Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Frezza, Christian (2007) OPA1, a mitochondrial pro-fusion protein, regulates the cristae remodelling pathway during apoptosis. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Mitochondria are essential organelles for the life of the cells since it is the major source of ATP, key molecule for many endoergonic reaction.
Recently it has been demonstrated that mitochondrial play a key role in many other cellular processes like Ca2+ signaling and programmed cell death.
Following an apoptotic insult mitochondria release cytochrome c and other proteins required in the cytosol for the activation of the effector caspases required for cell demise.
What is remarkable about cytochrome c release is that is fast, complete and usually is not associated with mitochondrial swelling. Thanks to the advances in 3D electron microscopy it has been demonstrated that cristae are not just invagination of the inner mitochondrial membrane (IMM) as previously depicted by Palade (Palade, 1952) but rather distinct compartments of it, separated from the inter membrane space (IMS) by tubular narrow cristae junctions. The majority of cytochrome c and the other respiratory chain components are restricted in this compartment. To reach a complete cytochrome c release in the absence of mitochondrial swelling mitochondria remodel their internal structure: individual cristae fuse and tubular narrow cristae junctions widen; this process, defined cristae remodeling is associated with the mobilization of cytochrome c towards the IMS for its subsequent release across the outer mitochondrial membrane (OMM) (Scorrano et al., 2002). The molecular mechanism beyond this dynamic process is not well understood and in the laboratory where I did my doctoral Thesis it has been hypothesized that OPA1, the only dynamin related protein of the IMM (Alexander et al., 2000; Delettre et al., 2000) could control cristae remodeling. Dynamin related proteins are regulators of mitochondrial morphology promoting mitochondrial fusion and fission. To this family belong Mitofusins (MFN) 1 and 2 in the OMM and OPA1 that resides in the IMM. OPA1 is a large GTPase anchored in the IMM, facing the IMS (Olichon et al., 2002; Satoh et al., 2003); it has been shown that in yeast, its orhologue Mgm1p is required for fusion competent mitochondria by the cooperation with a protein of the same family on the OMM called Fzo1p. In our laboratory it has been demonstrated that in mammalian cells OPA1 promotes mitochondrial fusion through one of the two mammaliam orthologue of Fzo1p called MFN1.
In 2000 two distinct laboratories demonstrated that mutations in OPA1 gene are the cause of dominant optic atrophy (ADOA), the leading case of inherited blindness in human, characterized by selective death of retinal ganglion cell (RGC) (Alexander et al., 2000; Delettre et al., 2000). The fact the mutation in a mitochondrial protein involved in mitochondrial morphology caused cell death opened a new scenario that corroborates the central position of mitochondria in regulating apoptotic signaling.
The aim of my thesis was to analyze the role of OPA1 in mitochondria-dependent apoptosis.
We started with a brute force approach by overexpressing OPA1 in murine embryonic fibroblasts (MEFs) and measuring cells viability in response to intrinsic apoptotic stimuli that specifically trigger apoptosis through the mitochondrial pathway.
Overexpression of wt OPA1 but not of mutant in the GTPase domain (OPA1K301A) or a truncated mutant in the coiled coil domain (OPAR905*) is able to prevent from apoptosis induced by hydrogen peroxide, staurosporine, etoposide and overexpression of tBID, a BH3 only protein of the Bcl-2 family that promotes cristae remodeling. To confirm that OPA1 antiapoptotic activity was exerted at the mitochondrial level we analyzed two aspects of the mitochondrial dysfunction: cytochrome c release and mitochondrial depolarization.
To this aim we overexpressed a mitochondrially targeted red fluorescent protein (mtRFP) as marker of the mitochondrial network and then we immunodecorated cytochrome c with a FITC-conjugated secondary antibody. OPA1 overexpression prevented cytochrome c release in response to intrinsic stimuli while its inactive mutant OPAK301A aggravated cytochrome c release kinetic.
