Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Collauto, Alberto (2013) Study of the spectral and relaxation properties of nitronylnitroxide monoradicals: an experimental and computational approach. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

1839Kb

Abstract (inglese)

The present study deals with a thorough characterization of the ESR-related properties of nitronylnitroxide radicals; more in detail we determined the mutual orientation between the eigenframes of the magnetic interaction tensors and the spin relaxation properties in fluid solution. These latter measurements show that the transverse spin relaxation rates of nitronylnitroxides are slower with respect to nitroxide radicals; the analysis of the relaxation rate in terms of contributions, which relies on the application of the Redfield spin relaxation theory, allows to understand the different behaviour.
All these considerations promote the routine use of nitronylnitroxide radicals in spin labeling studies, even though the analysis of the spectra is more involved due to the delocalization of the unpaired electron spin density over two nitrogen nuclei rather than one. We showed, however, that the introduction of new computational tools for the calculation of the spectral profiles relying on the a priori determination of the parameters affecting the lineshape allowed the reproduction of a series of experimental spectra recorded in a partially oriented fluid with minimal resort to best fitting procedures; this result further confirms the feasibility of a routine use of nitronylnitroxides as paramagnetic probes in ESR studies.

Abstract (italiano)

Il presente studio affronta una valutazione dettagliata delle proprietà dei radicali nitronilnitrossido inerenti alla spettroscopia ESR; nello specifico vengono determinate le mutue orientazioni tra i sistemi di riferimento principali dei tensori magnetici e le proprietà di rilassamento di spin in fluido. Queste ultime misure, in particolare, mettono in luce un più lento rilassamento trasversale da parte dei radicali nitronilnitrossido, e la separazione dei contributi secondo la teoria di rilassamento di Redfield porta a determinare la causa della differenza di comportamento.
Tutte queste valutazioni vanno nella direzione di favorire l’utilizzo di radicali nitronilnitrossido a fianco dei radicali nitrossido negli studi di spin labeling, sebbene i primi siano più complessi da un punto di vista dell’analisi degli spettri a causa della delocalizzazione della densità di spin elettronico su due nuclei d’azoto anziché su uno. Nondimeno l’introduzione di nuove metodologie di calcolo dei profili spettrali, le quali fanno affidamento su una valutazione a priori dei parametri che influenzano lo spettro, ha reso possibile la riproduzione di una serie di tracciati sperimentali acquisiti in un fluido parzialmente orientato con una introduzione solo marginale di parametri da sottoporre ad ottimizzazione, confermando dunque la possibilità di un uso comune dei radicali nitronilnitrossido nella spettroscopia ESR in qualità di sonde paramagnetiche.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Brustolon, Marina
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZE MOLECOLARI > SCIENZE CHIMICHE
Data di deposito della tesi:31 Gennaio 2013
Anno di Pubblicazione:31 Gennaio 2013
Parole chiave (italiano / inglese):ESR, EPR, sonde paramagnetiche, rilassamento di spin, nitronilnitrossidi / paramagnetic probes, spin relaxation, nitronylnitroxides
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/02 Chimica fisica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:5954
Depositato il:28 Ott 2013 10:37
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] M.J. Assael, N.K. Dalaouti, J.H. Dymond, The Viscosity of Toluene in the Temperature Range 210 to 370 K, Int. J. Thermophys., 21 (2000) 291-299. Cerca con Google

[2] N.M. Atherton, Principles of electron spin resonance, Ellis Horwood, New York, 1993. Cerca con Google

[3] P.W. Atkins, Relaxation studies. II. Spin-rotational interaction in anisotropic molecules, Mol. Phys., 12 (1967) 133-143. Cerca con Google

[4] P.W. Atkins, D. Kivelson, ESR Linewidths in Solution. II. Analysis of Spin-Rotational Relaxation Data, J. Chem. Phys., 44 (1966) 169-174. Cerca con Google

[5] A. Barbon, M. Bortolus, M. Brustolon, A. Comotti, A.L. Maniero, U. Segre, P. Sozzani, Dynamics of the Triplet State of a Dithiophene in Different Solid Matrixes Studied by Transient and Pulse EPR Techniques, J. Phys. Chem. B, 107 (2003) 3325-3331. Cerca con Google

