Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Shapoval, Volodymyr (2012) Atmospheric plasma processes for environmental applications. [Ph.D. thesis]

Full text disponibile come:

PDF Document

Abstract (english)

Plasma chemistry is a rapidly growing field which covers applications ranging from technological processing of materials, including biological tissues, to environmental remediation and energy production. The so called atmospheric plasma, produced by electric corona or dielectric barrier discharges in a gas at atmospheric pressure, is particularly attractive for the low costs and ease of operation and maintenance involved. The high concentrations of energetic and chemically active species (e.g. electrons, ions, atoms and radicals, excited states, photons) present in such plasmas can promote chemical reactions which are otherwise hardly possible under such mild temperature conditions. This thesis deals with the use of atmospheric plasma to activate two different processes: water purification from organic pollutants and carbon dioxide reforming of methane to produce syngas. Both address major environmental issues, specifically the ever growing demand for drinking water and the need to control carbon emissions in the atmosphere. Due to the very different nature of the two investigated processes, different plasma sources, types of discharge, reactors, experimental conditions and analytical procedures had to be developed and adopted. Despite such differences, however, both lines of research stem from a common background and share a common goal: to understand and exploit the great chemical potential of atmospheric plasma. Thus, a common research approach was used, based on extensive investigation of the discharge and plasma features, notably of its reactive species, and of the process efficiency, products and intermediates. The mechanistic investigations involved quantitative product and kinetic studies, spectroscopic determinations and some modeling.
An already available prototype reactor was used for water treatment, in which dielectric barrier discharges (DBD) are generated in the air above the liquid. The strong oxidants formed in humid air plasma (OH radicals, atomic oxygen, ozone) interact with the aqueous solution and induce the oxidation of even the most resistant organic pollutants. Phenol was used as a model organic pollutant and found to be decomposed quite efficiently, especially in dilute solutions, the rate of reaction increasing linearly with the reciprocal of phenol initial concentration. Despite its high reactivity air plasma displays some selectivity. The rate of oxidation of monosubstituted phenols (m-(CH3)2N-, m-Cl-, p-NO2- and m-NO2-) depends linearly on the Hammett substituents constant yielding a rho value of -0.48 which is characteristic of electrophilic attack by the OH radical. The main products and intermediates of phenol decomposition were determined quantitatively. The behavior of two such intermediates, maleic acid and fumaric acid, was investigated in detail since they are very common water secondary pollutants formed in the oxidative degradation of most aromatic compounds. The reaction mechanisms and the role of the major oxidizing species – hydroxyl radical and ozone – were investigated in experiments in which the two acids were treated separately and also in mixture under different pH conditions. Most interesting and useful was also the comparison with the results obtained in experiments of ozonation conducted under the same experimental conditions except for the fact that ozone was produced ex situ. These experiments show that under any conditions plasma treatment is more efficient due to the contribution of short lived highly reactive species. As for the oxidation mechanism of the two acids in the plasma system, it is concluded that due to their high reactivity with ozone, the decomposition process of maleic and fumaric acids is mainly due to this species. Depending on the pH of the solution, ozone reacts directly with the organic molecules or is converted to OH radicals. However, additional OH radicals produced directly by the electrical discharge also contribute to the oxidation of maleic and fumaric acids in the air-liquid plasma system, independently on the pH used. Thus, the direct formation of •OH by the discharge in situ constitutes a big advantage of plasma treatment over reaction with ozone produced ex-situ, in particular at acidic pH values for compounds which do not react with ozone itself. In fact, contrary to ozone, OH radicals react efficiently with any organic compound and when directly produced by the discharge their concentration is independent on pH. The obtained results are also very useful to show the importance of ozone mass transfer from the gas phase to the solution. Both in plasma treatment and in ozonation ozone is not accumulated into the solution but reacts as it is transferred in water or directly on its surface. However, comparing the behavior of maleic and fumaric acids in plasma treatment and in ozonation, it was demonstrated that the ion wind present in the DBD reactor, due to the charged species formed by the discharge, plays an important role in mixing the solution. In fact, when ozone produced ex-situ is used magnetic stirring of the solution is required to allow the reaction to take place also in the bulk and not only on the surface of water, while in the case of plasma treatment magnetic stirring increases the rate of the reaction but does not change significantly the shape of the oxidation curves.
The reactor and experimental apparatus for performing plasma driven carbon dioxide reforming of methane and product analysis had to be designed and developed from scratch since this line of research started with this Thesis. To allow emission spectroscopy measurements and in view of future investigations on the combination of plasma with heterogeneous catalysis, the reactor was made of quartz: two flanges are welded on the extremities of a tube of 570 mm of length and 37 mm of diameter, while a ring is welded in the middle of the tube to support a stainless steel tip which constitutes the high voltage electrode. The grounded counter electrode has the shape of a funnel and is covered by a stainless steel mesh. Most of the quartz tube is filled with ceramic cylinders, while the plasma zone occupies a volume of about 40 cm3 in the middle of the tube for allowing its heating in a vertical furnace for future investigations with heterogeneous catalysts. The setting-up of the experimental apparatus was a major task which was followed by preliminary tests with different types of discharge for determining the most efficient regime for transformation of methane and carbon dioxide to the mixture of hydrogen and CO. The best results in terms of efficiency and product selectivity were obtained with a spark discharge, self-triggered by a simple and efficient power supplying. The average electron density of the plasma, 5.7 x 1014 cm-3, was measured by emission spectroscopy techniques and the temperature of the bulk gas, approaching 100°C, by a thermocouple. However, the main characteristic of spark is the development of discharge filaments, in which the electron density and the temperature of the species, such as electrons, radicals, ions, but also atoms and molecules, are significantly higher than those of the bulk. In the present reactor these filaments fill completely the plasma zone. Thus, it is assumed that the elementary processes of the reaction between methane and carbon dioxide take place inside the discharge filaments. The major products, hydrogen and carbon monoxide were determined quantitatively by GC/FID/TCD. A few byproducts were also detected in low percentages and identified by means of GC/MS analysis. These include ethane, ethylene and acetylene. Based on quantitative product data and on precise measurements of the input and output flows, the reagents conversion, the products yield and selectivity and the energy efficiency of the process were calculated. The quite high conversion of CH4 (74%) and CO2 (69%), the high selectivity for the desired products (78% H2 and 86% CO) and the good energy efficiency (2.4 mmol/kJ) obtained make this system competitive with other reactors/processes described in the literature. Moreover, no carbon deposition was observed and CO2/CH4 ratios between 0.5 and 1.5 could be used without significant changes in the characteristics of the process. Easy power control and self-triggering of the system eliminate the need for expensive high-voltage switches, making this setup attractive for scaling up and further development.