We then analyzed another aspect of the mitochondrial dysfunction: mitochondrial depolarization, taking advantage of the potentiometric probe tetramethylrhodamine-methyl ester (TMRM) which mitochondrial fluorescence is proportional to mitochondrial potential. Overexpression of OPA1, but not of its inactive K301A mutant, prevented mitochondrial depolarization induced by intrinsic stimuli, confirming that OPA may prevent from apoptosis at the mitochondrial level by reducing cytochrome c release and mitochondrial depolarization. How can a dynamin related protein prevent from apoptosis? We asked this because when our study was ongoing an intriguing hypotesys emerged: during apoptosis mitochondrial network undergoes irreversible massive fragmentation; this event and apoptotic cristae remodeling are required for complete cytochrome c release. In principle, OPA1 could prevent apoptosis at both of these levels either counteracting mitochondrial fragmentation thanks to its pro-fusion activity or by the regulation of cristae remodeling. To understand at which of these levels OPA1 was exerting its antiapototic activity, we started a genetic approach, overexpressing OPA1 in Mfn1-/-, where OPA1 pro-fusion activity was prejudiced.
Overexpression of OPA1 in these cells prevented from apoptosis induced by intrinsic stimuli; in view of the fact that a residual pro-fusion activity of OPA1 could be mediated by the presence of MFN2 we repeated the same experiments in cells in which both mitofusins were ablated (DMF). Also in this conditions OPA1 prevented from apoptosis at the mitochondrial level, slowing down cytochrome c release kinetic. OPA1 has an antiapoptotica function that is independent of its pro-fusion activity on the mitochondrial network.
At this point we asked whether OPA1 may have a role on apoptotic cristae remodeling. We generated stable cell lines that stably overexpressed OPA1 and its K301A mutant both in wt and in Mfn1-/- cells and a cell line depleted of OPA1 by short hairpin RNA interference (shOPA1RNAi). We then isolated mitochondria and measured cytochrome c release induced by recombinant caspase 8 cleaved BID (cBID) using a specific ELISA immunoassay. Stable overexpression of OPA1 is able to prevent cytochrome c relase independently of MFN1 while its downregulation dramatically increases its release. Using a specific assay we observed that OPA1 is also able to prevent cytochrome c mobilization from the cristae independently of MFN. These results were confirmed by the fact that overexpression of the OPA1K301A mutant increased cytochrome c mobilization that was almost complete when OPA1 levels were depleted by RNAi. A thorough morphometric analysis of isolated mitochondria from these cell lines, associated with 3D reconstruction of electron microscopy tomography, showed that OPA1 controls cristae morphology and prevents cristae junction widening in response to cBID. To better understand the molecular mechanism through which OPA1 controls cristae remodeling and cristae junctions diameter we based our hypothesis on the possible analogy with vesciculation processes regulated by cytosolic dynamin, where GTPase activity of it mediated mechanoenzimatic constriction of the vesicle collar. Despite this analogy, we should mention that OPA1, unlike dynamin, is located on the inner side of the membrane to be constricted and not on the outside as dynamin complicating the model. First, we analyzed biochemical characteristic of OPA1: gel filtration studies showed that OPA1 is eluted at very high molecular weight fractions (>600 KDa) and in response to cBID incubation it is retrieved in low molecular weight fractions. Parallel studies in our laboratory demonstrated that OPA1 is processed by a rhomboid protease, PARL, into a short form found soluble in the IMS that is responsible for the antiapototic but not of the pro-fusion activity of OPA1. We therefore reasoned that OPA1 could organize into high molecular weight complexes made up at least by the PARL generated soluble form and the membrane bound form of OPA1. To confirm this hypothesis we crosslinked this complex and confirmed the presence of a high molecular weight immunoreactive band for OPA1 that disappear following the mechanical expansion of the cristae induced by osmotic swelling. These crosslinker-stabilized oligomers contain both the soluble and the membrane bound forms of OPA1 as demonstrated by their immunoreactivity for properly tagged and co-expressed forms.
The OPA1-containing oligomers is targeted by cBID in a time dependent manner and OPA1 overexpression stabilizes these complexes. We can conclude that OPA1 controls cytochrome c mobilization and cristae remodeling that occurs during apoptosis. This function of OPA1 is independent of MFNs and is correlated to the formation of high molecular weight complexes.