[6] A. Barbon, M. Brustolon, A. Lisa Maniero, M. Romanelli, L.-C. Brunel, Dynamics and spin relaxation of tempone in a host crystal. An ENDOR, high field EPR and electron spin echo study, Phys. Chem. Chem. Phys., 1 (1999) 4015-4023. Cerca con Google

[7] V. Barone, Electronic, vibrational and environmental effects on the hyperfine coupling constants of nitroside radicals. H2NO as a case study, Chem. Phys. Lett., 262 (1996) 201-206. Cerca con Google

[8] V. Barone, M. Brustolon, P. Cimino, A. Polimeno, M. Zerbetto, A. Zoleo, Development and Validation of an Integrated Computational Approach for the Modeling of cw-ESR Spectra of Free Radicals in Solution: p-(Methylthio)phenyl Nitronylnitroxide in Toluene as a Case Study, J. Am. Chem. Soc., 128 (2006) 15865-15873. Cerca con Google

[9] V. Barone, A. Grand, C. Minichino, R. Subra, Theoretical approach to the structure and hyperfine coupling constants of nonrigid radicals: the case of dihydronitrosyl radical, J. Phys. Chem., 97 (1993) 6355-6361. Cerca con Google

[10] V. Barone, A. Polimeno, Toward an integrated computational approach to CW-ESR spectra of free radicals, Phys. Chem. Chem. Phys., 8 (2006) 4609-4629. Cerca con Google

[11] V. Barone, M. Zerbetto, A. Polimeno, Hydrodynamic modeling of diffusion tensor properties of flexible molecules, J. Comput. Chem., 30 (2009) 2-13. Cerca con Google

[12] J.R. Biller, V. Meyer, H. Elajaili, G.M. Rosen, J.P.Y. Kao, S.S. Eaton, G.R. Eaton, Relaxation times and line widths of isotopically-substituted nitroxides in aqueous solution at X-band, J. Magn. Reson., 212 (2011) 370-377. Cerca con Google

[13] J.R. Biller, V.M. Meyer, H. Elajaili, G.M. Rosen, S.S. Eaton, G.R. Eaton, Frequency dependence of electron spin relaxation times in aqueous solution for a nitronyl nitroxide radical and perdeuterated-tempone between 250 MHz and 34 GHz, J. Magn. Reson., 225 (2012) 52-57. Cerca con Google

[14] N. Bloembergen, E.M. Purcell, R.V. Pound, Relaxation Effects in Nuclear Magnetic Resonance Absorption, Phys. Rev., 73 (1948) 679-712. Cerca con Google

[15] M. Bonora, S. Pornsuwan, S. Saxena, Nitroxide Spin−Relaxation over the Entire Motional Range, J. Phys. Chem. B, 108 (2004) 4196-4198. Cerca con Google

[16] M. Brustolon, A.L. Maniero, C. Corvaja, E.P.R. and ENDOR investigation of tempone nitroxide radical in a single crystal of tetramethyl-1,3-cyclobutanedione, Mol. Phys., 51 (1984) 1269-1281. Cerca con Google

[17] D.E. Budil, K.A. Earle, J.H. Freed, Full Determination of the Rotational Diffusion Tensor by Electron Paramagnetic Resonance at 250 GHz, J. Phys. Chem., 97 (1993) 1294-1303. Cerca con Google

[18] A. Caneschi, F. Ferraro, D. Gatteschi, L.A. le, E. Rentschler, Ferromagnetic intermolecular coupling in the nitronyl nitroxide radical 2-(4-thiomethylphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, NIT(SMe)Ph, Inorg. Chim. Acta, 235 (1995) 159-164. Cerca con Google

[19] A. Caneschi, D. Gatteschi, P. Rey, The Chemistry and Magnetic Properties of Metal Nitronyl Nitroxide Complexes, in: Progress in Inorganic Chemistry, John Wiley & Sons, Inc., 2007, pp. 331-429. Cerca con Google

[20] A. Caneschi, D. Gatteschi, R. Sessoli, P. Rey, Toward molecular magnets: the metal-radical approach, Acc. Chem. Res., 22 (1989) 392-398. Cerca con Google

