Investigating The Role Of The Cellular Prion Protein

In Ca^{2+} Metabolism And Alzheimer’s Disease

Direttore della Scuola : Ch.mo Prof. Giuseppe Zanotti

Coordinatore d’indirizzo : Ch.mo Prof. ssa Maria Catia Sorgato

Supervisore : Ch.mo Prof. ssa Maria Catia Sorgato

Dottorando : Angela Castellani

31 Gennaio 2013
INDEX

ABSTRACT ................................................................................................................................. 5

SINOSSI ...................................................................................................................................... 7

ABBREVIATIONS ......................................................................................................................... 9

1. INTRODUCTION .................................................................................................................... 11

1.1 TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES ....................................................... 11

1.2 PRION .................................................................................................................................. 11

1.3 CELLULAR PRION PROTEIN ............................................................................................ 13

1.3.1 GENE ............................................................................................................................. 13

1.3.2 STRUCTURE AND METABOLISM ................................................................................ 14

1.3.3 FUNCTION ...................................................................................................................... 15

1.4 PrP^C AND Ca^{2+} HOMEOSTASIS .................................................................................. 16

1.5 PrP^C AND ALZHEIMER’S DISEASE ................................................................................ 17

2. MATERIALS AND METHODS ............................................................................................ 21

2.1 ANIMALS ............................................................................................................................ 21

2.2 PRIMARY CULTURES OF CEREBELLAR GRANULE NEURONS ....................................... 22

2.3 IMMUNOCYTOCHEMICAL ANALYSIS .............................................................................. 22

2.4 CONSTRUCTION OF LENTIVIRAL VECTORS FOR AEQUORINS, AND CELL INFECTION ...... 23

2.5 AEQ-BASED Ca^{2+} MEASUREMENTS .............................................................................. 24

2.6 Aβ1-42 PEPTIDE PREPARATION AND TREATMENT ....................................................... 25

2.7 CHARACTERIZATION OF Aβ1-42 PEPTIDE .................................................................... 26

2.8 WESTERN BLOT ANALYSES PrP^C AND SYNAPTOPHYasin EXPRESSION, AND FOR p59_Fyn AND Erk1/2 ACTIVATION ......................................................................................... 26

AIM OF THE WORK ................................................................................................................... 29

3. RESULTS AND DISCUSSION ............................................................................................ 31

3.1 PURITY OF PRIMARY CGN CULTURES ............................................................................ 31

3.2 In vitro CGN MATURATION, AND DEVELOPMENTAL PrP^C EXPRESSION IN Tg46 CGN ....... 32

3.3 INVOLVEMENT OF PrP^C IN LOCAL Ca^{2+} MOVEMENTS INDUCED IN CGN BY DIFFERENT STIMULI .................................................................................................................. 34
3.3.1 INVOLVEMENT OF PrP<sup>C</sup> IN LOCAL Ca<sup>2+</sup> MOVEMENTS INDUCED BY SOCE .......... 34

3.3.2 INVOLVEMENT OF PrP<sup>C</sup> IN LOCAL Ca<sup>2+</sup> MOVEMENTS INDUCED BY STIMULATION OF ALL CELL GLUTAMATE RECEPTORS ................................................................. 37

3.3.3 INVOLVEMENT OF PrP<sup>C</sup> IN LOCAL Ca<sup>2+</sup> MOVEMENTS INDUCED BY STIMULATION OF NMDA-SENSITIVE RECEPTORS ........................................................................ 40

3.3.4 ANALYSIS OF p59<sup>Fyn</sup> AND p42/44-ERK ACTIVATION IN Tg46 AND PrP-KO CGN ... 43

3.4 TREATMENT OF CGN WITH Aβ OLIGOMERS........................................................................ 47

3.4.1 CHARACTERIZATION OF Aβ PEPTIDES .............................................................................. 47

3.4.2 EFFECTS OF Aβ OLIGOMERS IN CGN LOCAL [Ca<sup>2+</sup>] MOVEMENTS ......................... 48

3.4.3 TREATMENT WITH Aβ ABOLISHES THE EFFECT OF PrP<sup>C</sup> ON THE p59<sup>Fyn</sup> PATHWAY ............................................................................................................... 51

SUPPLEMENTARY INFORMATION .......................................................................................... 55

REFERENCES .......................................................................................................................... 57
**ABSTRACT**

The cellular prion protein (PrP<sub>C</sub>) is a highly conserved cell-surface glycoprotein expressed in almost all mammalian tissues, in particular in the central nervous systems. The bad reputation acquired by PrP<sub>C</sub> originates from its capacity to convert into an aberrant conformer (PrP<sub>Sc</sub>), which is the major component of the prion, the unconventional infectious particle causing fatal neurodegenerative disorders, known as prion diseases. Both the mechanism of prion related neurodegeneration and the physiologic role of PrP<sub>C</sub> are still unknown. However, use of animal and cell models has underscored a number of putative functions for PrP<sub>C</sub>, suggesting that it could serve in cell adhesion, migration, proliferation and differentiation, possibly by interacting with extracellular partners, and/or by taking part in multi-component signaling complexes at the cell surface. An intriguing hypothesis, based on increasing amounts of data that may explain the multifaceted behavior of PrP<sub>C</sub>, entails that the protein is involved in the regulation of Ca<sup>2+</sup> homeostasis.

One major part of the present thesis deals with a close investigation of the alleged regulation of Ca<sup>2+</sup> homeostasis by PrP<sub>C</sub>. This study was carried out by monitoring local Ca<sup>2+</sup> movements in primary cultures of cerebellar granule neurons (CGN) – obtained from PrP-knockout mice and transgenic PrP<sup>C</sup>-expressing mice – subjected to various stimuli. Measurements of Ca<sup>2+</sup> fluxes in different cell domains were accomplished using the Ca<sup>2+</sup>-sensitive photo-protein aequorin genetically targeted to different cell domains (plasma membrane, cytosol, lumen of the endoplasmic reticulum and mitochondrial matrix). We found that, with respect to PrP<sup>C</sup>-expressing neurons, the absence of PrP<sub>C</sub> caused alterations of local Ca<sup>2+</sup> movements, indicating that PrP<sub>C</sub> may be part of the cellular system(s) deputed to avoid toxic neuronal Ca<sup>2+</sup> accumulation. As for the molecular mechanisms by which PrP<sub>C</sub> controls Ca<sup>2+</sup> homeostasis, we found that this could be accomplished through the modulation of p59<sup>Fyn</sup>- and p42/p44-ERK-dependent signaling pathways.

Another topic studied in this thesis stemmed from recent reports indicating that PrP<sub>C</sub> could acts as a high-affinity receptor for amyloid-β (Aβ) peptides implicated in Alzheimer’s disease. The possibility that PrP<sup>C</sup>-Aβ interactions may impair synaptic plasticity is, however, still highly debated. Thus, given that Ca<sup>2+</sup> is intimately related to synaptic plasticity, we investigated whether Aβ peptides affected Ca<sup>2+</sup> metabolism in a PrP<sub>C</sub>-dependent manner using the above-mentioned strategies and cell paradigms. The obtained results showed that interactions...
between PrP\textsubscript{C} and A\textbeta\ oligomers may cause Ca\textsuperscript{2+} accumulation following activation of store-operated Ca\textsuperscript{2+} entry, and that this may occur \textit{via} a PrP\textsuperscript{C}-dependent activation of p59\textsuperscript{fyn} kinase.
La proteina prionica cellulare (PrPC) è una glicoproteina di membrana altamente conservata nei mammiferi ed espressa abbondantemente nel sistema nervoso centrale. La cattiva reputazione attribuita a questa proteina nasce dalla sua capacità di convertirsi in un’isoforma conformazionale patologica (PrPSc), che è la componente principale del prione. Il prione è l’agente eziologico di malattie neurodegenerative fatali per l’uomo e per gli altri animali conosciute come malattie prioniche (Prusiner, 1998). Tuttavia rimangono ancora da capire sia il meccanismo attraverso cui PrPSc causa neurodegenerazione, sia la funzione fisiologica di PrPC.

L’uso di svariati modelli animali e cellulari ha attribuito numerose funzioni a PrPC, suggerendo che essa sia coinvolta in numerosi processi cellulari, quali adesione, migrazione, proliferazione e differenziamento, mediante interazioni con partner extracellulari e di membrana, e/o partecipando a vie di segnalazione cellulare. Un’ipotesi plausibile che potrebbe spiegare questo comportamento poliedrico, è che PrPC sia coinvolta nella regolazione dell’omeostasi del Ca2+, il secondo messaggero che è anch’esso in grado di controllare un gran numero di processi fisiopatologici che vanno dalla sopravvivenza alla morte della cellula.

Uno dei principali argomenti affrontati in questa tesi riguarda per l’appunto la possibile regolazione dell’omeostasi di Ca2+ da parte di PrPC. Lo studio è stato condotto confrontando i flussi locali di Ca2+ in colture primarie di neuroni granulari cerebellari (NGC) ottenuti da topi privi di PrPC o esprimenti la proteina, a seguito dell’applicazione di stimoli opportuni. Per il monitoraggio del Ca2+ si è impiegata la sonda Ca2+-sensibile equorina indirizzata a specifici comparti cellulari (membrana plasmatica, citosol, lume del reticolo endoplasmico e matrice mitocondriale). Si è trovato che, rispetto ai neuroni esprimenti la PrPC, l’assenza della proteina comporta alterazioni dei flussi locali di Ca2+, così suggerendo che PrPC possa far parte dei sistemi che proteggono il neurone dall’accumulo tossico di Ca2+. Per quanto riguarda i meccanismi molecolari attraverso cui PrPC controlla l’omeostasi del Ca2+, si è scoperto che questo potrebbe essere realizzato mediante la modulazione delle vie di segnalazione dipendenti dalle chinasi p59Fyn e p42/p44-ERK.

Un altro tema di studio oggetto di questa tesi si collega a dati recenti che hanno evidenziato come la PrPC possa legare con alta affinità i peptidi Aβ implicati della malattia di Alzheimer. La possibilità che queste interazioni alterino la plasticità sinaptica è, tuttavia, molto dibattuta. Pertanto, dal momento che il Ca2+ è finemente coinvolto in questo processo, si è voluto esplorare se la presenza dei peptidi Aβ influisca sui flussi di Ca2+ in maniera dipendente da PrPC.
A tal scopo si sono usate sia le strategie sia i modelli cellulari sopra descritti. I risultati ottenuti hanno dimostrato che l’incubazione dei neuroni con oligomeri Aβ causa l’influsso di Ca$^{2+}$ nella cellula dopo attivazione della via nota come “store-operated Ca$^{2+}$ entry”, e che questo processo potrebbe avvenire mediante l’attivazione di p59$^{Fyn}$ dipendente da PrP$^C$. 
ABBREVIATIONS

ACH, amyloid cascade hypothesis
AD, Alzheimer’s disease
ADDLs, Aβ-derived diffusible ligands
AEQ, aequorin
AHP, after hyperpolarization
ALS, amyotrophic lateral sclerosis
AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
AMPAR, AMPA receptor
APP, amyloid precursor protein
APP_{Swe}, human APP with the Swedish familial mutations
AraC, cytosine arabinoside
Aβ, amyloid-β
BSA, bovine serum albumin
BSE, bovine spongiform encephalopathy
cAMP, cyclic adenosine monophosphate
CGN, cerebellar granule neuron
CJD, Creutzfeldt-Jakob disease
CNS, central nervous system
COX8, subunit VIII of human cytochrome c oxidase
CWD, chronic wasting disease
ER, endoplasmic reticulum
ERK, extracellular signal-regulated kinase
FFI, fatal familial insomnia
GFAP, glial fibrillary acidic protein
GPI, glycosylphosphatidylinositol
GSS, Gerstmann-Sträussler-Scheinker syndrome
HA, hemagglutinin
HFIP, 1,1,1,3,3,3-hexafluoro-2-propanol
IB, isolation buffer
IP_3, inositol 1,4,5-triphosphate
KO, knock-out
Ln-γ1, laminin γ1 chain
LTD, long-term depression
LTP, long-term potentiation
mAb, monoclonal antibody
mGluR, metabotropic glutamate receptor
NFT, neurofibrillary tangle
NMDA, N-methyl-D-aspartic acid
NMDAR, NMDA receptor
ORF, open reading frame
pAb, polyclonal antibody
PBS, phosphate-buffered saline
PKA, protein kinase A
PKC, protein kinase C
PM, plasma membrane
PMCA, plasma membrane Ca\(^{2+}\)-ATPases
PMD, protein misfolding disorder
PrP, prion protein
PVDF, polyvinylidene fluoride
RT, room temperature
SDS, sodium dodecyl-sulphate
SERCA, sarco-ER-Ca\(^{2+}\)-ATPases
SFK, Src family of tyrosine kinases
SNAP-25, synaptic-associated protein 25
SOCC, Store-Operated Ca\(^{2+}\) Channel
SOCE, store-operated Ca\(^{2+}\) entry
STI1, stress-inducible protein 1
STIM, Stromal Interaction Molecule
TBS, Tris-buffered saline
Tg, transgenic
TSE, Transmissible spongiform encephalopathie
WT, wild-type
\(\alpha_{7}\)nAChR, \(\alpha_{7}\)-nicotinic-acetylcholine receptor
1. INTRODUCTION

1.1 TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES

Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of rare and fatal infectious neurodegenerative disorders affecting humans and other mammalian species, which have an infectious, genetic, or sporadic nature (Prusiner, 1998). Affected individuals generally exhibit clinical symptoms of both cognitive (dementia) and motor (ataxia) dysfunctions (Aguzzi and Calella, 2009). Brain histopathology typically shows vacuolation (from which the term “spongiform”), extensive astrogliosis, and deposition of protease-resistant protein aggregates (Colby and Prusiner, 2011). TSEs include Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), fatal familial insomnia (FFI) and kuru in humans; scrapie in sheep and goats; bovine spongiform encephalopathy (BSE, also known as “mad cow disease”) in cattle and chronic wasting disease (CWD) in cervids (Prusiner, 1998).