The data collected so far on OPA1 antiapoptotic function open a new scenario. First we need to investigate on the molecular composition of these complexes in normal and apoptotic conditions. To this aim we started a biochemical study on OPA1-containing complexes in mitochondria isolated from different genetic background in normal and apoptotic conditions. The proteomic analysis of the proteins eventually found in complex with OPA1 will allow us to comprehend the function and regulation of OPA1 oligomers before and after cell death induction.
OPA1 appears as a crucial protein in the apoptotic process; as a confirmation of this, it has been found that OPA1 is highly overexpressed in some lung cancer (Dean Fennel, personal communication); we then asked whether OPA1 could be a target for the development of new drugs that enhance apoptosis in tumor cells. To this aim, we started a collaboration with Stefano Moro from the Department of Medicinal Chemistry of the University of Padova, to generate a library of candidate inhibitors of OPA1 performing a virtual screening of compounds targeted to the GTPase pocket of OPA1 obtained following an homology modeling on the Dyctiostelium Discoideum GTPase domain of Dynamin A.

In conclusion, the data presented in this doctoral thesis show that mitochondrial protein OPA1 participates in the regulation of cytochrome c mobilization and cristae remodeling during apoptosis. We demonstrated that OPA1 organizes into high molecular weight complexes which disruption correlates with cristae junction widening. This function is distinct from its role in mitochondrial morphology and this suggest a bifurcation and specialization of OPA1 function during evolution.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Scorrano, Luca
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOSCIENZE > NEUROBIOLOGIA
Data di deposito della tesi:31 Gennaio 2007
Anno di Pubblicazione:31 Gennaio 2007
Parole chiave (italiano / inglese):apoptosis, mitochondria, cytochrome c release, mitochondrial dynamics
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche Sperimentali
Codice ID:603
Depositato il:28 Ott 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Adams,J.M. and Cory,S. (2007). Bcl-2-regulated apoptosis: mechanism and therapeutic potential. Curr. Opin. Immunol. 19, 488-496. Cerca con Google

2. Aijaz,S., Erskine,L., Jeffery,G., Bhattacharya,S.S., and Votruba,M. (2004). Developmental expression profile of the optic atrophy gene product: OPA1 is not localized exclusively in the mammalian retinal ganglion cell layer. Invest. Ophthalmol. Vis. Sci. 45, 1667-1673. Cerca con Google

3. Alavi,M.V., Bette,S., Schimpf,S., Schuettauf,F., Schraermeyer,U., Wehrl,H.F., Ruttiger,L., Beck,S.C., Tonagel,F., Pichler,B.J., Knipper,M., Peters,T., Laufs,J., and Wissinger,B. (2007). A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130, 1029-1042. Cerca con Google

4. Alexander,C., Votruba,M., Pesch,U.E., Thiselton,D.L., Mayer,S., Moore,A., Rodriguez,M., Kellner,U., Leo-Kottler,B., Auburger,G., Bhattacharya,S.S., and Wissinger,B. (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211-215. Cerca con Google

5. Alirol,E., James,D., Huber,D., Marchetto,A., Vergani,L., Martinou,J.C., and Scorrano,L. (2006). The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol. Biol. Cell 17, 4593-4605. Cerca con Google

6. Allen,R.D., Schroeder,C.C., and Fok,A.K. (1989). An investigation of mitochondrial inner membranes by rapid-freeze deep-etch techniques. J. Cell. Biol. 108, 2233-2240. Cerca con Google

7. Amati-Bonneau,P., Guichet,A., Olichon,A., Chevrollier,A., Viala,F., Miot,S., Ayuso,C., Odent,S., Arrouet,C., Verny,C., Calmels,M.N., Simard,G., Belenguer,P., Wang,J., Puel,J.L., Hamel,C., Malthiery,Y., Bonneau,D., Lenaers,G., and Reynier,P. (2005). OPA1 R445H mutation in optic atrophy associated with sensorineural deafness. Ann. Neurol. 58, 958-963. Cerca con Google

8. Amati-Bonneau,P., Valentino,M.L., Reynier,P., Gallardo,M.E., Bornstein,B., Boissiere,A., Campos,Y., Rivera,H., de la Aleja,J.G., Carroccia,R., Iommarini,L., Labauge,P., Figarella-Branger,D., Marcorelles,P., Furby,A., Beauvais,K., Letournel,F., Liguori,R., La,M.C., Montagna,P., Liguori,M., Zanna,C., Rugolo,M., Cossarizza,A., Wissinger,B., Verny,C., Schwarzenbacher,R., Martin,M.A., Arenas,J.I., Ayuso,C., Garesse,R., Lenaers,G., Bonneau,D., and Carelli,V. (2007). OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. Brain. Cerca con Google

9. Andrews,R.M., Griffiths,P.G., Johnson,M.A., and Turnbull,D.M. (1999). Histochemical localisation of mitochondrial enzyme activity in human optic nerve and retina. Br. J. Ophthalmol. 83, 231-235. Cerca con Google

10. Annis,M.G., Soucie,E.L., Dlugosz,P.J., Cruz-Aguado,J.A., Penn,L.Z., Leber,B., and Andrews,D.W. (2005). Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J. 24, 2096-2103. Cerca con Google

11. Antignani,A. and Youle,R.J. (2006). How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr. Opin. Cell Biol. 18, 685-689. Cerca con Google

12. Arnoult,D., Grodet,A., Lee,Y.J., Estaquier,J., and Blackstone,C. (2005). Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem. 280, 35742-35750. Cerca con Google

13. Bach,D., Naon,D., Pich,S., Soriano,F.X., Vega,N., Rieusset,J., Laville,M., Guillet,C., Boirie,Y., Wallberg-Henriksson,H., Manco,M., Calvani,M., Castagneto,M., Palacin,M., Mingrone,G., Zierath,J.R., Vidal,H., and Zorzano,A. (2005). Expression of Mfn2, the Charcot-Marie-Tooth neuropathy type 2A gene, in human skeletal muscle: effects of type 2 diabetes, obesity, weight loss, and the regulatory role of tumor necrosis factor alpha and interleukin-6. Diabetes 54, 2685-2693. Cerca con Google

14. Bach,D., Pich,S., Soriano,F.X., Vega,N., Baumgartner,B., Oriola,J., Daugaard,J.R., Lloberas,J., Camps,M., Zierath,J.R., Rabasa-Lhoret,R., Wallberg-Henriksson,H., Laville,M., Palacin,M., Vidal,H., Rivera,F., Brand,M., and Zorzano,A. (2003). Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278, 17190-17197. Cerca con Google