[21] A. Capiomont, B. Chion, J. Lajzerowicz-Bonneteau, H. Lemaire, Interpretation and utilization for crystal stucture determination of ESR spectra of single crystals of nitroxide free radicals, J. Chem. Phys., 60 (1974) 2530-2535. Cerca con Google

[22] A. Carrington, A. Hudson, G.R. Luckhurst, Linewidth Variations in the Electron Resonance Spectra of the Fluoronitrobenzene Anions, Proc. R. Soc. London, Ser. A, 284 (1965) 582-593. Cerca con Google

[23] A. Carrington, H.C. Longuet-Higgins, Line width variations in the electron resonance spectra of free radicals in solution, Mol. Phys., 5 (1962) 447-454. Cerca con Google

[24] J. Cirujeda, J. Vidal-Gancedo, O. Jürgens, F. Mota, J.J. Novoa, C. Rovira, J. Veciana, Spin Density Distribution of α-Nitronyl Aminoxyl Radicals from Experimental and ab Initio Calculated ESR Isotropic Hyperfine Coupling Constants, J. Am. Chem. Soc., 122 (2000) 11393-11405. Cerca con Google

[25] A. Collauto, A. Barbon, M. Brustolon, First determination of the spin relaxation properties of a nitronyl nitroxide in solution by electron spin echoes at X-band: A comparison with Tempone, J. Magn. Reson., 223 (2012) 180-186. Cerca con Google

[26] A. Collauto, M. Mannini, L. Sorace, A. Barbon, M. Brustolon, D. Gatteschi, A slow relaxing species for molecular spin devices: EPR characterization of static and dynamic magnetic properties of a nitronyl nitroxide radical, J. Mater. Chem., 22 (2012) 22272-22281. Cerca con Google

[27] A. Collauto, M. Zerbetto, M. Brustolon, A. Polimeno, A. Caneschi, D. Gatteschi, Interpretation of cw-ESR spectra of p-methyl-thio-phenyl-nitronyl nitroxide in a nematic liquid crystalline phase, Phys. Chem. Chem. Phys., 14 (2012) 3200-3207. Cerca con Google

[28] M. Cossi, G. Scalmani, N. Rega, V. Barone, New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution, J. Chem. Phys., 117 (2002) 43-54. Cerca con Google

[29] S.A. Dikanov, V.I. Gulin, Y.D. Tsvetkov, I.A. Grigor'ev, 2 mm Electron Paramagnetic Resonance Studies of the New Types of Imidazoline Nitroxide Radicals, J. Chem. Soc., Faraday Trans., 86 (1990) 3201-3205. Cerca con Google

[30] I. Dragutan, V. Dragutan, A. Caragheorgheopol, A.K. Zarkadis, H. Fischer, H. Hoffmann, Nitroxide spin probes for magnetic resonance characterization of ordered systems, Colloids Surf., A, 183-185 (2001) 767-776. Cerca con Google

[31] K.A. Earle, D.E. Budil, J.H. Freed, 250-GHz EPR of nitroxides in the slow-motional regime: models of rotational diffusion, J. Phys. Chem., 97 (1993) 13289-13297. Cerca con Google

[32] M.P. Eastman, R.G. Kooser, M. R. Das, J.H. Freed, Studies of Heisenberg Spin Exchange in ESR Spectra. I. Linewidth and Saturation Effects, J. Chem. Phys., 51 (1969) 2690-2709. Cerca con Google

[33] R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, Oxford University Press, New York, 1987. Cerca con Google

[34] J.H. Freed, Anisotropic Rotational Diffusion and Electron Spin Resonance Linewidths, J. Chem. Phys., 41 (1964) 2077-2083. Cerca con Google

[35] J.H. Freed, G.K. Fraenkel, Theory of Linewidths in Electron Spin Resonance Spectra, J. Chem. Phys., 39 (1963) 326-348. Cerca con Google

[36] D. Gatteschi, A. Cornia, M. Mannini, R. Sessoli, Organizing and Addressing Magnetic Molecules, Inorg. Chem., 48 (2009) 3408-3419. Cerca con Google

[37] S.A. Goldman, G.V. Bruno, C.F. Polnaszek, J.H. Freed, An ESR Study of Anisotropic Rotational Reorientation and Slow Tumbling in Liquid and Frozen Media, J. Chem. Phys., 56 (1972) 716-735. Cerca con Google