Abstract (italian)

La chimica dei plasmi è un settore in rapida espansione che conta un gran numero di applicazioni, dal trattamento di materiali, inclusi materiali biologici, alla decomposizione di inquinanti e produzione di energia. Il cosiddetto plasma atmosferico, prodotto da scariche elettriche corona o a barriera di dielettrico in un gas a pressione atmosferica, è particolarmente attraente grazie ai costi contenuti e alla facilità di impiego e manutenzione. L’elevata concentrazione di specie ad alta energia chimicamente attive (ad esempio elettroni, ioni, atomi, radicali, specie eccitate, fotoni) presenti in questi plasmi può promuovere reazioni chimiche che in condizioni più blande sarebbero difficilmente realizzabili. La Tesi riguarda l’impiego del plasma atmosferico per attivare due diversi processi: la purificazione dell’acqua da inquinanti organici e il reforming di metano con anidride carbonica per produrre gas di sintesi. Entrambi i processi mirano a dare un contributo nella risoluzione di un problema ambientale, la crescente domanda di acqua potabile in un caso, la necessità di limitare le emissioni di carbonio nell’atmosfera nell’altro. A causa della natura molto diversa dei due processi indagati, essi richiedono lo sviluppo e l’impiego di sorgenti di plasma, tipi di scarica, reattori, condizioni e procedure sperimentali diversi. Tuttavia, nonostante queste differenze, entrambe le linee di ricerca derivano da conoscenze comuni e condividono lo stesso obiettivo: comprendere e sfruttare l’enorme potenziale chimico dei plasmi atmosferici. Anche nella ricerca è stato quindi applicato un approccio comune, basato su uno studio approfondito delle caratteristiche della scarica elettrica e del plasma, in particolare per quanto riguarda le specie reattive, dell’efficienza del processo e dei prodotti e degli intermedi che si formano nel processo. Gli studi meccanicistici sono basati sull’analisi quantitativa dei prodotti, sulla cinetica del processo, su misure spettroscopiche e su simulazioni.
Il reattore impiegato per il trattamento delle acque è un prototipo realizzato in precedenza, in cui vengono generate scariche a barriera di dielettrico (DBD) nell’aria sovrastante la soluzione. I potenti ossidanti formati nel plasma in aria umida (radicale OH, ossigeno atomico, ozono) interagiscono con la soluzione acquosa e inducono l’ossidazione anche dei più resistenti inquinanti organici. Il fenolo, usato come inquinante organico modello, viene decomposto efficacemente, soprattutto in soluzioni diluite. La sua velocità di scomparsa aumenta linearmente con il reciproco della sua concentrazione iniziale. Nonostante l’elevata reattività, il plasma in aria mostra una certa selettività. La velocità di ossidazione di fenoli monosostituiti m-((CH3)2N-, m-Cl-, p-NO2- and m-NO2-) dipende linearmente dalle costanti di Hammett. Il valore di rho ottenuto, pari a -0.48, è caratteristico dell’attacco elettrofilo da parte del radicale OH. I principali prodotti ed intermedi della decomposizione del fenolo sono stati determinati quantitativamente. Il comportamento di due di questi intermedi, l’acido maleico e l’acido fumarico, è stato analizzato in dettaglio poiché si tratta di comuni inquinanti secondari delle acque derivanti dalla degradazione ossidativa della maggior parte dei composti aromatici. Esperimenti in cui i due acidi sono stati trattati separatamente e in miscela a diversi pH hanno permesso di indagare i meccanismi di reazione e il ruolo delle principali specie ossidanti – radicale ossidrile e ozono - nella decomposizione dei due acidi. Molto interessante ed utile è stato anche il confronto con i risultati ottenuti in esperimenti di ozonizzazione realizzati nelle stesse condizioni sperimentali ma in cui l’ozono veniva prodotto ex situ. Questi esperimenti dimostrano che in tutte le condizioni sperimentali il trattamento al plasma è più efficiente del trattamento con solo ozono grazie al contributo aggiuntivo da parte di specie a vita breve altamente reattive. Per quanto riguarda il meccanismo di ossidazione dei due acidi nel plasma, è stato concluso che a causa dell’elevata reattività con ozono, il processo di decomposizione degli acidi maleico e fumarico è dovuto principalmente a questa specie. A seconda del pH della soluzione, l’ozono reagisce con le molecole organiche come tale oppure viene convertito in radicali OH. Nel sistema al plasma, radicali OH vengono prodotti anche direttamente dalla scarica elettrica e contribuiscono anch’essi all’ossidazione degli acidi maleico e fumarico, indipendentemente dal pH della soluzione. E’ quindi evidente che la formazione diretta di •OH in situ da parte della scarica costituisce un enorme vantaggio del trattamento al plasma rispetto al caso in cui l’ozono venga prodotto ex-situ, in particolare nel caso di composti che a pH acidi non siano in grado di reagire direttamente con l’ozono. Infatti, contrariamente all’ozono, il radicale OH reagisce in modo efficiente con qualsiasi composto organico, inoltre, quando viene prodotto direttamente dalla scarica la sua concentrazione è indipendente dal pH. I risultati ottenuti si sono rivelati molto utili anche per dimostrare l’importanza del trasferimento di massa dell’ozono dalla fase gas alla soluzione. Sia nel trattamento al plasma che nell’ozonizzazione l’ozono non si accumula nella soluzione ma reagisce non appena viene trasferito in acqua o direttamente sulla superficie dell’acqua. Comunque, confrontando il comportamento degli acidi maleico e fumarico nel trattamento al plasma e nell’ozonizzazione, è stato dimostrato che il vento ionico attivo nel reattore DBD e dovuto al trasferimento di specie cariche generate dalla scarica, svolge un ruolo importante nel mescolamento della soluzione. Infatti, quando l’ozono viene prodotto ex-situ è necessario agitare la soluzione con un’ancoretta magnetica perché la reazione abbia luogo nell’intera massa di acqua e non solo sulla sua superficie; al contrario, nel caso del trattamento al plasma il mescolamento magnetico aumenta la velocità della reazione ma non cambia significativamente la forma dell’andamento dell’ossidazione in funzione del tempo.
Nel caso del processo di reforming di metano con CO2 attivato da plasma è stato necessario progettare e sviluppare il reattore e l’intero sistema sperimentale da zero poiché questa linea di ricerca è stata iniziata con questa Tesi. Per poter realizzare misure di spettroscopia di emissione e in vista di studi futuri sulla combinazione del plasma con la catalisi eterogenea, il reattore è stato realizzato in quarzo: due flange sono saldate alle estremità di un tubo lungo 570 mm e largo 37 mm (diametro interno), mentre un anello è saldato nel mezzo del tubo per supportare una punta di acciaio inossidabile che costituisce l’elettrodo ad alto voltaggio. Il controelettrodo, posto al potenziale di terra, ha la forma di un imbuto ed è ricoperto da una retina di acciaio. Il tubo è in buona parte riempito con cilindri di ceramica forati, mentre la zona del plasma occupa un volume di circa 40 cm3 nel mezzo del tubo, soluzione che ne permetterebbe il riscaldamento in una fornace verticale in eventuali studi futuri con catalizzatori eterogenei. La realizzazione dell’apparato sperimentale ha richiesto un grosso impegno. Il passo successivo è stato l’esecuzione di esperimenti di prova con diversi tipi di scarica per determinare il regime più efficiente per realizzare la trasformazione di metano e anidride carbonica in una miscela di idrogeno e monossido di carbonio. I risultati migliori in termini di efficienza e selettività dei prodotti sono stati ottenuti con una scarica di tipo spark, auto-innescante grazie ad un sistema di alimentazione elettrica semplice ed efficiente. La densità elettronica media del plasma, pari a 5.7 x 1014 cm-3, è stata misurata tramite tecniche di spettroscopia di emissione e la temperatura del gas, poco inferiore a 100°C, tramite una termocoppia. La caratteristica principale della scarica di tipo spark è lo sviluppo di canali filamentari di scarica, in cui la densità degli elettroni e la temperatura delle specie, vale a dire elettroni, radicali, ioni, ma anche atomi e molecole, sono significativamente maggiori di quelle della massa del gas. Nel reattore in questione questi canali filamentari di scarica occupano interamente la regione in cui si sviluppa il plasma. Di conseguenza, si può assumere che i processi elementari della reazione tra metano e anidride carbonica si verifichino all’interno di tali canali. I prodotti principali della reazione, idrogeno e monossido di carbonio, sono stati determinati quantitativamente tramite GC/FID/TCD. Alcuni sottoprodotti sono stati rivelati in basse percentuali e identificati tramite analisi GC/MS: si tratta di etano, etilene ed acetilene. Sulla base dei dati quantitativi relativi alla formazione dei prodotti e delle misure precise dei flussi di entrata ed uscita del gas nel e dal reattore, sono state calcolate le percentuali di conversione dei reagenti e di resa e selettività dei prodotti. I risultati di conversione di CH4 (74%) e CO2 (69%), di selettività per i prodotti desiderati (78% H2 and 86% CO) e di efficienza energetica sono risultati molto buoni e rendono il sistema competitivo con altri reattori e processi descritti nella letteratura. Non viene inoltre osservata deposizione di carbone e il rapporto CO2/CH4 può essere variato tra 0.5 e 1.5 senza variazioni significative delle caratteristiche del processo. La facilità di controllo della potenza e la caratteristica di auto-innesco del sistema fanno sì che non siano necessari costosi sistemi di controllo che lavorano ad alto voltaggio e rendono promettente il ridimensionamento dell’apparato sperimentale e interessante il suo impiego in ricerche future.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Marotta, Ester
Ph.D. course:Ciclo 25 > Scuole 25 > SCIENZE MOLECOLARI > SCIENZE CHIMICHE
Data di deposito della tesi:31 January 2013
Anno di Pubblicazione:2012
Key Words:Chimica dei plasmi, dry reforming, processi di ossidazione avanzata/ Plasma chemistry, dry reforming, advanced oxidation processes
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/06 Chimica organica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:5919
Depositato il:11 Oct 2013 14:00
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Van Veldhuizen EM. Electrical discharges for environmental purposes: fundamentals and applications. Nova Science Publishers, Inc., Huntington, NY, 2000. Cerca con Google