Despite CJD was first described at the beginning of last century by A. M. Jakob (Jakob, 1920), and the demonstration of scrapie transmissibility among sheep dates back to 1939 (Cullie and Chelle, 1939), TSE etiology remained elusive until the mid-60s when D. C. Gajdusek, after the seminal observation that kuru was probably infectious within New Guinea tribes practicing cannibalism, formally demonstrated transmissibility of kuru to monkeys (Gajdusek et al., 1966), and of CJD to chimpanzees (Gibbs et al., 1968). These and the previous studies on scrapie thus prompted investigators to unravel the nature of TSE infectious agent, which already at the time was considered of “unconventional” nature.

1.2 PRION

The protein-only hypothesis, conceiving that TSE infectious agent could be a protein capable of self-replication, was first formulated by Griffith (Griffith, 1967) following that the observations that the infectious material of scrapie was extremely resistant to procedures that normally destroy nucleic acids, e.g. high doses of ionizing radiation and UV (Alper et al., 1967), and that the minimal molecular weight of the agent maintaining infectivity (around $2 \times 10^5$ Da) was too small to account for a virus or other types of micro-organisms (Alper et al., 1966).

Little research was performed to test this hypothesis until in the early 80’s Prusiner and coworkers provided an impressive set of data after isolating the protease-resistant material (Bolton et al., 1982), and demonstrating that the concentration of the protein in this material was proportional to the infectivity titer (Gabizon et al., 1988). Prusiner thus named the agent
prion - for PRoteinaceous Infective ONly particle - and PrP$^{\text{Sc}}$ (Sc for scrapie) its constitutive protein (Prusiner, 1982).

Nonetheless, for a long time the prion concept was considered heretical by the scientific community, rather skeptical to acknowledge that a protein could replicate itself and act as an infectious agent. A key step to bypass this “heresy” was provided by the identification of the gene encoding PrP$^{\text{Sc}}$ (Oesch et al., 1985) and the demonstration that the gene encoded a constitutive cellular protein expressed in mammals (named cellular prion protein, PrP$^{\text{C}}$) (Basler et al., 1986). Today, we know that PrP$^{\text{C}}$ and PrP$^{\text{Sc}}$ have the same amino acid sequence (Stahl et al., 1993) and posttranslational modifications and that they differ merely in terms of conformation: PrP$^{\text{C}}$ structure contains 40% for $\alpha$-helices and 3% of $\beta$-sheets, whereas a predominant content of $\beta$-sheets (45% over the 30% of $\alpha$-helices) characterizes PrP$^{\text{Sc}}$ (Pan et al., 1993). Such conformational changes confer to PrP$^{\text{Sc}}$ its typical physico-chemical and biological features, i.e., resistance to protease digestion (Prusiner et al., 1984), insolubility in detergents (Meyer et al., 1986), propensity to aggregate and to form fibrils and amyloids (Meyer et al., 1986), and capacity to self-replicate (Bolton et al., 1982). The crucial support to the prion as a self-propagating protein was finally provided by the demonstration that Prnp$^{0/0}$ mice (or PrP knockout (PrP-KO) mice without the PrP gene (PRPN)) were resistant to prion infection (Büeler et al., 1992), and therefore that the presence of PrP$^{\text{C}}$ is a prerequisite for the replication and propagation of PrP$^{\text{Sc}}$.

In 2001, de novo prions have been generated through the so-called protein misfolding cyclic amplification (PMCA) technology (Saborio et al., 2001), by which - in analogy to PCR reactions - a small amount of template PrP$^{\text{Sc}}$ could be amplified after sonicating PrP$^{\text{Sc}}$-containing material with non-infectious brain homogenate (Deleault et al., 2007). Thus, PMCA provided a further demonstration that PrP$^{\text{Sc}}$ acts as template for catalyzing the conversion of PrP$^{\text{C}}$ in its misfolded, infectious conformer (Castilla et al., 2005). Use of this technology has allowed accelerating research on the mechanism of formation and propagation of PrP$^{\text{Sc}}$, thereby revealing that PrP$^{\text{C}}$-PrP$^{\text{Sc}}$ conversion could require one or more co-factor(s), provisionally designated protein X, and that, after the conversion process, PrP$^{\text{Sc}}$ is incorporated in a growing polymer that, through an as yet unknown process, break into smaller template pieces that further amplify fibrils formation (Soto, 2011).

Prions are not nucleic acids, although it is now accepted that like nucleic acids they are subjected to mutations although of a different nature (Li et al., 2010). That prion strains could exist was first formulated after observing that prions affecting distinct brain areas and giving rise to
characteristic clinical symptoms displayed typical biochemical signatures that reflected distinct conformations (Telling et al., 1996; Prusiner, 1998). Recently, the capacity of prions to “adapt” to the environment in a Darwinian fashion has also been provided, a process that explains the long incubation time needed for prion of an animal species to adapt to another animal species before triggering morbidity (Li et al., 2010).

Although the above-mentioned reports clearly demonstrate that PrP^Sc is an essential component of the prion and that it originates from PrP^C, other aspects of prion diseases remain to be clarified, in particular the mechanism by which prions trigger neurodegeneration. Indeed, while PrP^Sc accumulates relatively rapidly, neurodegeneration takes a much longer period of time to occur and is directly dependent on PrP^C expression in the brain (Sandberg et al., 2011). In other words, it is still unclear whether TSE pathogenesis arises from a gain of PrP^Sc toxicity, or from a loss of PrP^C function, or from a combination of the two events.

Interestingly, recent research has shown that a “prion-like” propagation mechanism might also apply to misfolded proteins associated with the more common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, and amyotrophic lateral sclerosis (ALS) (Soto, 2003). These diseases, clustered as protein misfolding disorders (PMDs), although not yet showing infectious characters, could however have molecular mechanisms responsible for protein misfolding and aggregation similar to those assumed for TSEs, including the spread of neurotoxic protein assemblies throughout the nervous system (Soto, 2011). It is therefore feasible to hypothesize that future and complete understanding of the pathogenesis of prion diseases will also provide crucial insights into that of all PMDs.

### 1.3 CELLULAR PRION PROTEIN

#### 1.3.1 GENE

PRNP, the chromosomal gene encoding PrP^C, is highly conserved in all mammals, being almost 90% of homology between the murine and human genes (Chesebro et al., 1985) - and other species, such as birds (Gabriel et al., 1992), reptiles (Simonic et al., 2000), amphibians (Strumbo et al., 2001), and fish (Oidtmann et al., 2003).

The human PrP gene is present as a single copy and is located on the short arm of chromosome 20 (Sparkes et al., 1986). It contains two exons (exon 1 and 2), separated by one intron. Exon 1, containing untranslated sequences, includes the promoter and termination sites, while exon 2 contains the whole open reading frame (ORF) that codes for PrP^C (Basler et al., 1986; Lee et al., 1998). The PrP promoter, lacking the TATA box, contains the CCAAT element and multiple copies
of the GC-rich repeat, a canonical binding site for the transcription factor Sp1 (McKnight and Tjian, 1986). Several evidences indicate that PRNP expression may also depend on the chromatin structure (Cabral et al., 2002) and other transcription factors, e.g., AP2, MZF-1, MEF2 and MyT1 (Linden et al., 2008).

PrP\textsuperscript{C} mRNA is constitutively present in the adult brain, and it is expressed by a tightly regulated process during brain development and neuronal differentiation (Chesebro et al., 1985; Oesch et al., 1985).

Several point mutations within PRNP are linked to TSE familial forms, which are supposed to destabilize the native PrP\textsuperscript{C} conformation and favor PrP\textsuperscript{Sc} formation (Aguzzi et al., 2008). Familial CJD is caused by autosomal dominant insertions of octarepeats (see below) present in the N-terminus, or point mutations in the C-terminus between the second and the third helices (Owen et al., 1989); familial GSS by mutations in the sequence of the central domain (Tateishi et al., 1996), while FFI by the D178N aminoacid substitution, associated with the presence of methionine homozygosity (MM) at codon 129 (Goldfarb et al., 1992). The importance of codon 129 polymorphism (methionine/valine) is strengthened by the observation that the same D178N mutation associated with 129MV results in a different disease phenotype, i.e. CJD (Zarranz et al., 2005).

1.3.2 STRUCTURE AND METABOLISM

PrP\textsuperscript{C} is a glycoprotein expressed in almost all tissues of vertebrates, predominantly in the central nervous system (CNS) (Horiuchi et al., 1995).

The protein structure consists of a flexible N-terminal tail and a globular C-terminus. In the latter there is a glycosylphosphatidylinositol (GPI) anchor that tethers PrP\textsuperscript{C} to the external surface of the plasma membrane (PM) in cholesterol- and sphingolipid-rich domains, called lipid rafts (Taylor and Hooper, 2006). The protein, however, may localize to non-raft domains especially during the clathrin-mediated endocytic process (Magalhaes et al., 2002). As revealed by NMR studies, the C-terminus is highly structured, harboring two anti-parallel β-sheets and three α-helices (1-2-3) (Riek et al., 1996; Zahn et al., 2000). In contrast, the N-terminus lacks identifiable secondary structure at least under the used experimental conditions (Donne et al., 1997).

PrP\textsuperscript{C} is synthesized in the rough endoplasmic reticulum (ER) and transits through the Golgi apparatus along the secretory way to the cell surface, during which is subjected to several posttranslational modifications (Béranger et al., 2002; Stahl et al., 1987). For example, the primary human sequence of 253 amino acids is reduced to the mature form of 208 amino acids,
after the removal of the first 22 amino acids and of the 231-253 amino acid stretch at the C-end. At the C-terminus, the GPI anchor is then attached, a disulfide bond connecting cysteines 179 and 214 is formed (Zahn et al., 2000), while the dispensable glycosylation at Asn181 and Asn197 generates three – mono-, di- and un-glycosylated - PrP<sup>C</sup> isoforms (Haraguchi et al., 1989).

Notably, the N-terminal region contains a stretch of octapeptide repeats (PHGGGWGQ), capable to bind Cu<sup>2+</sup> (Hornshaw et al., 1995; Miura et al., 1996). In addition to the cell Cu<sup>2+</sup> metabolism, it has been proposed that binding to Cu<sup>2+</sup> could affect the folding stability and structure of PrP<sup>C</sup> N-terminus (Younan et al., 2011).

### 1.3.3 FUNCTION

Albeit the identification of PrP<sup>C</sup> dates back to more than 30 years ago (Basler et al., 1986), the physiological function of the protein is still unknown. To this end, several lines of PrP-KO mice have been engineered (Büeler et al., 1992; Manson et al., 1994) that, although resistant to prion infection as previously mentioned, displayed a normal lifespan and no developmental or anatomical abnormalities (Büeler et al., 1992; Manson et al., 1994), except for mild neurophysiologic and behavioral deficits upon aging (Bremer et al., 2010; Criado et al., 2005; Nazor et al., 2007). The lack of an overt phenotype has thus led to the hypothesis that compensatory mechanisms could mask the cellular effects of the PrP<sup>C</sup> absence, which would become evident only under stress conditions. This was recently proved in both hematopoietic cells (Zhang et al., 2006) and adult skeletal muscles (Stella et al., 2010).

Over the years, many in vivo and in vitro strategies have been adopted to unravel the enigmatic function of PrP<sup>C</sup>. These studies not only have revealed that PrP<sup>C</sup> is involved in Cu<sup>2+</sup> metabolism, but also suggested that it serves against oxidative injury and apoptosis and in cell adhesion, migration, proliferation and differentiation, following the interaction with several extracellular partners or by taking part in multicomponent signaling complexes at the cell surface (Aguzzi et al., 2008; Linden et al., 2008). A definitive answer is however still lacking. On the other hand, given the proposed plethora of function one may hypothesize that PrP<sup>C</sup> could act as a scaffold protein in different cell surface complexes, and that specific signaling pathways get activated depending on the type and state of the cell, the expression level of PrP<sup>C</sup>, and the local availability of extracellular and/or intracellular signalling molecules (Peggion et al., 2011). In this framework, it has been proposed that the interaction of PrP<sup>C</sup> with the stress-inducible protein 1 (STI1) leads to the capacity of PrP<sup>C</sup> to bind to the α7-nicotinic-acetylcholine receptor (α7nAChR). The subsequent activation of the receptor could increase cytosolic Ca<sup>2+</sup> levels thus triggering a
neuroprotective signal through the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway and neurite outgrowth through the extracellular signal-regulated kinase (ERK) pathway (Zanata et al., 2002; Lopes et al., 2005; Beraldo et al., 2011).

Taken together, these and other observations all point to the notion that PrP\textsuperscript{C} has a beneficial role in the cell, thus favoring the possibility that, in prion disease, neurodegeneration is also due to a loss of PrP\textsuperscript{C} function (Nazor et al., 2007) rather than to only the deadly gain of function by PrP\textsuperscript{Sc} (Aguzzi et al., 2008).

1.4 PrP\textsuperscript{C} AND Ca\textsuperscript{2+} HOMEOSTASIS

Ca\textsuperscript{2+} is the major intracellular messenger responsible for many important cell processes, including gene regulation, hormone and neurotransmitter release, muscle contraction and, last but not the least, cell survival (Berridge et al., 2003). At rest conditions, cytosolic Ca\textsuperscript{2+} concentrations are maintained at very low levels (0.1-0.5 μM) by buffer systems and by the action of pumps/transporters that extrude the ion from the cytosol (Fedrizzi and Carafoli, 2011). The increase of Ca\textsuperscript{2+} levels, deriving from the entry in the cytosol from the extracellular space or intracellular stores, generates Ca\textsuperscript{2+}-mediated signals linked to numerous processes. Thus, Ca\textsuperscript{2+} concentration and movements must be kept under careful control, so as to allow cells to function correctly. Were this control to fail, the cell would then be in serious danger because uncontrolled Ca\textsuperscript{2+} levels trigger vicious processes, including the cell demise (Carafoli, 2005).

