerca con Google

Oskar Klein and Yoshio Nishina. “Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac”. In: Zeitschrift für Physik 52.11-12 (1928), pp. 853–868 (cit. on p. 21). Cerca con Google

G. F. Knoll. Radiation Detection and Measurement. John Wiley & Sons, 2010 (cit. on p. 4). Cerca con Google

H. H. Ku. “Notes on the use of propagation of error formulas”. In: J. Res. Nat. Bur. Stand. Sec. C: Eng. Inst. 70C.4 (1966), p. 263 (cit. on p. 24). Cerca con Google

LabVIEW, Laboratory Virtual Instrumentation Engineering Workbench. url: http://www.ni.com/labview/ (cit. on p. 71). Vai! Cerca con Google

LM7171 Very High Speed, High Output Current, Voltage Feedback Amplifier. Datasheet (cit. on pp. 62, 63). Cerca con Google

E.V.D van Loef et al. “Scintillation properties of LaBr3:Ce3+ crystals: fast, efficient and high-energy-resolution scintillators”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 486.1–2 (2002). Proceedings of the 6th International Conference on Inorganic Scin tillators and their Use in Scientific and Industrial Applications, pp. 254 –258. issn: 0168-9002. doi: 10.1016/S0168-9002(02)00712-X. url: http://www.sciencedirect.com/science/article/pii/S016890020200712X (cit. Vai! Cerca con Google

on p. 17). Cerca con Google

C. Leroy and P. G. Rancoita. Principles of Radiation Interaction in Matter and Detection. World Scientific, 2009 (cit. on p. 3). Cerca con Google

Fast ±150mA Power Buffer LT1010. Datasheet (cit. on p. 51). Cerca con Google

MAX961 Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyondthe-Rails Comparators. Datasheet (cit. on pp. 62, 63). Cerca con Google

G. Moschini et al. A Cyclotron Isotope Production Center For Biomedical Research. Tech. rep. INFN-LNL-225. ISBN 978-887337-013-0. National Laboratories of Legnaro LNL (Italy), 2008 (cit. on p. 2). Cerca con Google

A.A. Naqvi et al. “Energy resolution of NE102A and NE230 scintillators for monoenergetic gamma rays”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 324.1–2 (1993), pp. 223 –225. issn: 0168-9002. doi: 10.1016/0168-9002(93)90980-V. url: http://www.sciencedirect.com/science/article/pii/016890029390980V (cit. on p. 13). Vai! Cerca con Google

BC-400,BC-404,BC-408,BC-412,BC-416 Premium Plastic Scintillators. Datasheet (cit. on p. 13). Cerca con Google

NEMA Standards Publication NU 1-2001, Performance Measurements of Scintillation Cameras. National Electrical Manufacturers Association (cit. on p. 81). Cerca con Google

C.E. Ordonez, A. Bolozdynya, and W. Chang. “Doppler broadening of energy spectra in Compton cameras”. In: Nuclear Science Symposium, 1997. IEEE. Vol. 2. 1997, 1361 –1365 vol.2. doi: 10.1109/NSSMIC.1997.670574 (cit. on pp. 24, 39, 40). Cerca con Google

Peter Demetri Olcott et al. “Compact Readout Electronics for Position Sensitive Photomultiplier Tubes”. In: IEEE Trans. Nucl. Sci. 52.1 (2005), pp. 21–27 (cit. on pp. 19, 45). Cerca con Google

R Pani et al. “Imaging detector designs based on flat panel PMT”. In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 527.1–2 (2004). Proceedings of the 2nd International Conference on Imaging Technologies in Biomedical Sciences, pp. 54–57. issn: 0168-9002. doi: 10.1016/j.nima.2004.03.037. url: http://www.sciencedirect.com/science/article/pii/S0168900204003882 (cit. on p. 19). Vai! Cerca con Google

R. Pani et al. “Investigation on a small FoV gamma camera based on LaBr3:Ce continuous crystal”. In: Nuclear Physics B - Proceedings Supplements 197.1 (2009). 11th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD08), pp. 202 – 205. issn: 0920-5632. doi: 10.1016/j.nuclphysbps.2009.10.067. url: http://www.sciencedirect.com/science/article/ pii/S0920563209007889 (cit. on p. 81). Vai! Cerca con Google