[2] IGBP, 2001 - Global Change and the Earth System: a Planet under stress – IGBP Science n.4 Cerca con Google

[3] UNEP, 2002 - Global Environment Outlook 3 – Earth scan Cerca con Google

[4] Earth Policy Institute – website http://www.earth-policy.org Vai! Cerca con Google

[5] World Watch Institute – website http://www.worldwtach.org Vai! Cerca con Google

[6] World Resources Institute – website http://www.wri.org Vai! Cerca con Google

[7] European Pollutant Emission Register – website http://eper.eea.europa.eu/ Vai! Cerca con Google

[8] Baird C, Cann M. Environmental Chemistry. 2nd Ed., 2006. Cerca con Google

[9] Watson RT, Meira Filho LG, Sanhueza E, Janetos A. Greenhouse gases: sources and sinks. IPCC Suppl Report 1992; 29-46. Cerca con Google

[10] Hester RE, Harrison RM. Volatile organic compounds in the atmosphere. The Royal Society of Chemistry, Letchworth, UK, 1995. Cerca con Google

[11] ESRL Global Monitoring Division – web link http://www.esrl.noaa.gov/gmd/ccgg/globalview Vai! Cerca con Google

[12] Pacala S, Socolow R. Stabilization Wedges: Solving the climate problem for the next 50 years with current technologies. Science 2004; 305: 968-972. Cerca con Google

[13] Lehmann J. A handful of carbon. Nature 2007; 447: 143-144. Cerca con Google

[14] Windle CD, Perutz RN. Advances in molecular photocatalytic and electrocatalytic CO2 reduction. Coordination Chem Rev 2012; 256: 2562-2570. Cerca con Google

[15] Varghese OK, Paulose M, LaTempa TJ, Grimes CA. High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. Nano Lett 2009; 9(2): 731-737. Cerca con Google

[16] GoNano Technologies, Inc. – web link http://gonano-technologies.com/pollution-control-products/carbon-capture-recycle/ Vai! Cerca con Google