15. Bakeeva,L.E., Chentsov,Y., and Skulachev,V.P. (1978). Mitochondrial framework (reticulum mitochondriale) in rat diaphragm muscle. Biochim. Biophys. Acta 501, 349-369. Cerca con Google

16. Baricault,L., Segui,B., Guegand,L., Olichon,A., Valette,A., Larminat,F., and Lenaers,G. (2007). OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp. Cell. Res. 313, 3800-3808. Cerca con Google

17. Bayir,H., Fadeel,B., Palladino,M.J., Witasp,E., Kurnikov,I.V., Tyurina,Y.Y., Tyurin,V.A., Amoscato,A.A., Jiang,J., Kochanek,P.M., DeKosky,S.T., Greenberger,J.S., Shvedova,A.A., and Kagan,V.E. (2006). Apoptotic interactions of cytochrome c: redox flirting with anionic phospholipids within and outside of mitochondria. Biochim. Biophys. Acta. 1757, 648-659. Cerca con Google

18. Bereiter-Hahn,J. and Voth,M. (1994). Dynamics of mitochondria in living cells: shape changes, dislocations, fusion, and fission of mitochondria. Microsc. Res. Tech. 27, 198-219. Cerca con Google

19. Bernardi,P. (1999). Mitochondrial transport of cations: Channels, exchangers and permeability transition. Physiol. Rev. 79, 1127-1155. Cerca con Google

20. Bernardi,P. and Azzone,G.F. (1981). Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J. Biol. Chem. 256, 7187-7192. Cerca con Google

21. Bernardi,P., Krauskopf,A., Basso,E., Petronilli,V., Blachly-Dyson,E., Di,L.F., and Forte,M.A. (2006). The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J. 273, 2077-2099. Cerca con Google

22. Bristow,E.A., Griffiths,P.G., Andrews,R.M., Johnson,M.A., and Turnbull,D.M. (2002). The distribution of mitochondrial activity in relation to optic nerve structure. Arch. Ophthalmol. 120, 791-796. Cerca con Google

23. Buono,L.M., Foroozan,R., Sergott,R.C., and Savino,P.J. (2002). Is normal tension glaucoma actually an unrecognized hereditary optic neuropathy? New evidence from genetic analysis. Curr. Opin. Ophthalmol. 13, 362-370. Cerca con Google

24. Carelli,V., Ross-Cisneros,F.N., and Sadun,A.A. (2004). Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye. Res. 23, 53-89. Cerca con Google

25. Celotto,A.M., Frank,A.C., Seigle,J.L., and Palladino,M.J. (2006). Drosophila model of human inherited triosephosphate isomerase deficiency glycolytic enzymopathy. Genetics. 174, 1237-1246. Cerca con Google

26. Cereghetti,G.M. and Scorrano,L. (2006). The many shapes of mitochondrial death. Oncogene 25, 4717-4724. Cerca con Google

27. Chang,C.R. and Blackstone,C. (2007). Drp1 phosphorylation and mitochondrial regulation. EMBO. Rep. 8, 1088-1089. Cerca con Google

28. Chen,H., Chomyn,A., and Chan,D.C. (2005). Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 280, 26185-26192. Cerca con Google

29. Chen,H., Detmer,S.A., Ewald,A.J., Griffin,E.E., Fraser,S.E., and Chan,D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189-200. Cerca con Google

30. Chen,K.H., Guo,X., Ma,D., Guo,Y., Li,Q., Yang,D., Li,P., Qiu,X., Wen,S., Xiao,R.P., and Tang,J. (2004). Dysregulation of HSG triggers vascular proliferative disorders. Nat. Cell Biol. 6, 872-883. Cerca con Google

31. Chipuk,J.E., Bouchier-Hayes,L., and Green,D.R. (2006). Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death. Differ. 13, 1396-1402. Cerca con Google

32. Choi,S.Y., Gonzalvez,F., Jenkins,G.M., Slomianny,C., Chretien,D., Arnoult,D., Petit,P.X., and Frohman,M.A. (2007). Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell. Death. Differ. 14, 597-606. Cerca con Google

33. Choi,S.Y., Huang,P., Jenkins,G.M., Chan,D.C., Schiller,J., and Frohman,M.A. (2006). A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 8, 1255-1262. Cerca con Google

34. Cipolat,S., de Brito,O.M., Dal Zilio,B., and Scorrano,L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U. S. A 101, 15927-15932. Cerca con Google

35. Clipstone,N.A. and Crabtree,G.R. (1992). Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Nature 357, 695-697. Cerca con Google