[38] L. Gorini, A. Caneschi, S. Menichetti, TPAP/NMO System as a Novel Method for the Synthesis of Nitronyl Nitroxide Radicals, Synlett, 2006 (2006) 948-950. Cerca con Google

[39] O.H. Griffith, D.W. Cornell, H.M. McConnell, Nitrogen Hyperfine Tensor and g Tensor of Nitroxide Radicals, J. Chem. Phys., 43 (1965) 2909-2910. Cerca con Google

[40] V.I. Gulin, S.A. Dikanov, Y.D. Tsvetkov, I.A. Grigor'ev, I.A. Kirilyuk, 2 mm ESR data on nitroxyl radicals formed by 3- and 2-imidazoline having alkoxy groups attached to the α carbon atoms in the radicals, J. Struct. Chem., 29 (1988) 472-475. Cerca con Google

[41] I. Haller, Thermodynamic and static properties of liquid crystals, Prog. Solid State Chem., 10, Pt. 2 (1975) 103-118. Cerca con Google

[42] J.R. Harbridge, S.S. Eaton, G.R. Eaton, Electron spin–lattice relaxation in radicals containing two methyl groups, generated by γ-irradiation of polycrystalline solids, J. Magn. Reson., 159 (2002) 195-206. Cerca con Google

[43] J.R. Harbridge, S.S. Eaton, G.R. Eaton, Electron Spin-Lattice Relaxation Processes of Radicals in Irradiated Crystalline Organic Compounds, J. Phys. Chem. A, 107 (2003) 598-610. Cerca con Google

[44] N. Hogg, Detection of nitric oxide by electron paramagnetic resonance spectroscopy, Free Radical Biol. Med., 49 (2010) 122-129. Cerca con Google

[45] N. Hogg, R.J. Singh, J. Joseph, F. Neese, B. Kalyanaraman, Reactions of Nitric Oxide with Nitronyl Nitroxides and Oxygen: Prediction of Nitrite and Nitrate Formation by Kinetic Simulation, Free Radical Res., 22 (1995) 47-56. Cerca con Google

[46] J.S. Hwang, Y.T. Al-Janabi, Frequency dependent study of the correlation functions in EPR spectroscopy — the Cole–Davidson approach. 1. Perdeuterated 2,2,6,6-tetramethyl-4-piperidone N-oxide in toluene, Spectrochim. Acta, Part A, 56 (2000) 273-284. Cerca con Google

[47] J.S. Hwang, Y.T. Al-Janabi, G.A. Oweimreen, Frequency dependent study of the correlation functions in EPR spectroscopy — The Cole–Davidson approach. II. 2,N-(4-n-Butyl benzilidene) 4-amino 2,2,6,6-tetramethyl piperidine 1-oxide in toluene, Spectrochim. Acta, Part A, 77 (2010) 862-868. Cerca con Google

[48] J.S. Hwang, R.P. Mason, L.P. Hwang, J.H. Freed, Electron spin resonance studies of anisotropic rotational reorientation and slow tumbling in liquid and frozen media. III. Perdeuterated 2,2,6,6-tetramethyl-4-piperidone N-oxide and an analysis of fluctuating torques, J. Phys. Chem., 79 (1975) 489-511. Cerca con Google

[49] J.S. Hyde, W. Froncisz, C. Mottley, Pulsed ELDOR measurement of nitrogen T1 in spin labels, Chem. Phys. Lett., 110 (1984) 621-625. Cerca con Google

[50] G. Jeschke, Determination of the Nanostructure of Polymer Materials by Electron Paramagnetic Resonance Spectroscopy, Macromol. Rapid Commun., 23 (2002) 227-246. Cerca con Google

[51] J.F.W. Keana, Newer aspects of the synthesis and chemistry of nitroxide spin labels, Chem. Rev., 78 (1978) 37-64. Cerca con Google

[52] E. Kirilina, S. Dzuba, A. Maryasov, Y. Tsvetkov, Librational dynamics of nitroxide molecules in a molecular glass studied by echo-detected EPR, Appl. Magn. Reson., 21 (2001) 203-221. Cerca con Google