[17] Pescarmona PP, Taherimehr M. Challenges in the catalytic synthesis of cyclic and polymeric carbonates from epoxides and CO2. Catal Sci Technol 2012; 2: 2169-2187. Cerca con Google

[18] Royal Society of Chemistry – web link http://www.rsc.org/chemistryworld/News/2009/October/09100901.asp Vai! Cerca con Google

[19] Royal Society of Chemistry – web link http://www.rsc.org/chemistryworld/News/2010/July/28071001.asp Vai! Cerca con Google

[20] Amato I. Catalytic conversion could be a gas. Science 1993; 259: 311. Cerca con Google

[21] Satterfield CN. Heterogeneous catalysis in practice. 2nd Ed., McGraw-Hill, NY, 1991. Cerca con Google

[22] Bhat SA, Sadhukhan J. Process intensification aspects for steam methane reforming: An overview. AIChE Journal 2009; 55(2): 408-422. Cerca con Google

[23] Sridhar S, Smitha B, Aminabhavi TM. Separation of carbon dioxide from natural gas mixtures through polymeric membranes – A review. Sep Purif Rev 2007; 36(2): 113-174. Cerca con Google

[24] Deutschmann O, Schmidt L. Two-dimensional modeling of partial oxidation of methane on rhodium in a short contact time reactor. 27th International Symposium on Combustion 1998; 2283-2291. Cerca con Google

[25] Abbas HF, WanDaud WMA. Hydrogen production by methane decomposition: A review. Int J Hydrogen Energy 2010; 35: 1160-1190. Cerca con Google

[26] Wang S, Lu GQ. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art. Energy Fuels 1996; 10: 896-904. Cerca con Google

[27] Fan MS, Abdullah AZ, Bhatia S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas. ChemCatChem 2009; 1: 192-208. Cerca con Google

[28] Gallucci F, Tosti S, Basile A, Pd–Ag tubular membrane reactors for methane dry reforming: A reactive method for CO2 consumption and H2 production. A. J. Membr Sci 2008; 317: 96-105. Cerca con Google

[29] Chen HL, Lee HM, Chen SH, Chao Y, Chang MB. Review of plasma catalysis on hydrocarbon reforming for hydrogen production – Interaction, integration, and prospects. Appl Catal B 2008; 85: 1-9. Cerca con Google

[30] Hu YH, Ruckenstein E. Catalytic conversion of methane to synthesis gas by partial oxidation and CO2 reforming. Adv Catal 2004; 48: 297-345. Cerca con Google

[31] Fidalgo B, Zubizarreta L, Bermúdez JM, Arenillas A, Menéndez JA. Synthesis of carbon-supported nickel catalysts for the dry reforming of CH4. Fuel Process Technol 2010; 91: 765-769. Cerca con Google

[32] Guczi L, Stefler G, Geszti O, Sajó I, Pászti Z, Tompos A, Schay Z. Methane dry reforming with CO2: A study on surface carbon species. Appl Catal A 2010; 375: 236-246. Cerca con Google

[33] García-Diéguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ. Improved Pt-Ni nanocatalysts for dry reforming of methane. Appl Catal A: Gen 2010; 377: 191-199. Cerca con Google

[34] Castro Luna AE, Iriarte ME. Carbon dioxide reforming of methane over a metal modified Ni-Al2O3 catalyst. Appl Catal A: Gen 2008; 343: 10-15. Cerca con Google

[35] Pawelec B, Damyanova S, Arishtirova K, Fierro JLG, Petrov L. Structural and surface features of PtNi catalysts for reforming of methane with CO2. Appl Catal A: Gen 2007; 323: 188-201. Cerca con Google

[36] Kohn MP, Castaldi MJ, Farrauto RJ. Auto-thermal and dry reforming of landfill gas over a Rh/γAl2O3 monolith catalyst. Appl Catal B: Environ 2010; 94: 125-133. Cerca con Google

[37] Faroldi BM, Lombardo EA, Cornaglia LM. Surface properties and catalytic behavior of Ru supported on composite La2O3–SiO2 oxides. Appl Catal A: Gen 2009; 369: 15-26. Cerca con Google

[38] Carrara C, Múnera J, Lombardo EA, Cornaglia LM. Kinetic and stability studies of Ru/La2O3 used in the dry reforming of methane. Top Catal 2008; 51: 98-106. Cerca con Google

[39] Langmuir I. Oscillations in ionized gases. Proc. Natl. Acad. Sci. U.S.A., 1928; 14: 627-637. Cerca con Google

[40] Fridman A. Plasma chemistry. Cambridge University Press, New York, 2008. Cerca con Google

[41] Bittencourt JA. Fundamentals of plasma physics. Springer, New York: Heidelberg, 2004. Cerca con Google

[42] Chen FF. Introduction to plasma physics and controlled fusion: Plasma physics. 2nd Ed., Plenum Press, New York. 2000. Cerca con Google

[43] Paschen F. Wied. Ann., 1889; 37, 69. Cerca con Google

[44] Raizer YP. Gas discharge physics. Springer, 1991. Cerca con Google

[45] Goldman M, Goldman A. Corona Discharge, Gaseous Electronic. Academic Press Inc., 1978; 1: 219-290. Cerca con Google

[46] Siemens W. Poggendorff Ann Phys Chem 1857; 178: 66-122. Cerca con Google

[47] Andrews T, Tait PG. Phil Trans Roy Soc of London 1860; 150: 113-131. Cerca con Google

[48] Hautefeuille P, Chappuis J. Compt Rend Acad Scé 1881; 92: 80. Cerca con Google

[49] Warburg E, Leithäuser G. Ann Physik 1909; 333: 313-325. Cerca con Google

[50] Manley TC. J. Electrochem. Soc. 1943; 84: 83-96. Cerca con Google

[51] Kogelschatz U. Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 2003; 23(1): 45p. Cerca con Google

[52] Donohoe KG, Wydeven T. J. Appl Polymer Sci. 1979; 23: 2591-2601. Cerca con Google

[53] Kanazawa S, Kogoma M, Moriwaki T, Okazaki SJ. Phys D: Appl Phys 1988, 21, 838-840. Cerca con Google

[54] Massines F, Rabehi F, Decomps P, Gadri RB, Ségur P, Mayoux CJ. Appl Phys 1998; 83: 2950-2957. Cerca con Google