36. Cohn,A.C., Toomes,C., Potter,C., Towns,K.V., Hewitt,A.W., Inglehearn,C.F., Craig,J.E., and Mackey,D.A. (2007). Autosomal dominant optic atrophy: penetrance and expressivity in patients with OPA1 mutations. Am. J. Ophthalmol. 143, 656-662. Cerca con Google

37. Cortese,J.D., Voglino,A.L., and Hackenbrock,C.R. (1998). Multiple conformations of physiological membrane-bound cytochrome c. Biochemistry. 37, 6402-6409. Cerca con Google

38. Cortopassi,G.A. and Wong,A. (1999). Mitochondria in organismal aging and degeneration. Biochem. Biophys. Acta. 1410. Cerca con Google

39. Cribbs,J.T. and Strack,S. (2007). Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO. Rep. 8, 939-944. Cerca con Google

40. D'Herde,K., De Prest,B., Mussche,S., Schotte,P., Beyaert,R., Coster,R.V., and Roels,F. (2001). Ultrastructural localization of cytochrome c in apoptosis demonstrates mitochondrial heterogeneity. Cell Death. Differ. 7, 331-337. Cerca con Google

41. Danial,N.N. and Korsmeyer,S.J. (2004). Cell death: critical control points. Cell 116, 205-219. Cerca con Google

42. Davies,V.J., Hollins,A.J., Piechota,M.J., Yip,W., Davies,J.R., White,K.E., Nicols,P.P., Boulton,M.E., and Votruba,M. (2007). Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 16, 1307-1318. Cerca con Google

43. Dejean,L.M., Martinez-Caballero,S., and Kinnally,K.W. (2006). Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death. Differ. 13, 1387-1395. Cerca con Google

44. Delettre,C., Griffoin,J.M., Kaplan,J., Dollfus,H., Lorenz,B., Faivre,L., Lenaers,G., Belenguer,P., and Hamel,C.P. (2001). Mutation spectrum and splicing variants in the OPA1 gene. Hum. Genet. 109, 584-591. Cerca con Google

45. Delettre,C., Lenaers,G., Griffoin,J.M., Gigarel,N., Lorenzo,C., Belenguer,P., Pelloquin,L., Grosgeorge,J., Turc-Carel,C., Perret,E., Astarie-Dequeker,C., Lasquellec,L., Arnaud,B., Ducommun,B., Kaplan,J., and Hamel,C.P. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207-210. Cerca con Google

46. Delettre,C., Lenaers,G., Pelloquin,L., Belenguer,P., and Hamel,C.P. (2002). OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol. Genet. Metab. 75, 97-107. Cerca con Google

47. Deveraux,Q.L., Roy,N., Stennicke,H.R., Van Arsdale,T., Zhou,Q., Srinivasula,S.M., Alnemri,E.S., Salvesen,G.S., and Reed,J.C. (1998). IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17, 2215-2223. Cerca con Google

48. Di,B.A. and Gill,G. (2006). SUMO-specific proteases and the cell cycle. An essential role for SENP5 in cell proliferation. Cell. Cycle. 5, 2310-2313. Cerca con Google

49. Dimmer,K.S. and Scorrano,L. (2006). (De)constructing mitochondria: what for? Physiology. (Bethesda. ) 21, 233-241. Cerca con Google

50. Du,C., Fang,M., Li,Y., Li,L., and Wang,X. (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42. Cerca con Google

51. Dudkina,N.V., Heinemeyer,J., Keegstra,W., Boekema,E.J., and Braun,H.P. (2005). Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS. Lett. 579, 5769-5772. Cerca con Google

52. Durr,M., Escobar-Henriques,M., Merz,S., Geimer,S., Langer,T., and Westermann,B. (2006). Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. Mol. Biol. Cell. 17, 3745-3755. Cerca con Google

53. Duvezin-Caubet,S., Jagasia,R., Wagener,J., Hofmann,S., Trifunovic,A., Hansson,A., Chomyn,A., Bauer,M.F., Attardi,G., Larsson,N.G., Neupert,W., and Reichert,A.S. (2006). Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J. Biol. Chem. Cerca con Google

54. Duvezin-Caubet,S., Koppen,M., Wagener,J., Zick,M., Israel,L., Bernacchia,A., Jagasia,R., Rugarli,E.I., Imhof,A., Neupert,W., Langer,T., and Reichert,A.S. (2007). OPA1 processing reconstituted in yeast depends on the subunit composition of the m-AAA protease in mitochondria. Mol. Biol. Cell. 18, 3582-3590. Cerca con Google

55. Epand,R.F., Martinou,J.C., Fornallaz-Mulhauser,M., Hughes,D.W., and Epand,R.M. (2002). The apoptotic protein tBid promotes leakage by altering membrane curvature. J. Biol. Chem. 277, 32632-32639. Cerca con Google

56. Escobar-Henriques,M., Westermann,B., and Langer,T. (2006). Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell. Biol. 173, 645-650. Cerca con Google