Roberto Pani et al. “LaBr3(Ce) and NaI(Tl) performance comparison for single photon emission imaging”. In: Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2011 IEEE. 2011, pp. 4433 –4436. doi: 10.1109/NSSMIC.2011.6153854 (cit. on p. 81). Cerca con Google

L. C. Parra. “Reconstruction of cone-beam projections from Compton scattered data”. In: IEEE Trans. Nucl. Sci. 47.4 (2000), pp. 1543–1550 (cit. on pp. 2, 21). Cerca con Google

V. Popov and S. Majewski. “A Compact High Performance Readout Electronics Solution for H9500 Hamamatsu 256 Multianode Photomultiplier Tube for Application in Gamma Cameras”. In: Nuclear Science Symposium Conference Record, 2006. IEEE. Vol. 5. 2006, pp. 2981 –2985. doi: 10.1109/NSSMIC.2006.356501 (cit. on p. 19). Cerca con Google

POV-ray, Persistence of Vision Raytracer. url: http://www.povray.org/ (cit. on p. 27). Vai! Cerca con Google

Jennifer Prekeges. Nuclear Medicine Instrumentation. Jones and Bartlett Publishers, 2011 (cit. on p. 8). Cerca con Google

Qucs, Quite Universal Circuit Simulator. url: http://qucs.sourceforge.net/ (cit. on pp. 53, 59). Vai! Cerca con Google

P. Rossi et al. “Design and Performance Tests of the Calorimetric Tract of a Compton Camera for Small-Animals Imaging.” In: Nucl. Instr. and Meth. A 628 (2011), pp. 430–433 (cit. on pp. 2, 13, 19, 21, 109). Cerca con Google

P. Rossi et al. “X-rays Compton detectors for biomedical application”. In: AIP Conference Proceedings 1336 (2011), p. 356 (cit. on pp. 2, 8, 13, 109). Cerca con Google

A. C. Sauve, A. O. III Hero, and L. W. Rogers. “3D image reconstruction for a Compton SPECT camera model”. In: IEEE Trans. Nucl. Sci. 46 (1999), pp. 2075–2084 (cit. on pp. 2, 21). Cerca con Google

Stefan Siegel et al. “Simple Charge Division Readouts for Imaging Scintillator Arrays using a Multi-Channel PMT”. In: IEEE Trans. Nucl. Sci. 43.3 (1996), pp. 1634–1641 (cit. on p. 45). Cerca con Google

M. Singh. “An electronically collimated gamma camera for single photon emission computed tomography. Part 1: Theoretical considerations and design criteria”. In: Medical Physics 10.4 (1983), pp. 421–427 (cit. on p. 21). Cerca con Google

J. A. Sorensons and M. E. Phelps. Physics in Nuclear Medicine. W.B. Saunders Company, 2003 (cit. on pp. 8, 12). Cerca con Google

G. Stöcklin, S. M. Qaim, and F. Rösch. “The Impact of Radioactivity on Medicine”. In: Radiochimica Acta 70/71 (1995), pp. 249–272 (cit. on p. 2). Cerca con Google

R. Todd, J. Nightingale, and D. Everett. “A proposed Gamma Camera”. In: Nature 251 (1974), pp. 132–134 (cit. on p. 21). Cerca con Google

David I Thwaites and John B Tuohy. “Back to the future: the history and development of the clinical linear accelerator”. In: Physics in Medicine and Biology 51.13 (2006), R343. url: http://stacks.iop.org/0031-9155/51/i=13/a=R20 (cit. on p. 3). Vai! Cerca con Google

E. W. Weisstein. Shear Matrix. url: http://mathworld.wolfram.com/ShearMatrix.html[2013-01-10] (cit. on p. 87). Vai! Cerca con Google

Steven Weinberg. The Quantum Theory of Fields. Vol. 1. Cambridge University Press, 1995 (cit. on p. 21). Cerca con Google

A. Zoglauer and G. Kanbach. “Doppler broadening as a lower limit to the angular resolution of next-generation Compton telescopes”. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Ed. by J. E. Truemper and H. D. Tananbaum. Vol. 4851. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series. Mar. 2003, pp. 1302–1309. doi: 10.1117/12.461177 (cit. on p. 39). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record