[53] I.V. Koptyug, S.H. Bossmann, N.J. Turro, Inversion-Recovery of Nitroxide Spin Labels in Solution and Microheterogeneous Environments, J. Am. Chem. Soc., 118 (1996) 1435-1445. Cerca con Google

[54] B.A. Kowert, Determination of the Anisotropic and Nonsecular Contributions to ESR Line Widths in Liquids, J. Phys. Chem., 85 (1981) 229-235. Cerca con Google

[55] S. Lee, D.E. Budil, J.H. Freed, Theory of two-dimensional Fourier transform electron spin resonance for ordered and viscous fluids, J. Chem. Phys., 101 (1994) 5529-5558. Cerca con Google

[56] A.S.W. Li, J.S. Hwang, Anisotropic Rotational Reorientation of Perdeuterated 2,2,6,6-Tetramethyl-4-piperidone N-Oxide in Jojoba Oil: An ESR Line Shape Study, J. Phys. Chem., 89 (1985) 2556-2560. Cerca con Google

[57] M.L. Magnuson, B.M. Fung, J.P. Bayle, On the temperature dependence of the order parameter of liquid crystals over a wide nematic range, Liq. Cryst., 19 (1995) 823-832. Cerca con Google

[58] W. Maier, A. Saupe, A simple molecular theory of the nematic crystalline-liquid state, Z. Naturforsch., 13a (1958) 564-566. Cerca con Google

[59] C. Mailer, R.D. Nielsen, B.H. Robinson, Explanation of Spin−Lattice Relaxation Rates of Spin Labels Obtained with Multifrequency Saturation Recovery EPR, J. Phys. Chem. A, 109 (2005) 4049-4061. Cerca con Google

[60] M. Mannini, L. Sorace, L. Gorini, F.M. Piras, A. Caneschi, A. Magnani, S. Menichetti, D. Gatteschi, Self-Assembled Organic Radicals on Au(111) Surfaces: A Combined ToF-SIMS, STM, and ESR Study, Langmuir, 23 (2007) 2389-2397. Cerca con Google

[61] S.M. Mattar, J. Sanford, Effects of Restricted Rotations and Dynamic Averaging on the Calculated Isotropic Hyperfine Coupling Constants of the bis-Dimethyl and bis-Di(trifluoromethyl) Nitroxide Radicals, J. Phys. Chem. A, 113 (2009) 11435-11442. Cerca con Google

[62] R.E.D. McClung, D. Kivelson, ESR Linewidths in Solution. V. Studies of Spin-Rotational Effects Not Described by Rotational Diffusion Theory, J. Chem. Phys., 49 (1968) 3380-3391. Cerca con Google

[63] E. Meirovitch, D. Igner, E. Igner, G. Moro, J.H. Freed, Electron-spin relaxation and ordering in smectic and supercooled nematic liquid crystals, J. Chem. Phys., 77 (1982) 3915-3938. Cerca con Google

[64] S.K. Misra, Simulation of slow-motion CW EPR spectrum using stochastic Liouville equation for an electron spin coupled to two nuclei with arbitrary spins: Matrix elements of the Liouville superoperator, J. Magn. Reson., 189 (2007) 59-77. Cerca con Google

[65] Y. Miyake, N. Akai, A. Kawai, K. Shibuya, Hydrodynamic Interpretation on the Rotational Diffusion of Peroxylamine Disulfonate Solute Dissolved in Room Temperature Ionic Liquids As Studied by Electron Paramagnetic Resonance Spectroscopy, J. Phys. Chem. A, 115 (2011) 6347-6356. Cerca con Google

[66] B.Y. Mladenova, D.R. Kattnig, G.n. Grampp, Room-Temperature Ionic Liquids Discerned Via Nitroxyl Spin Probe Dynamics, J. Phys. Chem. B, 115 (2011) 8183-8198. Cerca con Google

[67] G. Moro, Coupling of the overall molecular motion with the conformational transitions. I. The model system of two coupled rotors, Chem. Phys,, 118 (1987) 167-180. Cerca con Google

[68] G. Moro, Coupling of the overall molecular motion with the conformational transitions. II. The full rotational problem, Chem. Phys,, 118 (1987) 181-197. Cerca con Google

[69] G. Nyberg, Spin-rotational relaxation in solution E.S.R, Mol. Phys., 12 (1967) 69-81. Cerca con Google