57. Eskes,R., Antonsson,B., Osen-Sand A., Montessuit,S., Richter,C., Sadoul,R., Mazzei,G., Nichols,A., and Martinou,J.-C. (1998). Bax-induced cytochrome c release from mitochondria is independent of the permeability transition pore but highly dependent on Mg2+ ions. J. Cell Biol. 143, 217-224. Cerca con Google

58. Esposti,M.D., Erler,J.T., Hickman,J.A., and Dive,C. (2001). Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity. Mol. Cell Biol. 21, 7268-7276. Cerca con Google

59. Estaquier,J. and Arnoult,D. (2007). Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell. Death. Differ. 14, 1086-1094. Cerca con Google

60. Eura,Y., Ishihara,N., Oka,T., and Mihara,K. (2006). Identification of a novel protein that regulates mitochondrial fusion by modulating mitofusin (Mfn) protein function. J. Cell. Sci. 119, 4913-4925. Cerca con Google

61. Eura,Y., Ishihara,N., Yokota,S., and Mihara,K. (2003). Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. (Tokyo) 134, 333-344. Cerca con Google

62. Fannjiang,Y., Cheng,W.C., Lee,S.J., Qi,B., Pevsner,J., McCaffery,J.M., Hill,R.B., Basanez,G., and Hardwick,J.M. (2004). Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev. 18, 2785-2797. Cerca con Google

63. Ferguson-Miller,S., Brautigan,D.L., and Margoliash,E. (1976). Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J. Biol. Chem. 251, 1104-1115. Cerca con Google

64. Ferre,M., Amati-Bonneau,P., Tourmen,Y., Malthiery,Y., and Reynier,P. (2005). eOPA1: an online database for OPA1 mutations. Hum. Mutat. 25, 423-428. Cerca con Google

65. Frank,S., Gaume,B., Bergmann-Leitner,E.S., Leitner,W.W., Robert,E.G., Catez,F., Smith,C.L., and Youle,R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515-525. Cerca con Google

66. Frey,T.G. and Mannella,C.A. (2000). The internal structure of mitochondria. Trends. Biochem. Sci. 25, 319-324. Cerca con Google

67. Frezza,C., Cipolat,S., Martins,d.B., Micaroni,M., Beznoussenko,G.V., Rudka,T., Bartoli,D., Polishuck,R.S., Danial,N.N., De Strooper,B., and Scorrano,L. (2006). OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion. Cell 126, 177-189. Cerca con Google

68. Fritz,S., Weinbach,N., and Westermann,B. (2003). Mdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast. Mol Biol Cell 14. Cerca con Google

69. Gallop,J.L., Butler,P.J., and McMahon,H.T. (2005). Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature. 438, 675-678. Cerca con Google

70. Gallop,J.L., Jao,C.C., Kent,H.M., Butler,P.J., Evans,P.R., Langen,R., and McMahon,H.T. (2006). Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO. J. 25, 2898-2910. Cerca con Google

71. Gallop,J.L. and McMahon,H.T. (2005). BAR domains and membrane curvature: bringing your curves to the BAR. Biochem. Soc. Symp. 223-231. Cerca con Google

72. Garcia-Saez,A.J., Mingarro,I., Perez-Paya,E., and Salgado,J. (2004). Membrane-insertion fragments of Bcl-xL, Bax, and Bid. Biochemistry 43, 10930-10943. Cerca con Google

73. Germain,M., Mathai,J.P., McBride,H.M., and Shore,G.C. (2005). Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J. 24, 1546-1556. Cerca con Google

74. Gieffers,C., Korioth,F., Heimann,P., Ungermann,C., and Frey,J. (1997). Mitofilin is a transmembrane protein of the inner mitochondrial membrane expressed as two isoforms. Exp. Cell Res. 232, 395-399. Cerca con Google

75. Goldstein,J.C., Waterhouse,N.J., Juin,P., Evan,G.I., and Green,D.R. (2000). The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol. 2, 156-162. Cerca con Google

76. Gonzalvez,F., Bessoule,J.J., Rocchiccioli,F., Manon,S., and Petit,P.X. (2005). Role of cardiolipin on tBid and tBid/Bax synergistic effects on yeast mitochondria. Cell. Death. Differ. 12, 659-667. Cerca con Google

77. Gottlieb,E., Armour,S.M., Harris,M.H., and Thompson,C.B. (2003). Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell. Death. Differ. 10, 709-717. Cerca con Google

78. Grijalba,M.T., Andrade,P.B., Meinicke,A.R., Castilho,R.F., Vercesi,A.E., and Schreier,S. (1998). Inhibition of membrane lipid peroxidation by a radical scavenging mechanism: a novel function for hydroxyl-containing ionophores. Free. Radic. Res. 28, 301-318. Cerca con Google

79. Griparic,L., Kanazawa,T., and van der Bliek,A.M. (2007). Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol 178, 757-764. Cerca con Google