[55] Boyers DG, Tiller WA. Appl Phys Lett 1982; 41: 28-30. Cerca con Google

[56] Ammelt E, Schweng D, Purwins HG. Spatiotemporal pattern-formation in a lateral high-frequency glow discharge system. Phys Lett A 1993; 179: 348-354. Cerca con Google

[57] Breazeal W, Flynn KM, Gwinn EG. Static and dynamic two patterns in self-extinguishing discharge avalanches. Physical Review E 1995; 52(2): 1503-1515. Cerca con Google

[58] Kogelschatz U. Filamentary, patterned, and diffuse barrier discharges. IEEE Trans Plasma Sci 2002; 30(4): 1400-1408. Cerca con Google

[59] Eliasson B, Kogelschatz U. Modeling and applications of silent discharge plasmas. IEEE Trans Plasma Sci. 1991; 19: 309-323. Cerca con Google

[60] Steinle G, Neundorf D, Hiller W, Pietralla MJ. Two-dimensional simulation of filaments in barrier discharges. Phys D: Appl Phys 1999; 32: 1350-1356. Cerca con Google

[61] Dřimal J, Gibalov VI, Samoilovich VG. Silent discharge in air, nitrogen andargon. Czech J Phys: B 1987; B37: 1248-1255. Cerca con Google

[62] Gibalov VI, Dřimal J, Wronski M, Samoilovich VG. Barrier discharge. The transferred charge and ozone synthesis. Contrib Plasma Phys 1991; 31(1): 89-99. Cerca con Google

[63] Lukas C, Spaan M, Schulz-von der Gathen V, Thomson M, Wegst R, Döbele HF, Neiger M. Dielectric barrier discharges with steep voltage rise: mapping of atomic nitrogen in single filaments measured by laser-induced fluorescence spectroscopy. Plasma Sources Sci Technol 2001; 10: 445-450. Cerca con Google

[64] Kozlov KV, Wagner HE, Brandenburg R, Michel P. Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmospheric pressure. J Phys D: Appl Phys 2001; 34: 3164-3176. Cerca con Google

[65] Kunze K, Miclea M, Musa G, Franzke J, Vadla C, Niemax K. Diode laser-aided diagnostics of a low-pressure dielectric barrier discharge applied in element-selective detection of molecular species. Spectrochimica Acta B 2002; 57: 137-146. Cerca con Google

[66] Motret O, Hilbert C, Pellerin S, Pouvesle JM. Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge - gas temperature and molecular fraction effects J Phys D: Appl Phys 2000; 33: 1493-1498. Cerca con Google

[67] Spaan M, Leistikow J, Schulz-von der Gathen V, Döbele HF. Dielectric barrier discharges with steep voltage rise: laser absorption spectroscopy of NO concentrations and temperatures. Plasma Sources Sci Technol 2000; 9: 146-151. Cerca con Google

[68] Bibinov NK, Fateev AA, Wiesemann K. Variations of the gas temperature in He/N2 barrier discharges. Plasma Sources Sci Technol 2001; 10: 579-588. Cerca con Google

[69] Loeb LB, Science 1965; 148: 1417. Cerca con Google

[70] Meek JM, Craggs JD. Electrical breakdown of gases. Oxford, 1953. Cerca con Google

[71] Raether H. Electron avalanches and breakdown in gases. Butterworths, 1964. Cerca con Google

[72] Uman MA. Lightning. McGraw, 1969. Cerca con Google

[73] Loizanskii ED, Firsov OB. Spark Theory [in Russian]. Atomizdat, 1975. Cerca con Google

[74] Aleksandrov NL, Bazelyan EM. Ionization processes in spark discharge plasmas. Plasma Sources Sci Technol 1999; 8: 285–294. Cerca con Google

[75] Sieck LW, Herron JT, Green DS. Chemical kinetics database and predictive schemes for humid air plasma chemistry. Part I: Positive ion-molecule reactions. Plasma Chem Plasma Process 2000; 20: 235-357. Cerca con Google

[76] Ketkar SN, Dulak JG, Dheandhanoo S, Fite WL. Benzene charge-exchange at atmospheric-pressure for low-level detection of pollutants in ambient air. Anal Chim Acta 1991; 245: 267-270. Cerca con Google

[78] Elvers B, Hawkins S, Schulz G. Ullmann’s Encyclopedia of Industrial Chemistry, 5th Ed., Wiley-VCH 1991; A18: 349-357. Cerca con Google

[79] Boelter KJ, Davidson JH. Ozone generation by indoor, electrostatic air cleaners. Aero Sci Technol 1997; 27(6): 689-708. Cerca con Google

[80] Mason NJ, Skalny JD, Hadj-Ziane S. Experimental investigations and modelling studies of ozone producing corona discharges. Czech J Phys 2002; 52: 85-94. Cerca con Google

[81] Seinfeld JH, Pandis SN. Atmospheric Chemistry and Physics. From Air Pollution to Climate Change. John Wiley & sons, Inc. 1998. Cerca con Google

[82] Kudryashov SV, Shchegoleva GS, Sirotkina EE, Ryabov AYu. Oxidation of hydrocarbons in a barrier discharge reactor. High Energ Chem 2000; 34: 112-115. Cerca con Google

[83] Glaze WH. Drinking-water treatment with ozone. Environ Sci Technol 1987; 21: 224-230. Cerca con Google

[84] Sano N, Kawashima T, Fujikawa J, Fujimoto T, Kitai T, Kanki T, Toyoda A. Decomposition of organic compounds in water by direct contact of gas corona discharge: influence of discharge conditions. Ind Eng Chem Res 2002; 41: 5906-5911. Cerca con Google

[85] Sano N, Fujimoto T, Kawashima T, Yamamoto D, Kanki T, Toyoda A. Influence of dissolved inorganic additives on decomposition of phenol and acetic acid in water by direct contact of gas corona discharge. Sep Purif Technol 2004; 37: 169-175. Cerca con Google

[86] Sharma AK, Josephson GB, Camaioni DM, Goheen SC. Destruction of pentachlorophenol using glow discharge plasma process. Environ Sci Technol 2000; 34: 2267-2272. Cerca con Google

[87] Brisset JL. Air corona removal of phenols. J Appl Electrochem 1997; 27: 179-183. Cerca con Google