[70] J.H. Osiecki, E.F. Ullman, Studies of free radicals. I. .alpha.-Nitronyl nitroxides, a new class of stable radicals, J. Am. Chem. Soc., 90 (1968) 1078-1079. Cerca con Google

[71] M.F. Ottaviani, ENDOR study of nitronylnitroxides in frozen solution, J. Chem. Soc., Faraday Trans., 86 (1990) 3211-3219. Cerca con Google

[72] R. Owenius, G.E. Terry, M.J. Williams, S.S. Eaton, G.R. Eaton, Frequency Dependence of Electron Spin Relaxation of Nitroxyl Radicals in Fluid Solution, J. Phys. Chem. B, 108 (2004) 9475-9481. Cerca con Google

[73] M. Pannier, S. Veit, A. Godt, G. Jeschke, H.W. Spiess, Dead-Time Free Measurement of Dipole–Dipole Interactions between Electron Spins, J. Magn. Reson., 142 (2000) 331-340. Cerca con Google

[74] M. Pavone, P. Cimino, O. Crescenzi, A. Sillanpää, V. Barone, Interplay of Intrinsic, Environmental, and Dynamic Effects in Tuning the EPR Parameters of Nitroxides:  Further Insights from an Integrated Computational Approach, J. Phys. Chem. B, 111 (2007) 8928-8939. Cerca con Google

[75] P.W. Percival, J.S. Hyde, Saturation-Recovery Measurements of the Spin-Lattice Relaxation Times of Some Nitroxides in Solution, J. Magn. Reson,, 23 (1976) 249-257. Cerca con Google

[76] C.P. Poole, H.A. Farach, Handbook of electron spin resonance: data sources, computer technology, relaxation, and ENDOR, American Institute of Physics, New York, 1994. Cerca con Google

[77] C. Rajadurai, V. Enkelmann, G. Zoppellaro, M. Baumgarten, Magnetic Interactions in Supramolecular N–O•••H–C≡C– Type Hydrogen-Bonded Nitronylnitroxide Radical Chains, J. Phys. Chem. B, 111 (2007) 4327-4334. Cerca con Google

[78] B. Robinson, D. Haas, C. Mailer, Molecular Dynamics in Liquids: Spin-Lattice Relaxation of Nitroxide Spin Labels, Science, 263 (1994) 490-493. Cerca con Google

[79] B.H. Robinson, A.W. Reese, E. Gibbons, C. Mailer, A Unified Description of the Spin−Spin and Spin−Lattice Relaxation Rates Applied to Nitroxide Spin Labels in Viscous Liquids, J. Phys. Chem. B, 103 (1999) 5881-5894. Cerca con Google

[80] J. Rotne, S. Prager, Variational treatment of hydrodynamic interaction in polymers, J. Chem. Phys., 50 (1969) 4831-4837. Cerca con Google

[81] H. Sato, S.E. Bottle, J.P. Blinco, A.S. Micallef, G.R. Eaton, S.S. Eaton, Electron spin–lattice relaxation of nitroxyl radicals in temperature ranges that span glassy solutions to low-viscosity liquids, J. Magn. Reson., 191 (2008) 66-77. Cerca con Google

[82] G. Scalmani, M.J. Frisch, Continuous surface charge polarizable continuum models of solvation. I. General formalism, J. Chem. Phys., 132 (2010) 114110. Cerca con Google

[83] G. Scalmani, N. Rega, M. Cossi, V. Barone, Finite elements molecular surfaces in continuum solvent models for large chemical systems, J. Comput. Methods Sci. Eng., 2 (2002) 469-474. Cerca con Google

[84] H. Schad, G. Baur, G. Meier, Investigation of the dielectric constants and the diamagnetic anisotropies of cyanobiphenyls (CB), cyanophenylcyclohexanes (PCH), and cyanocyclohexylcyclohexanes (CCH) in the nematic phase, J. Chem. Phys., 71 (1979) 3174-3181. Cerca con Google

[85] D.J. Schneider, J.H. Freed, Spin relaxation and motional dynamics, Adv. Chem. Phys., 73 (1989) 387-527. Cerca con Google