In neurons, Ca\textsuperscript{2+}-mediated signals regulate also synaptic plasticity, neurite outgrowth and synaptogenesis (Mattson, 2007). Several reports have demonstrated that dysregulation of Ca\textsuperscript{2+} homeostasis is one of early events leading to neurodegeneration in disorders such as Alzheimer’s, Huntington’s and Parkinson’s disease (Bezprozvanny, 2009). With respect to PrP\textsuperscript{C} pathophysiology, electrophysiologic studies, or use of chemical Ca\textsuperscript{2+} indicators, have highlighted that alterations of Ca\textsuperscript{2+} homeostasis occur in animal and cell models of prion infection, leading to impairment of Ca\textsuperscript{2+}-dependent neuronal excitability, long-term potentiation (LTP) and synaptic plasticity (reviewed in Peggion et al., 2011). Importantly, similar disturbances have been reported in PrP-KO models. For example, electrophysiologic studies on CA1 hippocampal slices reported that PrP-KO neurons exhibited a significantly weakened LTP and reduced slow after hyperpolarization (AHP) than in WT neurons (Mallucci et al., 2002; Powell et al., 2008). It is good to remind that AHP and LTP are processes closely related to Ca\textsuperscript{2+} homeostasis. Indeed, AHP is mediated by Ca\textsuperscript{2+}-activated K\textsuperscript{+} channels whose activation causes membrane depolarization (Sah and Davies, 2000), while LTP, which involves Ca\textsuperscript{2+}-mediated glutamate receptors such as N-
methyl-D-aspartic acid (NMDAR)-, and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, receptors (Lynch, 2004), works together with long-term depression (LTD) in regulating synaptic plasticity (essential for learning and memory).

More recently, Zamponi and coworkers have demonstrated a physical and functional interaction between PrP\textsuperscript{C} and the NMDAR (Khosravani \textit{et al.}, 2008), whereby PrP\textsuperscript{C} would exert a neuroprotective role by selectively inhibiting a specific NMDAR subunit (NR2D). Accordingly, PrP-KO hippocampal neurons display increased excitability and enhanced glutamate excitotoxicity that can be reversed by blocking NMDAR activity. Other groups have demonstrated that PrP\textsuperscript{C} can associate also with, and modulate, other glutamate receptors, as kainite-sensitive receptors (GluR6/7), and group I metabotropic glutamate receptors (mGluR1 and mGluR5) following the binding of PrP\textsuperscript{C} to laminin γ\textsubscript{1} chain (Ln- γ\textsubscript{1}) (Beraldo \textit{et al.}, 2011; Carulla \textit{et al.}, 2011). Specifically, in the case of GluR6/7, it has been proposed that PrP\textsuperscript{C} inhibits the interaction of GluR6/7 with the postsynaptic density 95 protein (PSD-95), thus protecting neurons from excitotoxicity and cell death (Carulla \textit{et al.}, 2011). Instead, Beraldo \textit{et al.} (2011) demonstrated that PrP\textsuperscript{C} bound to Ln- γ\textsubscript{1} activates mGluR1 and mGluR5, and that the consequent Ca\textsuperscript{2+} release from the ER promotes the protein kinase C (PKC)-dependent activation of ERK1/2 that mediates neuritogenesis.

Use of aequorin isoforms, Ca\textsuperscript{2+}-sensitive photoprobes genetically targeted to specific cellular domains, has allowed our laboratory to provide more explicit insights into the involvement of PrP\textsuperscript{C} in the control of local (PM, cytosol, ER, mitochondria) Ca\textsuperscript{2+} homeostasis in model cells or primary cultured cerebellar granule neurons (CGNs) expressing, or not, PrP\textsuperscript{C} (Brini \textit{et al.}, 2005; Lazzari \textit{et al.}, 2011). By this approach, it was found that PrP-KO CGNs display a dramatic increase of store-operated Ca\textsuperscript{2+} entry (SOCE) and reduced steady-state ER Ca\textsuperscript{2+} levels with respect to WT neurons (Lazzari \textit{et al.}, 2011), and that these effects could be due – at least in part – to the significantly decreased expression of the plasma membrane (PMCA)-, and sarco-ER (SERCA)-Ca\textsuperscript{2+}-ATPases in neurons lacking PrP\textsuperscript{C}.

1.5 PrP\textsuperscript{C} AND ALZHEIMER’S DISEASE

Alzheimer’s disease (AD), described for the first time by Alois Alzheimer in 1907 (Alzheimer, 1907), is the most common cause of dementia in adults. AD is a multifactorial disease that has a genetic or sporadic nature. Although many therapeutics are now available to slow the neurodegenerative progression, as yet there is no efficient way to halt or prevent AD (Citron, 2010).
AD is characterized by the deposition inside neurons of neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein (a microtubule-associated protein), and of plaques, or amyloids, in the extracellular space (Katzman, 1986). The major constituents of plaques are the amyloid-β (Aβ) peptides (Glenner and Wong, 1984), which derive from the proteolytic cleavage of the transmembrane amyloid precursor protein (APP) by the activity of β- and γ-secretases. Initially, according to the amyloid cascade hypothesis (ACH) (Hardy and Higgins, 1992), tangles and plaques have been considered the primary cause of the pathogenesis of AD, whereby monomers of Aβ peptides would aggregate in dimers, trimers and higher order oligomers, ultimately forming the insoluble fibrils and plaques. Soon after, however, their correlation with disease onset and severity (Rushworth and Hooper, 2010) made it clear that soluble Aβ oligomers were the major neurotoxic species in AD. Aβ peptides can be composed by 36 to 43 amino acids; yet it is the Aβ1-42 peptide the prime suspect in AD pathogenesis, given its elevated levels in AD brains and the remarkable ability to aggregate in oligomers (Karran et al., 2011).

To explain the relationship between Aβ toxicity and neurodegeneration, the Ca\(^{2+}\) hypothesis of AD has been proposed (Khachaturian, 1994), in light of data showing that Aβ oligomers disrupt neuronal Ca\(^{2+}\) homeostasis causing, in particular, a cytosolic Ca\(^{2+}\) overload by enhancing its entry from the extracellular space, and release from internal stores. This could well explain some AD-related processes such as excitotoxicity, impairment of LTP and LTD and neuronal apoptosis (Demuro et al., 2010; Walsh et al., 2002).

Ca\(^{2+}\) (dys)homeostasis is thus a trait common between AD and prion disease, but other aspects link the two disorders. For example, the Aβ deposits observed in some CJD cases (Muramoto et al., 1992), the presence of PrP\(_{C}\) in plaques of a subset of AD brains (Voigtländer et al., 2001), or the Met/Val 129 polymorphism of PRPN that is considered a possible risk factor for early onset-AD (Dermaut et al., 2003). But the most recent and intriguing connection between PrP\(_{C}\) and AD is the proposition that PrP\(_{C}\) acts as a high-affinity receptor for Aβ oligomers and mediates their neurotoxic effects (Laurén et al., 2009). After the first report, others have confirmed that Aβ1–42 oligomers indeed bind with high affinity the PrP\(_{C}\) central region (Balducci et al., 2010; Calella et al., 2010), but the notion that PrP\(_{C}\) is required for the Aβ oligomer-mediated cognitive impairment and cell death has been questioned. Indeed, a dispute on this issue is still ongoing, with reports favoring (Alier et al., 2011; Barry et al., 2011; Bate and Williams, 2011; Chen et al., 2010; Chung et al., 2010; Freir et al., 2011; Gimbel et al., 2010; Kudo et al., 2012; Resenberger et al., 2011; Um et al., 2012; You et al., 2012; Zou et al., 2011) or denying (Cissé et al., 2011; Kessels...
et al., 2010) that PrP\textsuperscript{C} mediates A\textbeta-induced synaptic damage and neuronal demise. As for the mechanisms through which this may occur, however, it has been proposed that A\textbeta-PrP\textsuperscript{C} docking could cause LTP impairment through the activation on Fyn, a kinase member of the Src family of tyrosine kinases (SFK), which in turn would phosphorylate the NMDAR subunit NR2B, thus modifying NMDAR activity and promoting perturbations of Ca\textsuperscript{2+} homeostasis (Um et al., 2012). A possible explanation for the discrepant results on the functional effects of A\textbeta-PrP\textsuperscript{C} interaction could reside in the use of different A\textbeta preparations, animals, tissues, AD models and type of behavioral tests.

Another dispute in the context of PrP\textsuperscript{C}-AD cross-talk was born on the possibility that PrP\textsuperscript{C} modulates A\textbeta production. On the one hand, Hooper and colleagues reported that the levels of A\textbeta peptides were higher in PrP-KO mice compared to control animals, and provided evidence that PrP\textsuperscript{C} down-regulates the production of A\textbeta in the brain through inhibition of \beta-secretase (Parkin et al., 2007). On the other hand, other groups reported that the deletion of PrP\textsuperscript{C} failed to alter A\textbeta levels in transgenic mice expressing human APP with the Swedish familial mutations (APP\textsubscript{Swe}) (Callella et al., 2010; Gimbel et al., 2010). This conundrum was eventually resolved when it was found that PrP\textsuperscript{C} interacts with, and retains, the immature form of \beta-secretase in the secretory pathway, thus reducing the amount of the protease at the cell surface and in endosomes. Of consequence, PrP\textsuperscript{C} has an inhibitory effect on the amyloidogenic processing of APP\textsubscript{WT}, which is cleaved by \beta-secretase in endosomes, while exerting the opposite effect on APP\textsubscript{Swe}, which is processed in the secretory pathway (Griffiths et al., 2011). Thus, PrP\textsuperscript{C} differentially affects the metabolism of APP\textsubscript{WT} and APP\textsubscript{Swe}, suggesting that it may play a key protective role against sporadic AD.

In conclusion, the hypothesis that PrP\textsuperscript{C} is intimately linked to AD is plausible, in particular with respect to the production of, and binding to, A\textbeta peptides. However, the capacity to influence A\textbeta neurotoxic effects is more difficult to decode, not only for the ability of A\textbeta peptides to bind to other proteins and cell membranes, but also for the pleiotropic nature of PrP\textsuperscript{C}.
2. MATERIALS AND METHODS

2.1 ANIMALS

The animals used in this study were kindly provided by the MRC Prion Unit (London, UK), and belonged to the following congenic mouse lines (Mallucci et al., 2002) bearing an almost pure FVB genotype:

- PrP-KO mice (line F10)
- transgenic mice (line Tg46) in which PrP\(^C\) expression was rescued at physiologic levels over the F10 PrP-KO genetic background.

In particular, the F10 PrP-KO line was generated by crossing for 10 generations Prnp\(^{0/0}\) mice of the Zurich-I line (having a mixed Sv129/C57B genetic background, Büeler et al., 1992) with WT FVB mice, after which PrP\(^{+/}\) mice were crossed with each other to obtain a PrP-KO progeny with an almost pure (>99%) FVB genotype. To rule out the possibility that any observed difference in our experiments could be due to the (<1%) background genetic difference between PrP-KO and WT FVB mice, we used as controls the Tg46 mouse line, given that this line has the same genetic background of F10 mice, except for the transgene containing the murine PrP coding region.

It is important to note that some of the PrP-KO phenotypes here described, which were evident at the beginning of the project, progressively disappeared over time. We reasoned that this could have been caused by a progressive genetic drift, due to the continuous inbreeding to which homozygous F10 mice were subjected. Thus, we decided to establish a new PrP-KO mouse colony starting from other F10 mice provided by the London MRC Prion Unit. Months were needed to re-establish a sufficiently expanded colony to perform experiments regularly. This substantially delayed the progression of the project. Of course, data obtained from mice suspected to underwent the hypothesized genetic drift were excluded by every kind of analysis presented here.

All aspects of animal care and experimentation have been performed in compliance with European and Italian (D.L. 116/92) laws concerning the care and use of laboratory animals. The Institution in which the work was carried out has been acknowledged by the Italian Ministry of Health, and by the Ethical Committee of the University of Padova, for the use of mice for experimental purposes.
2.2 PRIMARY CULTURES OF CEREBELLAR GRANULE NEURONS

Cerebellar granule neurons were obtained from 7 day-old mice and each CGN primary culture was prepared by combining cerebella derived from four to six littermates, as described in Levi et al. (1984). Animals were killed by decapitation, and the cerebellum was quickly removed and placed in ice-cold isolation buffer (IB) [124 mM NaCl, 5.4 mM KCl, 1 mM NaH$_2$PO$_4$, 0.5 mM MgSO$_4$, 3.6 mM dextrose, 0.3% (w/v) bovine serum albumin (BSA), 25 mM HEPES/KOH (pH 7.4)]. After carefully removing meningeal layers and blood vessels, the cerebellar tissue was gently minced and dissociated in 5 ml of IB added with trypsin (0.8 mg/ml) (12 min, 37°C). Trypsin activity was stopped by adding an equal volume of IB supplemented with deoxy-ribonuclease I (0.012 mg/ml) (Roche Corporation), a trypsin inhibitor (0.08 mg/ml) (Sigma), and 0.25 mM MgSO$_4$. After centrifugation (180 g, 5 min), the pellet was gently resuspended in IB (5 ml) supplemented with deoxyribonuclease I (0.08 mg/ml), the trypsin inhibitor (0.52 mg/ml), and 1.25 mM MgSO$_4$. After sedimenting the cell debris, the dissociated CGN-containing supernatant was added with an equal volume of IB containing 1.2 mM MgSO$_4$ and 1.4 mM CaCl$_2$, and centrifuged (180 g, 5 min). Finally, the pellet was gently resuspended in culture medium (Minimum Essential Medium Eagle (Sigma)), supplemented with 10% heat-inactivated foetal calf serum (Euroclone), 2 mM L-glutamine (Gibco), 0.1 mg/ml gentamycin (Gibco), and KCl (25.4 mM final K$^+$ concentration).