80. Griparic,L., van der Wel,N.N., Orozco,I.J., Peters,P.J., and van der Bliek,A.M. (2004). Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J. Biol. Chem. 279, 18792-18798. Cerca con Google

81. Gross,A., Yin,X.M., Wang,K., Wei,M.C., Jockel,J., Milliman,C., Erdjument,B.H., Tempst,P., and Korsmeyer,S.J. (1999). Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274, 1156-1163. Cerca con Google

82. Guillery,O., Malka,F., Landes,T., Guillou,E., Blackstone,C., Lombes,A., Belenguer,P., Arnoult,D., and Rojo,M. (2007). Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol. Cell. Cerca con Google

83. Hackenbrock,C.R. (1966). Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J. Cell Biol. 30, 269-297. Cerca con Google

84. Hajek,P., Chomyn,A., and Attardi,G. (2007). Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J. Biol. Chem. 282, 5670-5681. Cerca con Google

85. Hajek,P., Villani,G., and Attardi,G. (2001). Rate-limiting step preceding cytochrome c release in cells primed for Fas-mediated apoptosis revealed by analysis of cellular mosaicism of respiratory changes. J. Biol. Chem. 276, 606-615. Cerca con Google

86. Hales,K.G. and Fuller,M.T. (1997). Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121-129. Cerca con Google

87. Harder,Z., Zunino,R., and McBride,H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14, 340-345. Cerca con Google

88. Hengartner,M.O. (2000). The biochemistry of apoptosis. Nature 407, 770-776. Cerca con Google

89. Herlan,M., Vogel,F., Bornhovd,C., Neupert,W., and Reichert,A.S. (2003). Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 278, 27781-27788. Cerca con Google

90. Hermann,G.J., Thatcher,J.W., Mills,J.P., Hales,K.G., Fuller,M.T., Nunnari,J., and Shaw,J.M. (1998). Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359-373. Cerca con Google

91. Hinshaw,J.E. (1999). Dynamin spirals. Curr. Opin. Struct. Biol 9, 260-267. Cerca con Google

92. Hitchcock,A.L., Auld,K., Gygi,S.P., and Silver,P.A. (2003). A subset of membrane-associated proteins is ubiquitinated in response to mutations in the endoplasmic reticulum degradation machinery. Proc. Natl. Acad. Sci. U. S. A. 100, 12735-12740. Cerca con Google

93. Hockenbery,D., Nunez,G., Milliman,C., Schreiber,R.D., and Korsmeyer,S.J. (1990). Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334-336. Cerca con Google

94. Hoffmann,B., Stockl,A., Schlame,M., Beyer,K., and Klingenberg,M. (1994). The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. J. Biol. Chem. 269, 1940-1944. Cerca con Google

95. Hudson,G., mati-Bonneau,P., Blakely,E.L., Stewart,J.D., He,L., Schaefer,A.M., Griffiths,P.G., Ahlqvist,K., Suomalainen,A., Reynier,P., McFarland,R., Turnbull,D.M., Chinnery,P.F., and Taylor,R.W. (2007). Mutation of OPA1 causes dominant optic atrophy with external ophthalmoplegia, ataxia, deafness and multiple mitochondrial DNA deletions: a novel disorder of mtDNA maintenance. Brain. Cerca con Google

96. Huser,J., Rechenmacher,C.E., and Blatter,L.A. (1998). Imaging the permeability pore transition in single mitochondria. Biophys. J. 74, 2129-2137. Cerca con Google

97. Ishihara,N., Eura,Y., and Mihara,K. (2004). Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535-6546. Cerca con Google

98. Ishihara,N., Fujita,Y., Oka,T., and Mihara,K. (2006). Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966-2977. Cerca con Google

99. Jacobs,E.E. and Sanadi,D.R. (1960). Reversible Removal of Cytochrome c from Mitochondria. J. Biol. Chem. 235, 531-534. Cerca con Google

100. Jagasia,R., Grote,P., Westermann,B., and Conradt,B. (2005). DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433, 754-760. Cerca con Google

101. James,D.I., Parone,P.A., Mattenberger,Y., and Martinou,J.C. (2003). hFis1, a novel component of the mammalian mitochondrial fission machinery. J. Biol. Chem. 278, 36373-36379. Cerca con Google

102. John,G.B., Shang,Y., Li,L., Renken,C., Mannella,C.A., Selker,J.M., Rangell,L., Bennett,M.J., and Zha,J. (2005). The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol. Biol. Cell 16, 1543-1554. Cerca con Google

103. Jones,B.A. and Fangman,W.L. (1992). Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes. Dev. 6, 380-389. Cerca con Google

104. Ju,W.K., Misaka,T., Kushnareva,Y., Nakagomi,S., Agarwal,N., Kubo,Y., Lipton,S.A., and Bossy-Wetzel,E. (2005). OPA1 expression in the normal rat retina and optic nerve. J. Comp. Neurol. 488, 1-10. Cerca con Google