[86] A. Schweiger Principles of pulse electron paramagnetic resonance, Oxford University Press, Oxford, 2001. Cerca con Google

[87] S. Stoll, A. Schweiger, EasySpin, a comprehensive software package for spectral simulation and analysis in EPR, J. Magn. Reson., 178 (2006) 42-55. Cerca con Google

[88] T. Takui, Y. Miura, K. Inui, Y. Teki, M. Inoue, K. Itoh, P-Spin Density Determination of Phenylnitronyl Nitroxide Radical: A Liquid-Phase Endor/Triple Study, Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A, 271 (1995) 55-66. Cerca con Google

[89] M. Tamura, Y. Nakazawa, D. Shiomi, K. Nozawa, Y. Hosokoshi, M. Ishikawa, M. Takahashi, M. Kinoshita, Bulk ferromagnetism in the β-phase crystal of the p-nitrophenyl nitronyl nitroxide radical, Chem. Phys. Lett., 186 (1991) 401-404. Cerca con Google

[90] J. Tomasi, B. Mennucci, R. Cammi, Quantum Mechanical Continuum Solvation Models, Chem. Rev., 105 (2005) 2999-3094. Cerca con Google

[91] E.F. Ullman, J.H. Osiecki, D.G.B. Boocock, R. Darcy, Stable free radicals. X. Nitronyl nitroxide monoradicals and biradicals as possible small molecule spin labels, J. Am. Chem. Soc., 94 (1972) 7049-7059. Cerca con Google

[92] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev., 96 (1996) 1533-1554. Cerca con Google

[93] E. van der Drift, B.A.C. Rousseeuw, J. Smidt, EPR and ELDOR Studies on Spin Relaxation in Perdeuterated 2,2,6,6-Tetramethyl-4-piperidone-N-oxyl in Liquid Solutions. The Slowly Relaxing Local Structure Mechanism, J. Phys. Chem., 88 (1984) 2275-2284. Cerca con Google

[94] J.A. Weil, Comments on second-order spin-hamiltonian energies, J. Magn. Reson,, 18 (1975) 113-116. Cerca con Google

[95] R.J. Weinkam, E.C. Jorgensen, Free Radical Analogs of Histidine, J. Am. Chem. Soc., 93 (1971) 7028-7033. Cerca con Google

[96] R.J. Weinkam, E.C. Jorgensen, Angiotensin II Analogs. VIII. The Use of Free Radical Containing Peptides to Indicate the Conformation of the Carboxyl Terminal Region of Angiotensin II, J. Am. Chem. Soc., 93 (1971) 7033-7038. Cerca con Google

[97] R. Wilson, D. Kivelson, ESR Linewidths in Solution. I. Experiments on Anisotropic and Spin-Rotational Effects, J. Chem. Phys., 44 (1966) 154-168. Cerca con Google

[98] W. Wong, S.F. Watkins, X-Ray Structures of a Free Radical Nitronylnitroxide and Diamagnetic Succinimide, J. Chem. Soc., Chem. Commun., (1973) 888-889. Cerca con Google

[99] S.A. Zager, J.H. Freed, Electron-spin relaxation and molecular dynamics in liquids. I. Solvent dependence, J. Chem. Phys., 77 (1982) 3344-3359. Cerca con Google

[100] S.A. Zager, J.H. Freed, Electron-spin relaxation and molecular dynamics in liquids. II. Density dependence, J. Chem. Phys., 77 (1982) 3360-3375. Cerca con Google

[101] M. Zerbetto, A. Polimeno, V. Barone, Simulation of electron spin resonance spectroscopy in diverse environments: An integrated approach, Comput. Phys. Commun., 180 (2009) 2680-2697. Cerca con Google

[102] M. Zerbetto, A. Polimeno, P. Cimino, V. Barone, On the interpretation of continuous wave electron spin resonance spectra of tempo-palmitate in 5-cyanobiphenyl, J. Chem. Phys., 128 (2008) 024501. Cerca con Google

[103] J. Zhang, M. Zhao, G. Cui, S. Peng, A class of novel nitronyl nitroxide labeling basic and acidic amino acids: Synthesis, application for preparing ESR optionally labeling peptides, and bioactivity investigations, Bioorg. Med. Chem., 16 (2008) 4019-4028. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record