CGN were seeded at a density of 9 · 10$^5$ cells (onto poly-L-lysine-coated 13-mm coverslips) for immunocytochemistry and luminometer assays, or at a density of 3 · 10$^6$ cells (onto 35-mm poly-L-lysine-coated plates) for biochemical assays, and cultured in a humidified incubator (37°C, 5% CO$_2$ atmosphere). 48 h after plating, cytosine arabinoside (AraC, final concentration 0.04 mM, Sigma) was added to the culture to inhibit the proliferation of non-neuronal cells. CGN were always used after a total of 96 h in culture.

2.3 IMMUNOCYTOCHEMICAL ANALYSIS

Before experiments, the presence of astrocytes (the major non-neuronal contaminant of CGN cultures) was routinely checked following the immunocytochemical staining of an astrocytic marker (i.e., the glial fibrillary acidic protein, GFAP). To this purpose, 96 h-cultured CGN were rinsed twice with phosphate-buffered saline (PBS), fixed (30 min, 4°C) with paraformaldehyde [2% (w/v) in PBS], rinsed again, permeabilised (5 min, 4°C) with Triton-X100 [0.1% (w/v) in PBS], and treated with 50 mM NH$_4$Cl to quench cell auto-fluorescence. Cells were then incubated (1 h, 25°C) with anti-GFAP rabbit polyclonal antibody (pAb) (Dako), diluted (1 : 500) in PBS with BSA.

22
0.5% (w/v). After extensive washings with PBS, cells were treated (1 h, 25°C) with FITC conjugated anti-rabbit IgG secondary antibody (Santa Cruz Biotechnology) [1 : 500 in PBS with BSA 0.5% (w/v)]. Finally, CGN were counter-stained with Hoechst 33258 (Molecular Probes, Invitrogen) (1 µg/ml in PBS) to visualize nuclei, and mounted with glycerol [30% (v/v) in PBS] onto glass slides for observation with an inverted fluorescence microscope (Axiovert 100, Zeiss), equipped with a computer assisted CCD camera (AxioCam, Zeiss). These assays indicated that contamination of 96 h-old CGN cultures by GFAP-positive cells was always below 3%.

2.4 CONSTRUCTION OF LENTIVIRAL VECTORS FOR AEQUORINS, AND CELL INFECTION

We have monitored fluctuations of Ca²⁺ concentrations [Ca²⁺] in the cytosolic domains proximal to the PM ([Ca²⁺]pm), in the cytoplasm ([Ca²⁺]cyt), in the lumen of the endoplasmic reticulum (ER) ([Ca²⁺]er), or in the mitochondrial matrix ([Ca²⁺]ml). To this end, we have used a lentiviral expression system that transduces into CGN the chimeric constructs encoding aequorin (AEQ) linked to the influenza virus hemagglutinin (HA) epitope tag, and to defined targeting signals that determined the specific localization of the Ca²⁺ probe inside the cell. In particular, AEQ was N-terminally linked to the synaptic-associated protein 25 (SNAP-25), to the constant region (CH1 domain) of the Igγ2b heavy chain, or to the subunit VIII of human cytochrome c oxidase (COX8), which target the probe to PM subdomains (pmAEQ, Marsault et al., 1997), the ER lumen (erAEQ, Montero et al., 1995) and the mitochondrial matrix (mtAEQ, Rizzuto et al., 1992), respectively. For cytosolic AEQ (cytAEQ, Brini et al., 1995), no further modification was introduced in HA1-tagged AEQ construct.

The third generation packaging system used for this study includes 2 packaging plasmids (pMDLg/pRRE and pRSV-Rev), an envelope plasmid (pMD2.VSVG), and a transfer plasmid (pLV) in which the cDNA encoding one of the different AEQ chimeric constructs has been cloned. Lentiviral particles obtained with this system can infect both replicating and non-replicating cells (for example neuronal cells), and integrate their genetic material into the host cell allowing for stable, long-term expression of the transgene. They were produced as described in Follenzi and Naldini (2002). Briefly, HEK293T packaging cells (15*10^6 cells in 150 mm culture plates), cultured in Dulbecco’s modified Eagle’s medium (Sigma) supplemented with 10% foetal calf serum, 2 mM L-glutamine, 40 µg/ml penicillin/streptomycin (Euroclone), were co-transfected (24 h after plating) with pMDLg/pRRE, pMD2.VSVG, pRSV-Rev plasmids and the desired pLV-AEQ construct, by means of the calcium-phosphate transfection method. After 16 h, the transfection medium was replaced with fresh culture medium, and cells were grown for 72 h, after which the culture
medium was collected. Viral particles were harvested by ultracentrifugation (50,000 g, 2 h), resuspended in 0.2 ml of phosphate buffered saline (PBS), and stored at -80°C until use.

CGN were treated with lentiviral particles (diluted in culture medium) 24 h after plating, and, after additional 24 h, added with an equal volume of culture medium supplemented with 0.08 mM AraC (see above). Vector production and gene delivery were performed in a biosafety level-2 environment.

2.5 AEQ-BASED Ca\(^{2+}\) MEASUREMENTS

AEQ, originally isolated from the luminescent jellyfish *Aequorea Victoria*, is a 189 amino acid protein containing three high-affinity Ca\(^{2+}\)-binding sites (EF-hand type). The holo-protein is covalently linked to a hydrophobic prosthetic group, coelenterazine. Upon Ca\(^{2+}\) binding AEQ undergoes a conformational change that triggers the oxidation of the coelenterazone to coelenteramide, resulting in the emission of light (λ\(_{\text{max}}\) = 469 nm).

In our experiments, the chimeric apo-AEQ expressed by infected CGN was reconstituted into the active photo-protein form by adding coelenterazine to an appropriate incubation medium just before Ca\(^{2+}\) measurements. Light emission by holo-AEQ molecules then allowed the with-time monitoring of the Ca\(^{2+}\) concentration in the cell compartment/organelle to which the photoprotein was targeted.

AEQ-based Ca\(^{2+}\) measurements were performed by means of a computer-assisted luminometer equipped with a perfusion system, always using 96 h-cultured CGN. Depending on the type of the measurement, neurons were stimulated as described below.

All experiments ended by lysing cells with digitonin (100 µM, Sigma) in a hypotonic Ca\(^{2+}\)-rich solution (10 mM CaCl\(_2\) in H\(_2\)O), to discharge the remaining aequorin pool. The light signal was digitalized and stored for subsequent analyses. Luminescence data were calibrated off-line into [Ca\(^{2+}\)] values, using a computer algorithm based on the Ca\(^{2+}\) response curve of AEQ (Brini *et al.* 1995).

AEQ is well suited for measuring [Ca\(^{2+}\)] between 0.5 and 10 µM. This optimal range, however, is frequently lower than the [Ca\(^{2+}\)] variations occurring in some cell compartments. For this reason, it was necessary to reduce the Ca\(^{2+}\) affinity of the photoprotein (by ~50-fold) by the Asp119Ala mutation in the Ca\(^{2+}\) binding sites (Kendall *et al.*, 1992) (i.e. for the pmAEQ, mtAEQ and erAEQ), and to use a modified coelenterazine, *coelenterazine n* (in the case of erAEQ). These modifications allow measuring [Ca\(^{2+}\)] higher than 100 µM.
For measuring Ca\(^{2+}\) movements elicited by SOCE (store operated Ca\(^{2+}\) entry, a mechanism of Ca\(^{2+}\) influx stimulated by depletion of intracellular Ca\(^{2+}\) stores, see chapter 3.3.1), in the cytosolic domains beneath the PM, the cytosol, and the mitochondria, CGN were incubated (1 h, 37°C, 5% CO\(_2\) atmosphere) in modified Krebs-Ringer buffer [KRB, 125 mM NaCl, 5 mM KCl, 1 mM Na\(_3\)PO\(_4\), 1 mM MgSO\(_4\), 5.5 mM glucose, 20 mM HEPES (pH 7.4)] supplemented with EGTA (100 \(\mu\)M) (to deplete intracellular Ca\(^{2+}\) stores), and the prosthetic group coelenterazine (5 \(\mu\)M, Fluka) (to reconstitute functional pmAEQ, cytAEQ or mtAEQ). After transferring the cell-containing coverslip to the thermostatted chamber of the luminometer, experiments started by perfusing cells with KRB, first containing EGTA (100 \(\mu\)M), then CaCl\(_2\) (1 mM), which resulted in transients [Ca\(^{2+}\)] rises in all monitored cell domains. Then, after about 700 s, during which [Ca\(^{2+}\)] returned to the basal level in the different cell domains, cells were perfused for 30 seconds with Mg\(^{2+}\)-free KRB containing CaCl\(_2\) (1 mM), and then with the same buffer added with glutamate (100 \(\mu\)M) (Sigma) and glycine (10 \(\mu\)M) (Sigma). This protocol elicited a second Ca\(^{2+}\) transient due to Ca\(^{2+}\) entry from the extra-cellular space through ionotropic glutamate receptors, and release of the ion from the ER through inositol 1,4,5-triphosphate (IP\(_3\))-sensitive channels activated via metabotropic glutamate receptors at the PM. In other experiments, glutamate was replaced by NMDA (50 \(\mu\)M), to stimulate ionotropic NMDA receptors exclusively.

A different protocol was used when measuring [Ca\(^{2+}\)]\(_{\text{er}}\) by means of erAEQ. In this case, CGN were washed three times with KRB supplemented with 1 mM EGTA, left 10 min at 37°C (5% CO\(_2\) atmosphere), and then incubated (1 h, 4°C) in KRB supplemented with 5 \(\mu\)M ionomycin (Sigma), 500 \(\mu\)M EGTA and 5 \(\mu\)M coelenterazine \(\eta\) (Tebu-bio Italy). After transferring the coverslip to the luminometer chamber, experiments started by perfusing cells with KRB containing (in sequence): 500 \(\mu\)M EGTA (2 min); 2% BSA and 1 mM EGTA (3 min); 500 \(\mu\)M EGTA (2 min); 1 mM CaCl\(_2\). This protocol provided a means of replenishing intracellular stores, and was followed by perfusion with KRB containing EGTA (100 \(\mu\)M) and glutamate (100 \(\mu\)M) to provoke Ca\(^{2+}\) release from the ER through IP\(_3\)-sensitive channels stimulated by metabotropic glutamatergic receptors.

### 2.6 \(\alpha\)β1-42 PEPTIDE PREPARATION AND TREATMENT

\(\alpha\)β1-42 oligomers were prepared according to the following procedure. Chemically synthetized and lyophilized \(\alpha\)β1-42 peptides (kindly provided by Dr. A.F. Hill - Univ. of Melbourne) were dissolved in 1 mg/ml of 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and incubated (1 h, room temperature (RT)) to remove pre-existing aggregates. The suspension was then divided into aliquots (each consisting of about 50 \(\mu\)g of peptide), HFIP was removed by evaporation, and
aliquots were stored at -80°C. Just before use, each peptide aliquot was dissolved in 20 mM NaOH (50 µl), sonicated (15 min on ice) in a bath sonicator, and diluted in PBS to a final volume of 250 µl. The suspension was then centrifuged (14,000 g, 5 min) to pellet aggregates, and Aβ1-42 concentration was measured by absorbance spectrophotometry (λ = 214 nm). Finally, Aβ1-42 peptides were incubated (1 h, 37°C) to obtain oligomers, and then administered to CGN at a final concentration of 5 µM of monomer equivalent. Incubation of CGN with Aβ1-42 oligomers was carried out during the AEQ reconstitution step (see above) in KRB supplemented with EGTA and coelenterazine (1 h, 37°C, 5% CO₂ atmosphere).

2.7 CHARACTERIZATION OF Aβ1-42 PEPTIDE

For each used aliquot of the Aβ1-42 peptide, we performed qualitative analyses by Western blotting to characterize the oligomerization state of each preparation. To this purpose, small peptide samples (~300 ng) were collected both before and after the oligomerization process. Samples were immediately diluted in a sample buffer containing 12% sodium dodecyl-sulphate (SDS) (w/v), 6% mercaptoethanol (v/v), 30% glycerol (w/v), 0.05% Coomassie blue, 150 mM Tris/HCl (pH 7.0), and were separated using a urea (6M)-containing tricine gel (16% (w/v) acrylamide) that offers a high resolution capacity in the small proteins and peptides range (Schägger, 2006).

Proteins were then electro-blotted onto polyvinylidene fluoride (PVDF) membranes of 0.22 µm pore size (Millipore). Membranes were incubated (1 h, RT) with a blocking solution containing non-fat dry milk (5% (w/v), Bio-Rad) diluted in Tris-buffered saline added with 0.02% (w/v) Tween-20 (TBS-T 0.02%). Then, membranes were incubated over-night (4 °C) with anti-Aβ mouse monoclonal antibody (mAb) 6E10 (Covance) diluted (1:1000) in the blocking solution. After three 10 min-washes with TBS-T 0.02%, membranes were incubated (1 h, RT) with a horseradish peroxidase-conjugated anti-mouse IgG secondary antibody (Santa Cruz Biotechnology) (1 : 3000 in the blocking solution). Immunoreactive bands were visualized and digitalized by means of a digital Kodak Image Station, using an enhanced chemiluminescence reagent kit (Millipore). For densitometric analysis, band intensities were evaluated by the Kodak 1D image analysis software.