[88] Hoeben WFLM, van Veldhuizen EM, Rutgers WR, Kroesen GMW. Gas phase corona discharges for oxidation of phenol in an aqueous solution. J Phys D: Appl Phys 1999; 32: L133-L137. Cerca con Google

[89] Hoeben WFLM, van Veldhuizen EM, Rutgers WR, Cramers CAMG, Kroesen GMW. The degradation of aqueous phenol solutions by pulsed positive corona discharges. Plasma Sources Sci Technol 2000; 9: 361-369. Cerca con Google

[90] Grabowski LR, van Veldhuizen EM, Rutgers WRJ. Removal of phenol from water: A comparison of energization methods. Adv Oxid Technol 2005; 8: 142-149. Cerca con Google

[91] Grabowski LR, van Veldhuizen EM, Pemen AJM, Rutgers WR. Corona above water Reactor for systematic study of aqueous phenol degradation plasma. Chem Plasma Process 2006; 26: 3-17. Cerca con Google

[92] Sato M, Tokutake T, Ohshima T, Sugiarto AT. Aqueous phenol decomposition by pulsed discharges on the water surface. IEEE Trans Ind Appl 2008; 44(5): 1397-1402. Cerca con Google

[93] Forni L, Bahnemann D, Hart EJJ. Mechanism of the hydroxide ion initiated decomposition of ozone in aqueous solution. Phys Chem 1982; 86: 255-259. Cerca con Google

[94] Flyunt R, Leitzke A, Mark G, Mvula E, Reisz EJ. Determination of ●OH, O2●-, and hydroperoxide yields in ozone reactions in aqueous solution. Phys Chem B 2003; 107: 7242-7253. Cerca con Google

[95] Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS. Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res 2006; 45: 882-905. Cerca con Google

[96] Sato M, Ohgiyama T, Clements JS. Formation of chemical species and their effects on microorganisms using a pulsed high-voltage discharge in water. IEEE Trans Ind Appl 1996; 32: 106-112. Cerca con Google

[97] Sunka P, Babicky V, Clupek M, Lukes P, Simek M, Schmidt J, Cernak M. Generation of chemically active species by electrical discharges in water. Plasma Sources Sci Technol 1999; 8(2): 258-265. Cerca con Google

[98] Sun B, Sato M, Clements JS. Use of a pulsed high-voltage discharge for removal of organic compounds in aqueous solution. J Phys D: Appl Phys 1999; 32(15): 1908-1915. Cerca con Google

[99] Sun B, Sato M, Clements JS. Oxidative processes occurring when pulsed high voltage discharges degrade phenol in aqueous solution. Environ Sci Technol 2000; 34(3): 509-513. Cerca con Google

[100] Malik MA, Ghaffar A, Malik SA. Water purification by electrical discharges. Plasma Sources Sci Technol 2001; 10(1): 82-91. Cerca con Google

[101] Sunka P, Babicky V, Clupek M, Fuciman M, Lukes P, Simek M, Benes J, Locke B, Majcherova Z. Potential applications of pulse electrical discharges in water. Acta Physica Slovaka, 2004; 54: 135-145. Cerca con Google

[102] Sahni M, Locke BR. The effects of reaction conditions on liquid-phase hydroxyl radical production in gas-liquid pulsed-electrical-discharge reactors. Plasma Process Polym 2006; 3: 668-681. Cerca con Google

[103] Lukes P, Appleton AT, Locke BR. Hydrogen peroxide and ozone formation in hybrid gas-liquid electrical discharge reactors. IEEE Trans Ind Appl 2004; 40(1): 60-67. Cerca con Google

[104] Grymonpré DR, Finney WC, Clark RJ, Locke BR. Hybrid gas-liquid electrical discharge reactors for organic compound degradation. Ind Eng Chem Res 2004; 43: 1975-1989. Cerca con Google

[105] Lang PS, Ching WK, Willberg DM, Hoffmann MR. Oxidative degradation of 2,4,6-trinitrotoluene by ozone in an electrohydraulic discharge reactor. Environ Sci Technol 1998; 32(20): 3142-3148. Cerca con Google

[106] Marotta E, Schiorlin M, Ren X, Rea M, Paradisi C. Advanced oxidation process for degradation of aqueous phenol in a dielectric barrier discharge reactor. Plasma Process Polym 2011; 8: 867–875. Cerca con Google

[107] Marotta E, Ceriani E, Schiorlin M, Ceretta C, Paradisi C. Comparison of the rates of phenol advanced oxidation in deionized and tap water within a dielectric barrier discharge reactor. Wat Res 2012; 46: 6239–6246. Cerca con Google

[108] Lukes P, Locke BR. Plasmachemical oxidation processes in a hybrid gas-liquid electrical discharge reactor. J Phys D: Appl Phys 2005; 38(22): 4074-4081. Cerca con Google

[109] Lukes P, Clupek M, Sunka P, Peterka F, Sano T, Negishi N, Matsuzawa S, Takeuchi K. Degradation of phenol by underwater pulsed corona discharge in combination with TiO2 photocatalysis. Res Chem Intermed 2005; 31: 285-294. Cerca con Google

[110] Sahni M, Finney WC, Locke BR. J. Degradation of aqueous phase polychlorinated biphenyls (PCB) using pulsed corona discharges. Adv Oxid Technol 2005; 8(1): 105-111. Cerca con Google

[111] Brisset, J.L. J. Removal of pentachlorophenol from water by AC corona discharge treatment in air. Trace Microprobe Tech 1998; 16(3): 363-370. Cerca con Google

[112] Mvula E, von Sonntag C. Ozonolysis of phenols in aqueous solution. Org Biomol Chem 2003; 1: 1749-1756. Cerca con Google

[113] Zazo JA, Casas JA, Mohedano AF, Gilarranz MA, Rodriaguez J. Chemical pathway and kinetics of phenol oxidation by Fenton’s reagent. Environ Sci Technol 2005; 39: 9295-9302. Cerca con Google

[114] Bader H, Hoigné J. Rate constants of reactions of ozone with organic and inorganic compounds in water—II: Dissociating organic compounds. Water Res 1983; 17(2): 185-194. Cerca con Google

[115] Buxton GV, Greenstock CL, Helman WP, Ross AB. Critical-review of rate constants for reactions of hydrated electrons, hydrogen-atoms and hydroxyl radicals (●OH/●O-) in aqueous solution. J Phys Chem Ref Data 1988; 17: 513-886. Cerca con Google