2.8 WESTERN BLOT ANALYSES PrP C AND SYNAPTOPHYSIN EXPRESSION, AND FOR p59 Fyn AND Erk1/2 ACTIVATION

For Western blot assays, CGN were homogenized in either Laemmli sample buffer (10% glycerol (w/v), 2% (w/v) SDS, 62.5 mM Tris/HCl (pH 6.8), protease inhibitor cocktail (Roche)) for PrP C and
synaptophysin expression, or a buffer containing 10% glycerol (w/v), 2% (w/v) SDS, 62.5 mM Tris/HCl (pH 6.8), 1.8 M Urea, 5 mM NaVO₄, protease inhibitor and phosphatase inhibitor cocktails (Roche), for analyzing of p59Fyn and ERK 1/2 activation, and boiled (5 min). The total protein content was determined by the Lowry method (Total Protein Kit, Micro Lowry, Peterson’s Modification, Sigma), using BSA as standard. Dithiothreitol (50 mM) and bromophenol-blue (0.004% (w/v)) were added to samples just before gel loading. SDS-PAGE was carried out using 10% acrylamide, and 20 µg of proteins loaded in each lane. Proteins were then electro-blotted onto nitrocellulose membranes (Bio-Rad Laboratories, Hercules, CA, USA), which were stained with Ponceau red (Ponceau S, Sigma) to verify equal loading and transfer. Membranes were incubated (1 h, RT) with a blocking solution that, depending on the used antibody, contained TBS added with 0.1% (w/v) Tween-20 (TBS-T) and 5% (w/v) non-fat dry milk, for synaptophysin; TBS-T added with 3% (w/v) BSA, for phospho-Src (pSrc), p59Fyn, phospho-Erk1/2 (pErk1/2) and total Erk1/2; or PBS added with 0.1% (w/v) Tween-20 (PBS-T) and 3% (w/v) BSA, for PrP and β-actin. Membranes were then incubated with the desired primary antibody (1 h, RT) diluted (see below) in the corresponding blocking solution. After three 10 min-washes with TBS-T (or PBS-T), membranes were incubated (1 h, RT) with a horseradish peroxidase-conjugated anti-mouse or anti-rabbit IgG secondary antibody (Santa Cruz Biotechnology) (1:3000 in the blocking solution), depending on the used primary antibody (see below). Immunoreactive bands were visualized and digitalized by means of a digital Kodak Image Station, using an enhanced chemiluminescence reagent kit (Millipore). For densitometric analysis, band intensities were evaluated by the Kodak 1D image analysis software, and normalized to the optical density of the corresponding lane stained with Ponceau red. For assessing the phosphorylation (activation) state of p59Fyn and Erk1/2, samples were always run in duplicate, and then probed in parallel with antibodies recognizing either the phosphorylated (p) and non-phosphorylated (total) forms of the target protein. The immunosignal intensity of pSrc and pErk1/2 was the normalized to those of total p59Fyn and total Erk1/2, respectively.

Antibodies

For immunoblotting, the following antibodies were used (dilutions in parenthesis): anti-PrP mouse monoclonal (m) antibody (Ab) 8H4 (1 : 6000, a kind gift of Dr. M. S. Sy, Case Western University, Cleveland, OH); anti-β-actin mouse mAb (1 : 4000, Sigma, cat. N. A5441); anti-synaptophysin rabbit polyclonal (p) Ab (1 : 2000, ProteinTech Group, cat. N. 17785-1-P); anti-p59Fyn rabbit pAb (1:1000, Cell Signalling Technology, cat. N. 4023); anti-pSrc rabbit pAb (recognizing the activatory phospho-site in all SFKs, which corresponds to pY416 in p59Fyn) (1:1000, Cell Signalling Technology, cat. N. 2101); anti- pErk1/2 mouse mAb (1:1500, Cell
Signalling Technology, cat. N. 9106S); anti-total Erk1/2 rabbit pAb (1:1500, Cell Signalling Technology, cat. N. 9102).
AIM OF THE WORK

Multiple and often contrasting experimental evidence, obtained by using cellular and animal models, has paradoxically thwarted the understanding of the physiological significance of PrP$^C$. Indeed, PrP$^C$ has been implicated in a plethora of cellular processes, from copper metabolism to the defense mechanisms against oxidative and apoptotic challenges, to the promotion of cell adhesion and maturation (Linden et al., 2008). In light of these multiple functions, a reasonable hypothesis is that the PrP$^C$ acts as a scaffold protein in different cell surface complexes, and that specific downstream signaling pathways get activated depending on the type and state of the cell, the expression level of PrP$^C$, and the local availability of extracellular and/or intracellular signaling PrP partners (Peggion et al., 2011). It is also possible to hypothesize that the common denominator of the various PrP$^C$ roles is Ca$^{2+}$, the major and multifaceted intra-cellular messenger, able to control - just as it has been proposed for PrP$^C$ - a large number of (patho)physiological processes ranging from cell survival to death.

The aim of this thesis was focused exactly on whether aspects of Ca$^{2+}$ metabolism are governed by PrP$^C$. This aim was pursued using primary cultures of cerebellar granule neurons (CGN) derived from mice expressing (Tg46) or not (PrP-KO) PrP$^C$, and subjected to different Ca$^{2+}$-mobilizing stimuli. Use of Ca$^{2+}$-sensitive photo-proteins (aequorins) genetically targeted to different cell domains allowed us to monitor local fluxes, i.e., at the plasma membrane, the cytosol, the lumen of the endoplasmic reticulum and the mitochondrial matrix, and to relate these movements to the presence of PrP$^C$. In an attempt to rationalize our findings by a molecular point of view, we also analyzed important signaling pathways through which PrP$^C$ could regulate Ca$^{2+}$ homeostasis.

Adding further interest and complexity to the puzzling picture of PrP$^C$ pathophysiology, recent findings have provided evidence that PrP$^C$ acts as a high-affinity receptor for Aβ1-42 peptide oligomers (Laurén et al., 2009; Balducci et al., 2010; Calella et al., 2010; Chen et al., 2010; Freir et al., 2011; Zou et al., 2011), which are considered the prime responsible for AD pathogenesis. However, while some reports proposed that PrP$^C$-Aβ interactions are crucial to AD-related impairment of synaptic plasticity and memory formation (Laurén et al., 2009; Gimbel et al., 2010; Alier et al., 2011; Barry et al., 2011; Freir et al., 2011; Um et al., 2012; You et al., 2012), others have argued against this possibility (Balducci et al., 2010; Calella et al., 2010; Kessels et al., 2010; Cissé et al., 2011). Based on the notion that neuronal Ca$^{2+}$ homeostasis is intimately related to learning and memory, and given availability of the above suited protocols and cell
paradigms, the present thesis has also investigated if and how oligomeric Aβ peptides induced PrPc-dependent alterations of Ca\(^{2+}\) movements.
3. RESULTS AND DISCUSSION

The study of the physiology of PrP\textsubscript{C} – the major topic of the present Ph.D. thesis – was carried out in the cell model system represented by primary neuronal cultures, specifically cerebellar granule neurons (CGNs), obtained from mice expressing (Tg46), or not (PrP-KO), PrP\textsubscript{C}. It is important to note that we have taken as true control the CGN those obtained from the transgenic Tg46 mice rather than from WT (FVB) mice, given that Tg46 animals express normal levels of PrP\textsubscript{C} (Lazzari \textit{et al.}, 2011) over the same genotype of the F10 PrP-KO mouse line (Mallucci \textit{et al.}, 2002). In other words, the only aspect that discriminates Tg46 from PrP-KO neurons is the presence of the PrP gene.

The first part of the work was focused on the role of PrP\textsubscript{C} in neuronal Ca\textsuperscript{2+} homeostasis. We pursued this goal by subjecting CGN (harboring or not PrP\textsubscript{C}) to stimuli that trigger cell Ca\textsuperscript{2+} movements, and by monitoring the movements using the Ca\textsuperscript{2+}-sensitive AEQ probes. The second part of the thesis was instead devoted to understanding whether PrP\textsubscript{C} is directly involved in A\textbeta\textsubscript{(1-42)} oligomers-mediated impairment of Ca\textsuperscript{2+} homeostasis, which could sustain the current hypothesis that PrP\textsubscript{C} acts as the receptor for A\textbeta-oligomers.

3.1 PURITY OF PRIMARY CGN CULTURES

By necessity, one of the first parameter of cultured CGN that we analyzed was the possible contamination by other cell types, specifically by astrocytes given their high replicative capacity. To this end, 96h-cultured CGN were routinely subjected to immunocytochemical assays using an antibody against the astrocytic marker, GFAP (Glial Fibrillary Acidic Protein). As shown in Fig.1, we found that the ratio between the number of astrocytes and the total number of cells labeled with the nuclear marker Hoechst, was on average less than 3%. This result allowed us to conclude that the (97%) degree of purity of the used CGN cultures was in accord with what reported in the literature (Carafoli \textit{et al.}, 1999).
Figure 1. Immunocytochemical assay shows that CGN cultures were > 97% pure. After 96 h in culture, CGN were fixed, permeabilised, and immunostained with an anti-GFAP pAb (red signal), and then counterstained with the nuclear marker Hoechst 33258 (blue signal). On average, the degree of contamination by astrocytes was less than 3%. Scale bar, 40 µm.

3.2 In vitro CGN MATURATION, AND DEVELOPMENTAL PrP$^C$ EXPRESSION IN Tg46 CGN

The second control consisted in analyzing the expression levels of PrP$^C$ during the in vitro neuronal differentiation process. As shown in Figure 3, Western blot analyses demonstrated that PrP$^C$ expression progressively increased from 24 to 96 h in Tg46 CGN, and that, as expected, PrP$^C$ was absent in PrP-KO neurons. This data indicates that suitable levels of PrP$^C$ are present in Tg46 neurons when subjected to experimentation.

Another necessary control consisted in verifying if, at the culture time point at which Ca$^{2+}$ measurements were performed, the PrP-KO CGN presented the same in vitro differentiation degree as their control counterpart. Growth of primary CGN in a medium supplemented with high concentrations of KCl (25.4 mM) is known to improve the long-term survival and purportedly mimics endogenous activity in developing cerebellum (Gallo et al., 1987). To ascertain whether this in vitro condition determined a similar maturation of PrP-KO and Tg46 CGN, we followed by Western blot the with-time expression of synaptophysin, a synaptic vesicle membrane protein (Elferink and Scheller, 1993), at different time points after CGN plating. As shown in Figure 2, the progressive rise of synaptophysin expression from 24 to 96 h indicates the progressive synaptic maturation of both Tg46 and PrP-KO CGN. Importantly, given that at each time point no statistically significant difference was observed in the expression of synaptophysin in CGNs with different PrP genotype, we could conclude that the absence of PrP$^C$ did not influence the in vitro maturation degree of neurons, in particular at 96 h of culture when neurons were used for AEQ-based experimentation and other tests.
Figure 2. PrP<sup>C</sup> expression progressively increases during the maturation of CGN obtained from Tg46 mice.

Tg46 and PrP-KO CGNs from 24 h to 96 h in culture were lysed and proteins (20 µg per lane) resolved by 10% SDS-PAGE under reducing conditions, electroblotted, and probed with an anti-PrP mAb 8H4. In the upper panel, a Western blot representative of 4 independent experiments is shown. To demonstrate equal protein loading and transfer, nitrocellulose membrane staining Ponceau red is also shown. Molecular mass standards are reported on the left. While in PrP-KO neurons no PrP-immunosignal is detectable, the expression level of all glycoforms of PrP<sup>C</sup>, i.e., unglycosylated (U), mono-glycosylated (M) and di-glycosylated (D) (right arrows), progressively increases during the differentiation of Tg46 CGN. This latter finding is also clearly shown by the bar diagram of the lower panel, reporting the densitometric analysis of PrP immuno-reactive bands from Tg46 samples. Values are mean ± SEM, n = 4.
Figure 3. *In vitro* cultured CGNs progressively mature in PrP-independent manner.
Tg46 and PrP-KO CGNs at different times *in vitro* were assayed for SyP expression by Western blot with anti-synaptophysin (SyP) pAb, detecting a 38 kDa band. In the upper panel, a Western blot representative of 4 independent experiments for each genotype, is shown. To verify equal protein loading and transfer, the same blot was immunolabelled with an anti-β-actin mAb. In the lower panel, the densitometric analysis of synaptophysin expression in Tg46 (blue bars) and PrP-KO (red bars) CGNs is reported. It is evident that the expression of the synaptic marker progressively increases from 24 to 96 h in both CGN genotypes, and that no statistically significant difference exists between Tg46 and PrP-KO neurons for all time points. Values are mean ± SEM, n=4.

Other experimental details are as in the legend to Figure 2.

3.3 INVOLVEMENT OF PrP<sub>C</sub> IN LOCAL Ca<sup>2+</sup> MOVEMENTS INDUCED IN CGN BY DIFFERENT STIMULI

3.3.1 INVOLVEMENT OF PrP<sub>C</sub> IN LOCAL Ca<sup>2+</sup> MOVEMENTS INDUCED BY SOCE

Depletion of intracellular Ca<sup>2+</sup> stores, primarily the ER, triggers the opening of Store-Operated Ca<sup>2+</sup> Channels (SOCCs), and the consequent influx of Ca<sup>2+</sup> from the extra-cellular space. This process, named Store-Operated Ca<sup>2+</sup> Entry (SOCE) (or Capacitative Calcium Entry), serves to refill intracellular stores and to elaborating long-term Ca<sup>2+</sup> signals (Parekh and Putney, 2005).

Little is known about the mechanisms of SOCCs activation, and the impact of this process in neuronal Ca<sup>2+</sup> homeostasis. Two protein families, however, have been identified as essential
components in SOCE: STIM (for Stromal Interaction Molecule) proteins, which are ER trans-
membrane proteins with EF hand domains that project into the ER lumen and permit the protein
to act as a sensor for luminal \([\text{Ca}^{2+}]_\text{i}\); Orai proteins, located to the PM and identified as the pore-
forming subunits of SOCCs. It has been proposed that, upon depletion of ER \(\text{Ca}^{2+}\) stores, \(\text{Ca}^{2+}\)
dissociates from the STIM EF-hand module, leading to oligomerization and redistribution of STIM
molecules into discrete ER membrane clusters opposed to the PM. This would promote the
physical interaction of STIM with Orai, the consequent recruitment of Orai into PM clusters, and
the ultimate activation of SOCE (Cahalan, 2009; Varnai et al., 2009).