[116] Jorgensen P, Chapelle J, Czemichowski A, Meguemes K. ISPC8, Tokyo, p. 695 (1987). Cerca con Google

[117] Lesueur H, Czernichowski A, Chapelle J. Production of synthetic (CO+H2) gas from CH4 oxidation by CO2 in a gliding-discharge electroreactor. Journal de Physique 1990; 51: C549-C556. Cerca con Google

[118] Lesueur H, Czernichowski A, Chapelle J. Electrically assisted partial oxidation of methane. Int J Hydrogen Energy 1994; 19(2): 139–144. Cerca con Google

[119] Fridman A, Nester S, Kennedy LA, Saveliev A, Mutaf-Yardimci O. Gliding arc gas discharge. Prog Energy Combust Sci 1998; 25(2): 113-124. Cerca con Google

[120] Li MW, Xu GH, Tian YL, Chen L, Fu HF. Carbon dioxide reforming of methane using DC corona discharge plasma reaction. J Phys Chem 2004, 108(10): 1687-1693. Cerca con Google

[121] Li MW, Tian YL, Xu GH. Characteristics of carbon dioxide reforming of methane via alternating current (AC) corona plasma reactions. Energy Fuels 2007; 21(4): 2335-2339. Cerca con Google

[122] Zhou LM, Xue B, Kogelschatz U, Eliasson B. Nonequilibrium plasma reforming of greenhouse gases to synthesis gas. Energy Fuels 1998; 12(6): 1191-1199. Cerca con Google

[123] Song HK, Lee H, Choi JW, Na BK. Effect of electrical pulse forms on the CO2 reforming of methane using atmospheric dielectric barrier discharge. Plasma Chem Plasma Process 2004; 24(1): 57-72. Cerca con Google

[124] Goujard V, Tatibouët JM, Batiot-Dupeyrat C. Carbon dioxide reforming of methane using a dielectric barrier discharge reactor: effect of helium dilution and kinetic model. Plasma Chem Plasma Process 2011; 31: 315-325. Cerca con Google

[125] Rueangjitt N, Sreethawong T, Chavadej S. Reforming of CO2-containing natural gas using an AC gliding arc system: effects of operational parameters and oxygen addition in feed. Plasma Chem Plasma Process 2008; 28: 49–67. Cerca con Google

[126] Tao X, Bai M, Li X, Long H, Shang S, Yin Y, Dai X. CH4-CO2 reforming by plasma – challenges and opportunities. Prog Energy Combust Sci 2011; 37: 113-124. Cerca con Google

[127] Zhou LM, Xue B, Kogelschatz U, Eliasson B. Nonequilibrium plasma reforming of greenhouse gases to synthesis gas. Energy Fuels 1998; 12: 1191-1199. Cerca con Google

[128] Gorbanzadeh AM, Modarresi H. Carbon dioxide reforming of methane by pulsed glow discharge at atmospheric pressure: the effect of pulse compression. J Appl Phys 2007; 101: 123303. Cerca con Google

[129] Yang Y. Methane conversion and reforming by nonthermal plasma on pins. Ind Eng Chem Res 2002; 41(24): 5918-5926. Cerca con Google

[130] Zhang Y, Li Y, Wang Y, Liu C, Eliasson B. Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharge. Fuel Process Technol 2003; 83: 101-109. Cerca con Google

[131] Bo Z, Yan J, Li X, Chi Y, Cen K. Plasma assisted dry methane reforming using gliding arc gas discharge: effect of feed gases proportion. Int J Hydrogen Energy 2009; 33(20): 5545-5553. Cerca con Google

[132] Indarto A, Choi JW, Lee H, Song HK. Effect of additive gases on methane conversion using gliding ac discharge. Energy 2006; 31(14): 2986-2995 Cerca con Google

[133] Ghorbanzadeh AM, Lotfalipour R, Rezaei S. Carbon dioxide reforming of methane at near room temperature in low energy pulsed plasma. Int J Hydrogen Energy 2009; 34:293-298. Cerca con Google

[134] Yan BH, Wang Q, Jin Y, Cheng Y. Dry reforming of methane with carbon dioxide using pulsed DC arc plasma at atmospheric pressure. Plasma Chem Plasma Process 2010; 30:257-266. Cerca con Google

[135] Hong SW, Oh SM, Park DW, Kim GJ. The methane reforming with carbon dioxide on Ni-catalyst activated by a DC-pulsed corona discharge. J Ind Eng Chem 2001; 7(6): 410-416. Cerca con Google

[136] Kado S, Urasaki K, Sekine Y, Fujimoto K. Low temperature reforming of methane to synthesis gas with direct current pulse discharge method. Chem Commun 2001; 415-416. Cerca con Google

[137] Kraus M, Eliasson B, Kogelschatz U, Wokaun A. CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis. Phys Chem Chem Phys 2001; 3(3): 294-300. Cerca con Google

[138] Kraus M, Egli W, Haffner K, Eliasson B, Kogelschatz U, Wokaun A. Investigation of mechanistic aspects of the catalytic CO2 reforming of methane in a dielectric-barrier discharge using optical emission spectroscopy and kinetic modeling. Phys Chem Chem Phys 2002; 4(4): 668-675. Cerca con Google

[139] Song HK, Choi JW, Yue SH, Lee H, Na BK. Synthesis gas production via dielectric barrier discharge over Ni/gamma-Al2O3 catalyst. Catal Today 2004; 89: 27-33. Cerca con Google

[140] Chavadej S, Supat K, Lobban LL, Mallinson RG. Partial oxidation of methane and carbon dioxide reforming with methane in corona discharge with/without Pt/KL catalyst. J Chem Eng Jpn 2005; 38(3): 163-170 Cerca con Google

[141] Li MW, Liu CP, Tian YL, Xu GH, Zhang FC, Wang YQ. Effects of catalysts in carbon dioxide reforming of methane via corona plasma reactions. Energy Fuels 2006; 20(3): 1033-1038. Cerca con Google

[142] Futamura S, Kabashima H, Annadurai G. Roles of CO2 and H2O as oxidants in the plasma reforming of aliphatic hydrocarbons. Catal Today 2006; 115: 211-216. Cerca con Google