Physiologically, SOCE is evoked by increased \([\text{IP}_3]\), which binds to, and opens, \(\text{IP}_3\) receptors at the
ER membrane (Takemura et al., 1989), or by other \(\text{Ca}^{2+}\)-releasing signals followed by \(\text{Ca}^{2+}\) release
from the stores (Parekh and Putney, 2005). Experimentally, however, the most suited way to
promote recordable SOCE relies on emptying ER \(\text{Ca}^{2+}\) stores by prolonged incubation of cells in
the absence of \(\text{Ca}^{2+}\). Thus, the first set of experiments here described started with 1h-incubation
of CGN in KRB supplemented with the prosthetic group coelenterazine and EGTA (see Materials
and Methods), serving to trigger both the reconstitution of functional holo-AEQ, and a
substantial release of ER \(\text{Ca}^{2+}\) leading to SOCCs activation.

The resulting local \(\text{Ca}^{2+}\) transients in different cell domains were compared in Tg46 and PrP-KO
CGN expressing the different AEQ chimerae (Fig. 4). In particular, Fig. 4A shows that the transient
rise of \([\text{Ca}^{2+}]_\text{pm}\) had a significantly higher (−40%) peak value (30.40 ± 1.48 \(\mu\text{M}, \text{PrP-KO CGN}; 21.41
± 0.56 \(\mu\text{M}, \text{Tg46 CGN}\)), and was more persistent, in PrP-KO CGN compared to Tg46 neurons.
These results closely resemble when comparing PrP-KO with WT (FVB) CGN (Lazzari et al., 2011),
thus supporting the contention that Tg46 neurons are indeed suitable control model cells.

That plasma membrane domains of PrP-KO CGN accumulate more \(\text{Ca}^{2+}\) than control neurons was
also reflected by the higher SOCE-evoked \(\text{Ca}^{2+}\) transients observed both in the cytosol (Fig. 4B,
1.26 ± 0.06 \(\mu\text{M}, \text{PrP-KO CGN}; 1.08 ± 0.05 \(\mu\text{M}, \text{Tg46 CGN}\)) and the mitochondrial matrix (Fig. 4C,
26.11 ± 0.93 \(\mu\text{M}, \text{PrP-KO CGN}; 21.84 ± 1.01 \(\mu\text{M}, \text{Tg46 CGN}\)). In light of all results shown in Fig. 4,
one may thus conclude that it makes sense that the most remarkable difference between PrP-KO
and Tg46 neurons regards \([\text{Ca}^{2+}]_\text{pm}\) variations occurring in sub-PM domains, i.e. in those domains in
which the AEQ probe are likely to sense at best \(\text{Ca}^{2+}\) influx through activated SOCCs. Importantly,
however, these findings convincingly demonstrate – for the first time – that PrP\(^C\) is somehow
able to govern the entire neuronal SOCE-dependent neuronal \(\text{Ca}^{2+}\) homeostasis.
We also monitored ER Ca$^{2+}$ refilling induced by SOCE. Given that ER accumulates large Ca$^2+$ amounts that would rapidly consume erAEQ impeding, therefore, reliable Ca$^{2+}$ measurements, a specific protocol had to be applied (see Material and Methods). As shown in Fig. 5, SOCCs stimulation by this protocol allowed us to observe that both Tg46 and PrP-KO CGN recovered the luminal Ca$^{2+}$ levels with similar kinetics that, however, led to a final steady-state [Ca$^{2+}$]$_{er}$ that was significantly lower ($\sim$20%) in PrP-KO CGN (211.44 ± 9.79 µM) than in PrP$^C$-expressing neurons (254.49 ± 17.44 µM).
Figure 4. The transient increase of \([\text{Ca}^{2+}]_{\text{pm}}, [\text{Ca}^{2+}]_{\text{cyt}}, \text{ and } [\text{Ca}^{2+}]_{\text{mit}}\) induced by SOCE is higher in PrP-KO CGN with respect to Tg46 neurons.

96 h after plating, Tg46 (TG46, blue) and PrP-KO (PrP-KO, red) CGN expressing pmAEQ (A), cytAEQ (B), or mtAEQ (C) were stimulated by SOCCs activation, following the depletion of intracellular Ca\(^{2+}\) store by incubation in EGTA (100 μM), and subsequent perfusion of cells with a CaCl\(_2\) (1 mM)-containing buffer. Both the mean of the recorded traces (left panels), and the peak values reported in the bar diagrams (right panels) show that in all the AEQ-monitored cell compartments PrP-KO CGNs accumulate a higher \([\text{Ca}^{2+}]\) compared to PrP-expressing neurons. In addition, a slower rate of recovery to steady-state values of \([\text{Ca}^{2+}]_{\text{pm}}\) and \([\text{Ca}^{2+}]_{\text{cyt}}\) also pertains to PrP-KO CGNs with respect to Tg46 neurons. Values are mean ± SEM; n = 174 (Tg46) and 169 (PrP-KO) in (A), n = 41 (Tg46) and 57 (PrP-KO) in (B), n = 56 (Tg46) and 70 (PrP-KO) in (C), where n indicates the total number of traces used for the analysis (technical replicates). These traces derived from 20 (for both Tg46 and PrP-KO) independent CGN cultures (biological replicates) in (A), 10 (Tg46) or 12 (PrP-KO) biological replicates in (B), 10 (Tg46) or 13 (PrP-KO) biological replicates in (C). *****p < 10\(^{-7}\); **p < 0.01; *p < 0.05 Student’s t-test.

3.3.2 INVOLVEMENT OF PrP\(^C\) IN LOCAL Ca\(^{2+}\) MOVEMENTS INDUCED BY STIMULATION OF ALL CELL GLUTAMATE RECEPTORS

After SOCCs-induced Ca\(^{2+}\) measurements were completed, CGN were carefully washed and then perfused with Mg\(^{2+}\)-free KRB containing CaCl\(_2\) (1 mM), glutamate (100 μM) and glycine (10 μM). This protocol was intended to monitor Ca\(^{2+}\) transients due to activation of glutamate sensitive-receptors, i.e., both ionotropic (NMDAR, AMPAR and the kainate receptor) and metabotropic receptors (mGluR).
Glutamate is the major excitatory neurotransmitter in the brain and is involved in several neuronal functions, including cognition, memory and learning. Physiologically, the neurotransmitter binds to, and opens, AMPAR with the consequent entry of mono- and di-valent cations (Ca\(^{2+}\), Na\(^{+}\) and K\(^{+}\)). This causes a partial depolarization of the cell potential that, by removing Mg\(^{2+}\) present in NMDARs, allows activation of NMDARs when the co-agonist glycine is also present (Traynelis et al., 2010). Activity of all ionotropic receptors (including the kainate-sensitive receptors) thus allows a substantial entry into the cell of extracellular Ca\(^{2+}\), which explains why, if present in abnormally high amounts, glutamate can be highly toxic to neurons (Nedergaard et al., 2002). Instead, mGluRs are members of the G-protein-coupled receptor (GPCR) superfamily and are classified into three groups, group I (mGluRs 1 and 5), group II (mGluRs 2 and 3) and group III (mGluRs, 4, 6, 7, and 8). In particular, while G\(_{q}\)-coupled group I mGluRs activate phospholipase C, resulting in the generation of IP\(_3\) and diacylglycerol that mobilize Ca\(^{2+}\) from ER and activate PKC, respectively, group II and III mGluRs are coupled predominantly to G\(_{i}\) proteins that ultimately inhibit adenylyl cyclase and the formation of cAMP (Niswender and Conn, 2010).

To best stimulate all receptors, including NMDAR, CGN were incubated with 100 µM glutamate and glycine in the absence of Mg\(^{2+}\). Fig. 6 shows Ca\(^{2+}\) transients monitored by pmAEQ (6A), cytAEQ (6B) and mtAEQ (6C) in PrP-KO and Tg46 CGN. Clearly, in all domains Ca\(^{2+}\) fluxes were higher in PrP-KO neurons than in the control CGN – in plasma membrane domains the difference reached as much as 60% - although absolute [Ca\(^{2+}\)] variations were always smaller than those elicited by SOCE (peak values: in PM domains, 5.62 ± 0.18 µM, PrP-KO CGN and 3.56 ± 0.13 µM, Tg46 CGN; in cytosol, 2.37 ± 0.14 µM, PrP-KO CGN and 2.00 ± 0.07 µM, Tg46 CGN). A possible reason for this difference is that in the latter case the protocol probably maximizes ER-Ca\(^{2+}\) depletion and SOCCs stimulation.

Interestingly, also the peak value of [Ca\(^{2+}\)]\(_{\text{mit}}\) observed in PrP-KO neurons (142.19 ± 9.72 µM) was much higher (50%) than in Tg46 neurons (91.36 ± 3.74 µM) (Fig. 6C). This result prompt us to verify whether PrP\(^{\text{C}}\) had a direct impact on mGluRs and/or the activated pathway, such as, for example, IP\(_3\) receptors that facilitate Ca\(^{2+}\) entry into mitochondria via the close apposition of ER and mitochondrial membranes (Rizzuto et al., 1993). To this end, we set out to follow Ca\(^{2+}\) release from ER stores using erAEQ and glutamate to stimulate preferentially mGluR, which was accomplished by adding EGTA in the perfusing medium but omitting glycine addition. Parenthetically, the presence of EGTA was also intended to maximally accelerate ER Ca\(^{2+}\) release. As shown in Fig. 7, we found that under these conditions the Ca\(^{2+}\) released by the ER of PrP-KO
CGN and Tg46 neurons was almost identical both in terms of kinetics and quantity. Thus, if these results clearly indicate that the activity of IP₃ receptors is not influenced by PrP⁰, we still cannot definitively exclude that PrP⁰ influences the number of ER-mitochondrial junctions and/or the activity of the mitochondrial uniporter, the ultimate actor of mitochondrial Ca²⁺ accumulation.
Figure 6. Activation of (ionotropic and metabotropic) glutamate receptors elicits \([\text{Ca}^{2+}]_{\text{pm}}, [\text{Ca}^{2+}]_{\text{cyt}}, \text{ and } [\text{Ca}^{2+}]_{\text{mit}}\) transients that are significantly larger in PrP-KO CGNs than in Tg46 neurons.

Tg46 (blue) and PrP-KO (red) CGNs expressing pmAEQ (A), cytAEQ (B), or mtaEQ (C) were stimulated with glutamate (100 µM) and glycine (10 µM) in a Mg\(^{2+}\)-free, CaCl\(_2\) (1 mM)-supplemented buffer. This protocol provokes the activation of both ionotropic and metabotropic glutamate receptors, and \([\text{Ca}^{2+}]\) transients in the different cell domains that were recorded by means of the targeted AEQ probes. Both the mean of the recorded traces (left panels), and the peak values reported in the bar diagrams (right panels) show that in all the AEQ-monitored cell compartments PrP-KO CGNs respond to the stimulus with significantly larger \([\text{Ca}^{2+}]\) transients than PrP-expressing neurons. This is particularly evident in the sub-PM domains and the mitochondrial matrix, where the peak value of \([\text{Ca}^{2+}]\) is almost 60% higher in the absence of PrP\(^\text{C}\). Values are mean ± SEM; n = 69 (Tg46) and 60 (PrP-KO) in (A), n = 28 (Tg46) and 27 (PrP-KO) in (B), n = 22 (Tg46) and 20 (PrP-KO) in (C); biological replicates were 20 (Tg46) and 18 (PrP-KO) in (A), 10 (for both Tg46 and PrP-KO) in (B), 9 (Tg46) and 8 (PrP-KO) in (C); *** ****p<10\(^{-15}\); ****p<10\(^{-5}\); **p<0.01 Student’s t-test. Other experimental details are as in the legend to Figure 4.

Figure 7. Following the activation of mGLURs, IP\(_3\)-mediated \([\text{Ca}^{2+}]\) release from the ER is similar in PrP-KO and Tg46 CGNs.

After the refilling of ER stores (see Figure 5), erAEQ-expressing Tg46 (blue) and PrP-KO (red) CGNs were stimulated with Ca\(^{2+}\)-free KRB containing glutamate (100 µM) and EGTA (100 µM). Under these conditions, no contribution is given to ER \([\text{Ca}^{2+}]\) movements by the entry of Ca\(^{2+}\) into the cell through PM ionotropic GluRs, and the net \([\text{Ca}^{2+}]\) release from the ER through IP\(_3\)-sensitive channels can be monitored. No significant difference in the rate of \([\text{Ca}^{2+}]\) release from ER stores is observed between PrP-KO and PrP-expressing neurons. Reported traces are mean ± SEM; n = 9 for both Tg46 and PrP-KO; biological replicates were 3 for both mouse strains. Other experimental details are as in the legend to Figure 5.

3.3.3 INVBOLVEMENT OF PrP\(^\text{C}\) IN LOCAL Ca\(^{2+}\) MOVEMENTS INDUCED BY STIMULATION OF NMDA-SENSITIVE RECEPTORS

After monitoring local Ca\(^{2+}\) fluxes elicited by stimulation of all glutamate-sensitive receptors and preferentially mGLUR-induced ER Ca\(^{2+}\) release, we examined the contribution of ionotropic GluRs to Ca\(^{2+}\) homeostasis of PrP-KO and Tg46 CGN. Specifically, we focused on NMDARs in light of the recent evidence that, by binding the NR2D subunit, PrP\(^\text{C}\) diminishes Ca\(^{2+}\) entry through NMDA-sensitive GluRs (Khosravani et al., 2008). The NMDAR is obligatory composed by two NR1 subunits that co-assemble with other two (NR2) subunits to form the mature, active tetrameric
channel complex permeable to both Na$^+$ and Ca$^{2+}$. The NR2 subunit exists in various isoforms (A-B-C-D) that determine the activity of NMDARs, with the NR2D subunit showing much slower kinetic properties compared with the other subunits (e.g., NR2B) (Cull-Candy and Leszkiewicz, 2004).