[143] Lee H, Song HK, Min BR. Heating effect of plasma catalytic reaction on the CH4 reforming of CO2 over Ni/gamma-Al2O3 catalyst in dielectric barrier discharge reactor Chem Lett 2006; 35(6): 646-647. Cerca con Google

[144] Long H, Shang SY, Tao XM, Yin YP, Dai XY. CO2 reforming of CH4 by combination of cold plasma jet and Ni/gamma-Al2O3 catalyst. Int J Hydrogen Energy 2008; 33: 5510-5515. Cerca con Google

[145] Wang Q, Yan BH, Jin Y, Cheng Y. Dry reforming of methane in a dielectric barrier discharge reactor with Ni/Al2O3 catalyst: interaction of catalyst and plasma. Energy Fuels 2009; 23(8): 4196-4201. Cerca con Google

[146] Goujard V, Tatibouët JM, Batiot-Dupeyrat C. Influence of the plasma power supply nature on the plasma-catalyst synergism for the carbon dioxide reforming of methane. IEEE Trans Plasma Sci 2009; 37(12): 2342-2346. Cerca con Google

[147] Goujard V, Tatibouët JM, Batiot-Dupeyrat C. Use of a non-thermal plasma for the production of synthesis gas from biogas. Appl Cat A: Gen 2009; 353(2): 228-235. Cerca con Google

[148] Gallon HJ, Tu X, Whitehead JC. Effects of reactor packing materials on H2 production by CO2 reforming of CH4 in a dielectric barrier discharge. Plasma Process Polym 2012; 9: 90-97. Cerca con Google

[149] Tu X, Gallon HJ, Twigg MV, Gorry PA, Whitehead JC. Dry reforming of methane over a Ni/Al2O3 catalyst in a coaxial dielectric barrier discharge reactor. J Phys D: Appl Phys 2011; 44: 274007. Cerca con Google

[150] Tu X, Whitehead JC. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature. Appl Catal B: Environ 2012; 125: 439-448. Cerca con Google

[151] Kim HH. Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Processes Polym 2004; 1: 91-110. Cerca con Google

[152] Schiorlin M, Marotta E, Rea M, Paradisi C. Comparison of toluene removal in air at atmospheric conditions by different corona discharges. Environ Sci Technol 200943: 9386–9392. Cerca con Google

[153] Slater C, Douglas-Hamilton DH. Electron-beam-initiated destruction of low concentrations of vinyl chloride in carrier gases. J Appl Phys 1981; 52(9): 5820-5828. Cerca con Google

[154] Marotta E, Schiorlin M, Rea M, Paradisi C. Products and mechanisms of the oxidation of organic compounds in atmospheric air plasmas. J Phys D - Appl Phys 2010; 43: 124011. Cerca con Google

[155] Hansch C, Leo A, Taft RW. A survey of Hammett substituent constants and resonance and field parameters. Chem Rev 1991; 91: 165-195. Cerca con Google

[156] Anbar M, Meyerstein D, Neta P. The reactivity of aromatic compounds toward hydroxyl radicals. J Phys Chem 1966; 70: 2660. Cerca con Google

[157] Hoigné J, Bader H. Rate constants of reactions of ozone with organic and inorganic compounds in water. I. Non-dissociating organic compounds. Water Res 1983; 17: 173-183. Cerca con Google

[158] von Gunten, U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Wat Res 2003; 37(7): 1443-1467. Cerca con Google

[159] Baker J, Arey J, Atkinson R. J Rate constants for the gas-phase reactions of OH radicals with a series of hydroxyaldehydes at 296 +/- 2 K. Phys Chem A 2004; 108(34): 7032-7037. Cerca con Google

[160] Sotelo JL, Beltrán FJ, Benitez JF, Beltrán-Heredia J. Ozone decomposition in water: Kinetic study. Ind Eng Chem Res 1987; 26: 39-43. Cerca con Google

[161] Von Gunten U. The basics of oxidants in water treatment. Part B: ozone reactions. Water Sci Technol 2007; 55: 25-29. Cerca con Google

[162] Hoigné, J., Bader, H. “The role of hydroxyl radical reactions in ozonation processes in aqueous solutions”, Wat Res 1976; 10: 377-386. Cerca con Google

[163] Leitzke A, von Stonnag C. Ozonolysis of unsaturated acids in aqueous solution: acrylic, metacrylic, maleic, fumaric and muconic acids. Ozone Sci Eng 2009; 31: 301-308. Cerca con Google

[164] Malik M.A. Water purification by plasmas: which reactors are most energy efficient? Plasma Chem Plasma Process 2010; 30: 21–31. Cerca con Google

[165] Gottschalk C, Libra JA, Saupe A. Ozonation of water and waste water. A practical guide to understanding ozone and its applications. 2nd Ed., WILEY-VCH, 2009; 378p. Cerca con Google

[170] NIST Standard Reference Database – web link http://webbook.nist.gov/chemistry Vai! Cerca con Google

[171] Zhu X, Huo P, Zhang YP, Cheng DG, Liu CG. Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane. Appl Cat B: Environ 2008; 81: 132-140. Cerca con Google

[172] Geiger R, Staack D. Analysis of solid products formed in atmospheric non-thermal carbon monoxide plasma. J Phys D: Appl Phys 2011: 44; 274005. Cerca con Google

[173] Wang Q, Yan H, Jin Y, Cheng Y. Investigation of dry reforming of methane in a dielectric barrier discharge reactor. Plasma Chem Plasma Process 2009; 29: 217-228. Cerca con Google

[174] Tu X, Whitehead JC. Plasma-catalytic dry reforming of methane in an atmospheric dielectric barrier discharge: understanding the synergistic effect at low temperature. Appl Catal B: Environ 2012; 125: 439-448. Cerca con Google

[175] Pearse RWB, Gaydon AG. The identification of molecular spectra. 4th Ed. Chapman and Hall, London, 1962. Cerca con Google

[176] Kiselman D. The 777 nm triplet oxygen in the sun and solar type stars. Astron Astrophys 1993; 275: 269-282. Cerca con Google

[177] Konjevic, N. Plasma broadening and shifting of non-hydrogenic spectral lines; Present status and applications. Phys Reports 1999; 316(6): 339-401. Cerca con Google

[178] Tao X, Qi F, Yin Y, Dai X. CO2 reforming of CH4 by combination of thermal plasma and catalyst. Int J Hydrogen Energy 2008; 33: 1262-1265. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record