To stimulate NMDAR, we used CGN after SOCCs-induced Ca$^{2+}$ measurements were completed as previously described. CGN were perfused with KRB containing Ca$^{2+}$ (1 mM), NMDA (50 µM) and its co-agonist glycine (10 µM), and Ca$^{2+}$ transients were monitored using pmAEQ, cytAEQ or mtAEQ. As shown (Fig. 8), activation of NMDARs induced Ca$^{2+}$ transients that in both plasma membrane (Fig. 8A) and cytosolic (Fig. 8B) domains of PrP-KO CGN were higher than in Tg46 neurons by 100% and 25%, respectively (peak values: in PM domains, 2.14 ± 0.11 µM, PrP-KO CGN and 1.04 ± 0.06 µM, Tg46 CGN; in cytosol, 1.33 ± 0.14 µM, PrP-KO and 1.07 ± 0.04 µM, Tg46). This result is in line with the above-mentioned electrophysiological data obtained by Khosravani et al. (2008) in hippocampal neurons. In contrast, when mitochondrial Ca$^{2+}$ transients were followed, we found that PrP-KO CGN (40.67 ± 2.92 µM) accumulated 30% less Ca$^{2+}$ than control cells (57.28 ± 6.00 µM) (Fig. 8C). This result means that NMDAR-mediated Ca$^{2+}$ influx cannot explain the higher mitochondrial Ca$^{2+}$ peak value displayed by PrP-KO CGN after activation of all glutamate receptors (Fig. 6C). Given that this value can neither be attributed to a higher IP$_3$-mediated Ca$^{2+}$ released by PrP-KO CGNs (Fig. 7), we are left with the possibility that a specific contribution by AMPARs and/or kainate receptors takes place in PrP-KO neurons. This hypothesis, however, still awaits confirmation.

Finally, a comment is due to the fact the protocol used by us to maximally stimulate NMDARs could not faithfully reproduce the physiological situation. Indeed, in addition to glutamate, the in vivo activity of NMDARs is likely to be strongly influenced by the activity of mGluRs, some subtypes of which are known to trigger signaling pathways, e.g., Pyk2/CAKβ and Src-family kinases, which may ultimately upregulate NMDAR activity (Manzerra et al., 2002).
Figure 8. Activation of NMDA (ionotropic) glutamate receptors elicits $[\text{Ca}^{2+}]_{\text{pm}}$, $[\text{Ca}^{2+}]_{\text{cyt}}$, and $[\text{Ca}^{2+}]_{\text{mit}}$ transients that are significantly different in PrP-KO CGNs with respect to Tg46 neurons.

Tg46 (blue) and PrP-KO (red) CGNs expressing pmAEQ (A), cytAEQ (B), or mtAEQ (C) were stimulated with NMDA (50 μM) and glycine (10 μM) in a Mg$^{2+}$-free, CaCl$_2$ (1 mM)-supplemented buffer. This protocol provokes the activation of NMDARs at the PM, and transient $[\text{Ca}^{2+}]$ rises in the different cell domains that were recorded by means of the targeted AEQ probes. Both the mean of the recorded traces (left panels), and the peak values reported in the bar diagrams (right panels) show that in sub-PM domains and bulk cytosol PrP-KO neurons have increased $\text{Ca}^{2+}$ responses with respect to the PrP-expressing counterpart. Noteworthy, the response of PrP-KO CGNs is also characterized by a prolonged pseudo-steady-state that...
sustains the presence of abnormally high Ca\textsuperscript{2+} levels at the sub-PM domains for hundreds of seconds after the beginning of the stimulus. On the contrary, the NMDA-induced mitochondrial Ca\textsuperscript{2+} uptake is significantly lower in PrP-KO than in Tg46 CGNs. Values are mean ± SEM; n = 71 (Tg46,) and 68 (PrP-KO) in (A), n = 24 (Tg46) and 22 (PrP-KO) in (B), n = 17 (Tg46) and 28 (PrP-KO) in (C); biological replicates were 17 for both Tg46 and PrP-KO in (A), 10 (Tg46) and 9 (PrP-KO) in (B), 7 (Tg46) and 11 (PrP-KO) in (C). \( p < 10^{-14}, **p<0.01; *p<0.05\) Student’s t-test. Other experimental details are as in the legend to Figure 6.

3.3.4 ANALYSIS OF p59\textsuperscript{Fyn} AND p42/44-ERK ACTIVATION IN Tg46 AND PrP-KO CGN

An obvious question raised by the previous results concerns the mechanism(s) through which PrP\textsuperscript{C} can modulate cell Ca\textsuperscript{2+} homeostasis, in particular Ca\textsuperscript{2+} entry through SOCCs and NMDARs. As for NMDAR modulation by PrP\textsuperscript{C}, a direct physical and functional interaction between the two proteins has been already demonstrated, whereby PrP\textsuperscript{C} would bind to, and inhibit, NMDAR subunit NR2D, thus reducing NMDA-mediated Ca\textsuperscript{2+} entry (Khosravani et al., 2008). In addition, a previous study in the laboratory in which this work has been carried out has demonstrated that the higher Ca\textsuperscript{2+} transients observed in PrP-KO CGNs can be (at least in part) explained by the reduced expression in these neurons of two important systems deployed to the extrusion of Ca\textsuperscript{2+} from the cytosol (i.e., PMCA and SERCA) compared to the PrP-expressing counterpart (Lazzari et al., 2011). Notably, the reduction of SERCA amounts in PrP-KO neurons also nicely fits with the lower steady-state level of \([Ca^{2+}]_{er}\) reported here (Figure 5). In this work, we have decided to verify whether PrP\textsuperscript{C} could impinge on Ca\textsuperscript{2+}-transporting mechanisms through the regulation of specific cell signaling pathways, namely those involving SFKs (Src family of tyrosin kinases) (in particular, p59\textsuperscript{Fyn} that is the Srk kinase prevalently expressed in CGNs), and p42/p44-ERK (ERK1/2), belonging to the family of mitogen-activated protein (MAP) kinases. This choice stems from two principles. On one hand, it is known that p59\textsuperscript{Fyn} and ERK1/2 are involved in the regulation of both SOCC and NMDAR activity (Babnigge et al., 1997; El-Yassim et al., 2008; Nakazawa et al., 2001; Suzuki and Okumura-Noji, 1995; Kohno et al., 2008; Pozo-Guisado et al., 2010). On the other hand, PrP\textsuperscript{C} has been repeatedly suggested to participate in signal transduction mechanisms at the cell surface impinging on both p59\textsuperscript{Fyn} and ERK1/2 pathways (for reviews, see Linden et al., 2008; Sorgato et al., 2009). Moreover, it is good to remind that these two signaling pathways are closely related, given that ERK1/2 activation can be also mediated by p59\textsuperscript{Fyn} through the Ras/Raf pathway (Ramos, 2008).

We scrutinized the phosphorylation levels of p59\textsuperscript{Fyn} and ERK1/2 under steady-state conditions after prolonged incubation in either a Ca\textsuperscript{2+}-free medium containing EGTA (100 µM), or a Ca\textsuperscript{2+}-
containing (1 mM) medium, thus mimicking the state in which neurons were just before SOCE or glutamate/NMDA stimulation, respectively. As shown in Figure 9, p59<sup>Fyn</sup> activation was higher (~30%) in PrP-KO CGN compared to Tg46 neurons, before both SOCE and glutamate/NMDA stimulation, whereas ERK1/2 phosphorylation was significantly increased in the PrP-KO genotype (~60% more than Tg46 CGNs) only when neurons were kept in the Ca<sup>2+</sup>-containing medium (Figure 10). These findings thus support the possibility that p59<sup>Fyn</sup>- and ERK1/2-regulated signaling pathways act as intermediate players between PrP<sup>C</sup> and SOCC- and/or glutamate/NMDA-mediated Ca<sup>2+</sup> movements.

![Western blot](image)

**Figure 9.** p59<sup>Fyn</sup> phosphorylation is higher in PrP-KO than in Tg46 CGNs after incubation in both the Ca<sup>2+</sup>-free and Ca<sup>2+</sup>-containing medium.

Tg46 (blue) and PrP-KO (red) CGNs, subjected to treatments mimicking those occurring before either SOCE (EGTA 100 µM, see Figure 4), or glutamate/NMDA stimulation (Ca<sup>2+</sup> 1 mM, see Figures 6 and 8), were harvested and homogenized, and then subjected to Western blot analysis for quantifying the phosphorylation state of p59<sup>Fyn</sup>, as described under Materials and Methods. The upper panel reports a Western blot representative of 10 independent experiments for each PrP genotype, while the lower panel reports the densitometric analysis of anti-p-Src immunosignals (with an Ab directed to the activatory phosphorylated site Y416 of p59<sup>Fyn</sup>), normalized to the density of total p59<sup>Fyn</sup> immunoreactive bands, under the indicated experimental conditions. Shown data indicates that p59<sup>Fyn</sup> is significantly more active (~30%) in PrP-KO CGNs compared to the PrP-expressing counterpart, under both Ca<sup>2+</sup>-free and Ca<sup>2+</sup>-rich conditions.
Figure 10. ERK1/2 MAP kinases are more phosphorylated (active) in PrP-KO than in Tg46 CGNs after incubation in the Ca\textsuperscript{2+}-containing, but not in the Ca\textsuperscript{2+}-free, medium. Tg46 and PrP-KO CGNs were subjected to Western blot analysis for quantifying the phosphorylation state of ERK1/2. The upper panel reports a Western blot representative of 10 independent experiments for each PrP genotype, while the lower panel reports the densitometric analysis of anti-p-ERK1/2 over total ERK1/2 immunoreactive bands, under the indicated experimental conditions. Shown data indicates that ERK1/2 is significantly more active (~60%) in PrP-KO CGNs compared to the PrP-expressing counterpart under conditions mimicking those occurring before glutamate/NMDA stimulation (Ca\textsuperscript{2+} 1 mM), but not before SOCE (EGTA 100 µM). Values are mean ± SEM; n = 10 for both the Tg46 and PrP-KO genotypes and the cell treatment protocols. *p<0.05 Student’s t-test. Other experimental details are in the legend to Figure 9.
Taken together, shown results demonstrate that PrP<sup>C</sup> play a role in neuronal Ca<sup>2+</sup> homeostasis, modulating Ca<sup>2+</sup> transients elicited by different stimuli in different cell domains/compartments. With the exception of the steady-state level of the ER lumen, in which [Ca<sup>2+</sup>] is significantly lower when PrP<sup>C</sup> is absent, PrP<sup>C</sup> seems to have the general role to limit Ca<sup>2+</sup> rises inside neurons, in particular in the cytosol and the mitochondrial matrix, when neurons are exposed to SOCE or glutamate/NMDA. This underscores a possible important role for PrP<sup>C</sup> in maintaining a correct neuronal Ca<sup>2+</sup> homeostasis and, consequently, normal cell excitability and synaptic functions. Such a synaptic role for PrP<sup>C</sup> has also been demonstrated by other studies, showing that its absence provoked deficits in spatial learning (Criado et al., 2005), altered long-term potentiation (Collinge et al., 1994; Maglio et al., 2004; Manson et al., 1995), and increased neuronal excitability (Colling et al., 1996; Mallucci et al., 2002). Our findings are also in line with the alleged neuroprotective role ascribed to the protein, given that intracellular Ca<sup>2+</sup> overloads are commonly associated to neuronal damage and death. The fact that alterations of Ca<sup>2+</sup>-dependent neuronal functions were observed in prion disease models (Peggion et al., 2011), in which functional PrP<sup>C</sup> is continuously converted into PrP<sup>Sc</sup>, also allows us to propose a suggestive perspective, in which the control of Ca<sup>2+</sup> homeostasis is a therapeutic target for prion diseases.

By a molecular point of view, we have demonstrated that PrP<sup>C</sup> could exert its control over neuronal Ca<sup>2+</sup> homeostasis by modulating important intracellular signaling pathways, i.e., those involving p59<sup>Fyn</sup> and ERK1/2. Further studies are required, however, to elucidate better this issue, such as investigations implicating the pharmacologic inhibition of these pathways, and/or focused on the phosphorylation pattern of components of the SOCE machinery and of glutamate/NMDA receptors.
3.4 TREATMENT OF CGN WITH Aβ OLIGOMERS

The amyloid Aβ peptide (in particular the 1-42 amino acid-long species) is produced by the proteolysis of APP. It shows a remarkable ability to aggregate, leading to the formation of large and insoluble deposits (plaques) in the brain of patients affected by AD (Glenner and Wong, 1984). The “amyloid cascade hypothesis” postulates that a time-dependent deposition of Aβ aggregates in the brain is responsible for AD neurodegeneration (Hardy and Higgins, 1992). Several recent evidences, however, suggest that instead of large amyloids the toxic species responsible for AD cognitive and functional derangement are soluble Aβ oligomers, known as Aβ-derived diffusible ligands (ADDLs) (Lambert et al., 1998; Lacor et al., 2004; Cleary et al., 2005).

To ascertain whether a PrP^C-dependent distortion of Ca^{2+} homestasis could be involved in the Aβ oligomer-induced neurodegeneration occurring in AD, primary cultures of CGNs with different PrP genotypes were treated with Aβ oligomers and then assayed for local Ca^{2+} movements (by the AEQ-based strategy). Given that the high Aβ propensity to aggregate, and its low in vivo concentration (nM) preclude isolation of large quantities of soluble Aβ peptides from natural sources (Hepler et al., 2006), we have used chemically synthesized Aβ1-42 fragments that were subsequently subjected to an oligomerization process.

3.4.1 CHARACTERIZATION OF Aβ PEPTIDES

To qualitatively characterize the used preparations, Aβ1-42 samples were analyzed by Western blot (using anti-Aβ 6E10 mAb) before and after the oligomerization process. As shown in Fig. 9, the Aβ1-42 peptide (of approximately 4.5 KDa molecular mass in its monomeric form) migrates in different oligomerized forms, from monomers, to dimers, to trimers, and higher order-oligomers. This pattern is observed both before (line 1), and after (line 2) the so-called process of “aging” (37°C, 1 h), although the “aging” treatment clearly increases the amount of high mass species over the lower mass ones predominating in the freshly diluted Aβ preparations. This result indicates that the process of oligomerization is effective, although more sophisticated investigations, e.g. by size-exclusion chromatography, are necessary to provide a definitive profile of the oligomeric/aggregated states.
Figure 11. The procedure of Aβ1-42 oligomerization increases the abundance of n-mers of higher molecular weight with respect to freshly dissolved peptide preparations. Chemically-synthesized Aβ1-42 peptide samples were subjected, or not, to the process of oligomerization described in Materials and Methods. The qualitative analysis of the peptide preparations by Western blot (using anti-Aβ mAb 6E10) demonstrates that, while freshly resuspended Aβ peptides were mainly present as monomers (~5 kDa) and dimers (lane 1), after the oligomerization step the immuno-reactive signal was enriched in 3-mers, and higher order-oligomers (lane 2). Molecular mass standards (kDa) are reported on the right.

3.4.2 EFFECTS OF Aβ OLIGOMERS IN CGN LOCAL [Ca^{2+}] MOVEMENTS

We then investigated whether Aβ1-42 oligomers were affecting local Ca^{2+} fluxes in a PrP^C-dependent manner. To this end, CGN (with or without PrP^C) expressing each AEQ isoform were subjected to protocols identical to those reported above but for the presence of Aβ1-42 fragments (5 µM).

In this thesis, we show only the data obtained after about SOCCs stimulation in light of the good number of experiments carried out. Conversely, we unfortunately have not yet accumulated a similar number of experiments using glutamate or by stimulating specifically NMDARs.

LOCAL [Ca^{2+}] CHANGES AFTER Ca^{2+} ENTRY THROUGH SOCCs

We first examined Ca^{2+} fluxes through SOCCs using pmAEQ (Fig. 10A). We found that, compared to the untreated counterpart, addition of Aβ1-42 oligomers to Tg46 CGN induced a statistically significant (20%) increase of Ca^{2+} peak transients in PM microdomains (light blue bar) (peak values: 21.41 ± 0.56 µM, (untreated) Tg46 CGN; 26.27 ± 2.07 µM, Tg46 CGN +Aβ(1-42)). These results favor the assumption that the interaction of PrP^C with Aβ peptides distorts the function of PrP^C. Indeed, were the control exerted by PrP^C over SOCE lost after Aβ addition, Tg46 CGN
should have increased Ca\(^{2+}\) transients similar to (untreated) PrP-KO neurons. This is indeed the trend displayed by Aβ–treated Tg46 CGN. On the same basis, PrP-KO neurons should not have been affected by Aβ oligomers. Instead, we observed a decreased Ca\(^{2+}\) transient (pink bar) that, although not statistically significant, likely indicates an unspecific effect of Aβ peptides on neuronal plasma membrane permeability (peak values: 30.40 ± 1.48 µM, (untreated) PrP-KO CGN; 25.93 ± 1.36 µM, PrP-KO CGN +Aβ(1-42)). It is important to consider that, were this effect real, it means that the 20% increase observed in Aβ-treated Tg46 CGN would be much higher, being it masked by the unspecific effect that can be observed in the absence of PrP\(^{C}\). To note that in the original paper demonstrating that PrP\(^{C}\) acts as Aβ-receptor, it was reported that this role accounts for only 50% of toxic Aβ effects in neurons (Laurén et al., 2009).

Next, we investigated how the cytosol and the mitochondrial matrix reacted to SOCC-mediated Ca\(^{2+}\) influx in the presence of Aβ oligomers. As shown, Aβ oligomers did not provoke any variation of Ca\(^{2+}\) transients neither in the cytosol (light blue bar, Fig. 10B) nor (as expected in light of Fig. 10B) in the mitochondrial matrix (light blue bar, Fig. 10C) of Tg46 CGN (peak value: in cytosol, 1.08 ± 0.05 µM, (untreated) Tg46 CGN and 1.15 ± 0.11 µM, Tg46 CGN +Aβ(1-42); in mitochondria, 21.84 ± 1.01 µM, (untreated) Tg46 CGN, and 19.96 ± 1.62 µM, Tg46 CGN +Aβ(1-42)). Once again, however, somehow supporting the above reasoning, we found that treatment of PrP-KO CGN significantly decreased Ca\(^{2+}\) transients (by approximately 20%) in both domains (pink bars of Fig. 10B and 10C, respectively) (peak value: in cytosol, 1.26 ± 0.06 µM, (untreated) PrP-KO CGN and 1.00 ± 0.03 µM, PrP-KO CGN +Aβ(1-42); in mitochondria, 26.11 ± 0.93 µM, (untreated) PrP-KO CGN and 19.60 ± 1.78 µM, PrP-KO CGN +Aβ(1-42)).

Notwithstanding the difficulty of interpretation that is augmented by the notion that the absence of PrP\(^{C}\) is itself perturbing Ca\(^{2+}\) homeostasis, a rather complex picture emerges from our study on PrP\(^{C}\) as possible mediator of Aβ effects. Regarding SOCE, for which we have accumulated a good number of experiments, data obtained in neurons expressing or not PrP\(^{C}\) strongly indicate that Aβ oligomers have both a PrP\(^{C}\)-dependent and a PrP\(^{C}\)-independent effect, respectively, and that the latter likely masks the effective impact of PrP\(^{C}\)-Aβ interactions. This allows us to conclude that PrP\(^{C}\) appears to be involved in triggering Aβ-mediated Ca\(^{2+}\) dys-homeostasis, at least at the level of SOCE. Concurrently, it reinforces the notion that PrP\(^{C}\) controls SOCE, as proposed (Lazzari et al., 2011).
Figure 1210. PrP*-dependent and -independent effects of oligomerized Aβ1-42 peptides on local SOCE-mediated Ca^{2+} movements.

Tg46 (blue) and PrP-KO (red) CGNs expressing pmAEQ (A), cytAEQ (B), or mtAEQ (C), incubated (light color), or not (dark color), with oligomerized Aβ1-42 peptides were subjected to SOCE stimulation. Bar diagrams report the peak values of the Ca^{2+} transients observed in the different cell domains. While Aβ1-42 induces a prevailing “PrP-independent” reduction of the Ca^{2+} transients in bulk cytosol and the mitochondrial matrix (see the PrP-KO values in panel B and C, respectively), the “PrP-dependent” effect is
able to overcome the PrP-independent one in the sub-PM domains (see the TG46 values in panel A). Values are mean ± SEM; n = 174 (Tg46), 42 (Tg46+Aβ(1-42)), 169 (PrP-KO) and 40 (PrP-KO+Aβ(1-42)) in (A), n = 41 (Tg46), 13 (Tg46+Aβ(1-42)), 57 (PrP-KO) and 18 (PrP-KO+Aβ(1-42)) in (B), n = 56 (Tg46), 18 (Tg46+Aβ(1-42)), 70 (PrP-KO) and 17 (PrP-KO+Aβ(1-42)) in (C). Biological replicates were 20 (for both Tg46 and PrP-KO) or 6 (for both Tg46+Aβ(1-42) and PrP-KO+Aβ(1-42)) in (A); 10 (Tg46), 12 (PrP-KO) or 4 (for both Tg46+Aβ(1-42) and PrP-KO+Aβ(1-42)) in (B); 10 (Tg46), 13 (PrP-KO) or 4 (for both Tg46+Aβ(1-42) and PrP-KO+Aβ(1-42)) in (C). ***p<0.001, **p<0.01, Student’s t-test. All other details are as described in Materials and Methods and the legend to Figure 4. The mean traces from which the reported peak values were calculated are illustrated in the Supplementary Information section (Figure S1).

3.4.3 TREATMENT WITH Aβ ABOLISHES THE EFFECT OF PrP C ON THE p59 Fyn PATHWAY

In the attempt to rationalize the above findings on molecular basis, we analyzed whether treatment with oligomerized Aβ1-42 affected p59 Fyn and Erk1/2 activation (before SOCE stimulation) in a PrP C-dependent manner. While in the case of Erk1/2 no significant effect was observed (data not shown), Aβ treatment increased the steady-state phosphorylation levels of p59 Fyn after incubation of neurons in the Ca2+-free medium, thereby completely abrogating the difference observed in untreated CGNs (Figure 13). Thus, PrP C-Aβ docking seems to abolish the PrP C-dependent down-regulation of the p59 Fyn pathway, which may in turn stimulate SOCC activation, and promote the larger Ca2+ transients that were observed in sub-PM domains (see Figure 12A, and Figure S1 in the Supplementary Information section). Interestingly, it has been recently reported that Aβ binding to PrP C leads to the phosphorylation of the NMDAR subunit NR2B by activated p59 Fyn at the synapses of cortical neurons, with consequent neuronal Ca2+ overload and excitotoxicity (Um et al., 2012). It will thus be of major interest to understand whether treatment with Aβ oligomers induces PrP C-dependent (and p59 Fyn-mediated) alterations of local Ca2+ movements in NMDA-stimulated CGNs.
Figure 13. Treatment with Aβ1-42 abrogates the down-regulation of p59^Fyn activation by PrP^C.

Tg46 (blue) and PrP-KO (red) CGNs, treated, or not, with oligomerized Aβ1-42, subjected to an incubation protocol mimicking that occurring before SOCE (EGTA 100 µM, see Figure 4), were subjected to Western blot analysis for quantifying the phosphorylation state of p59^Fyn. The upper panel reports a representative Western blot, while the lower panel reports the densitometric analysis, under the indicated experimental conditions. Treatment with Aβ1-42 increases the steady-state phosphorylation levels of p59^Fyn and completely abolishes the difference observed in untreated CGNs (cfr. Figure 13). Values are mean ± SEM; n = 10 for untreated CGNs, and n = 4 for Aβ-treated samples. *p<0.05  Student’s t-test.
In neurons, maintenance of a proper Ca\(^{2+}\) homeostasis is fundamental for many cellular functions, including synaptic activity and memory formation and consolidation, and for cell survival (Mattson, 2007). Of consequence, defects of Ca\(^{2+}\) signaling contributes to synaptic dysfunctions, and can lead to excitotoxic and/or apoptotic death, all of which are hallmarks of many neurodegenerative diseases, including AD (Bezprozvanny, 2009). Although the precise mechanisms of AD-related neurodegeneration are not yet known, it is now commonly recognized that it is caused by Aβ peptide oligomeric species. Much credit is also given to the possibility that Aβ-induced disruption of Ca\(^{2+}\) homeostasis has a central role in AD pathogenesis (Mattson and Chan, 2003).

Given that PrP\(^C\) is involved in Ca\(^{2+}\) homeostasis (Lazzari et al., 2011; for a review see Peggion et al., 2011), and may act as a high-affinity receptor for Aβ oligomers (Laurén et al., 2009; Balducci et al., 2010; Calella et al., 2010; Chen et al., 2010; Freir et al., 2011; Zou et al., 2011), possibly mediating their neurotoxic effects (Laurén et al., 2009; Chen et al., 2010; Chung et al., 2010; Gimbel et al., 2010; Alier et al., 2011; Barry et al., 2011; Bate and Williams, 2011; Freir et al., 2011; Resenberger et al., 2011; Zou et al., 2011; Kudo et al., 2012; Um et al., 2012; You et al., 2012), we have investigated whether PrP\(^C\)-Aβ binding perturbs local Ca\(^{2+}\) homeostasis in neurons. This was indeed what we have found with respect to SOCE. Intriguingly, treatment with Aβ increased Ca\(^{2+}\) transients in sub-PM domains of PrP-expressing CGNs (Figure 12A), thereby completely abrogating the differences between these neurons and the PrP-KO counterpart. A similar effect was observed with respect to activated p59\(^{Fyn}\) levels (Figure 13), suggesting that the binding of Aβ1-42 oligomers diverts the normal PrP\(^C\) function, mimicking a PrP-KO phenotype. Abrogation of the differences displayed by PrP-KO and TG46 neurons with respect to SOCE-mediated Ca\(^{2+}\) fluxes seems to be a general action of Aβ oligomers, given that this was also observed for Ca\(^{2+}\) fluxes in the cytosol and in the mitochondrial matrix. In these cases, however, this was due to a reduced response of Aβ-treated PrP-KO neurons compared to the untreated counterpart (Figure 12B and C), to explain which one needs to invoke PrP-independent effects of Aβ oligomers on SOCE. This is not surprising, given that it was previously found that only about 50% of Aβ oligomers bind to neurons in a PrP\(^C\)-dependent manner (Lauren et al., 2009).

We now know that, in AD, glutamatergic neurotransmission – fundamental to learning and memory – is severely disrupted. In particular, Aβ oligomers may promote excessive activation of glutamate receptors, and the consequent Ca\(^{2+}\) overload may lead to neuronal dysfunction and cell death (Mattson and Chan, 2003). Although glutamate can be neurotoxic through excessive stimulation of both ionotopic and metabotropic glutamate receptors, disruption of neuronal
functions in AD seems to depend primarily on NMDAR activation (Butterfield and Pocernich, 2003). In this context, it has been reported that Aβ oligomers affect – through both direct and indirect mechanisms – NMDARs by keeping its ion channel tonically open. By causing excessive Ca$^{2+}$ influx, this leads to impairment of synaptic plasticity, LTP and learning/memory, and eventually neuronal death (Danysz and Parsons, 2012). Hopefully, the role of PrP$^C$ in mediating Ca$^{2+}$-dependent toxic effects of Aβ oligomers will be better understood once our experiments involving glutamate and NMDA stimulation of CGNs will be completed.
**SUPPLEMENTARY INFORMATION**

Figure S111. PrP<sup>C</sup>-dependent and -independent effects of oligomerized Aβ1-42 peptides on local SOCE-mediated Ca<sup>2+</sup> movements.

Tg46 (blue) and PrP-KO (red) CGNs expressing pmAEQ (A), cytAEQ (B), or mtAEQ (C), incubated (light color), or not (dark color), with oligomerized Aβ1-42 peptides were subjected to SOCE stimulation. The figure reports the mean traces of the observed Ca<sup>2+</sup> transients whose peak values are reported in Figure 12. See Figure 12 for all experimental details and statistics.
REFERENCES