105. Jurgensmeier,J.M., Xie,Z., Deveraux,Q., Ellerby,L., Bredesen,D., and Reed,J.C. (1998). Bax directly induces release of cytochrome c from isolated mitochondria. Proc. Natl. Acad. Sci. U. S. A 95, 4997-5002. Cerca con Google

106. Kamei,S., Chen-Kuo-Chang,M., Cazevieille,C., Lenaers,G., Olichon,A., Belenguer,P., Roussignol,G., Renard,N., Eybalin,M., Michelin,A., Delettre,C., Brabet,P., and Hamel,C.P. (2005). Expression of the Opa1 mitochondrial protein in retinal ganglion cells: its downregulation causes aggregation of the mitochondrial network. Invest. Ophthalmol. Vis. Sci. 46, 4288-4294. Cerca con Google

107. Karbowski,M., Arnoult,D., Chen,H., Chan,D.C., Smith,C.L., and Youle,R.J. (2004a). Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol. 164, 493-499. Cerca con Google

108. Karbowski,M., Jeong,S.Y., and Youle,R.J. (2004b). Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell Biol. 166, 1027-1039. Cerca con Google

109. Karbowski,M., Lee,Y.J., Gaume,B., Jeong,S.Y., Frank,S., Nechushtan,A., Santel,A., Fuller,M., Smith,C.L., and Youle,R.J. (2002). Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 159, 931-938. Cerca con Google

110. Karbowski,M., Norris,K.L., Cleland,M.M., Jeong,S.Y., and Youle,R.J. (2006). Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658-662. Cerca con Google

111. Kay,B.K., Kasanov,J., Knight,S., and Kurakin,A. (2000). Convergent evolution with combinatorial peptides. FEBS Lett 480. Cerca con Google

112. Kerr,J.F., Cooksley,W.G., Searle,J., Halliday,J.W., Halliday,W.J., Holder,L., Roberts,I., Burnett,W., and Powell,L.W. (1979). The nature of piecemeal necrosis in chronic active hepatitis. Lancet 2, 827-828. Cerca con Google

113. Kerr,J.F., Wyllie,A.H., and Currie,A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26, 239-257. Cerca con Google

114. Kim,M.R., Jeong,E.G., Lee,J.W., and Lee,S.H. (2006). Absence of the BH3 domain mutation of proapoptotic Bcl-2 family gene BAD in serous and mucinous tumors of ovary. Gynecol. Oncol. 102, 412-413. Cerca con Google

115. Kim,P.K., Annis,M.G., Dlugosz,P.J., Leber,B., and Andrews,D.W. (2004). During apoptosis bcl-2 changes membrane topology at both the endoplasmic reticulum and mitochondria. Mol. Cell 14, 523-529. Cerca con Google

116. Kinnunen,P.K., Koiv,A., Lehtonen,J.Y., Rytomaa,M., and Mustonen,P. (1994). Lipid dynamics and peripheral interactions of proteins with membrane surfaces. Chem. Phys. Lipids. 73, 181-207. Cerca con Google

117. Kjer,P. (1959). Infantile optic atrophy with dominant mode of inheritance: a clinical and genetic study of 19 Danish families. Acta. Ophthalmol. Suppl. 164, 1-147. Cerca con Google

118. Klingenberg,M. (1973). The adenine nucleotide carrier in the mitochondrial membrane. Boll. Soc. Ital. Biol. Sper. 49, 2pp. Cerca con Google

119. Klingenberg,M. (1976). The state of ADP or ATP fixed to the mitochondria by bongkrekate. Eur. J. Biochem. 65, 601-605. Cerca con Google

120. Klingenberg,M. (1992). Structure-function of the ADP/ATP carrier. Biochem Soc Trans 20. Cerca con Google

121. Kluck,R.M., Esposti,M.D., Perkins,G., Renken,C., Kuwana,T., Bossy-Wetzel,E., Goldberg,M., Allen,T., Barber,M.J., Green,D.R., and Newmeyer,D.D. (1999). The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J. Cell Biol. 147, 809-822. Cerca con Google

122. Koshiba,T., Detmer,S.A., Kaiser,J.T., Chen,H., McCaffery,J.M., and Chan,D.C. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858-862. Cerca con Google

123. Kuwana,T., Mackey,M.R., Perkins,G., Ellisman,M.H., Latterich,M., Schneiter,R., Green,D.R., and Newmeyer,D.D. (2002). Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111, 331-342. Cerca con Google

124. Labrousse,A.M., Zappaterra,M.D., Rube,D.A., and van der Bliek,A.M. (1999). C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815-826. Cerca con Google

125. Lee,Y.J., Jeong,S.Y., Karbowski,M., Smith,C.L., and Youle,R.J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001-5011. Cerca con Google

126. Legros,F., Lombes,A., Frachon,P., and Rojo,M. (2002). Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13, 4343-4354. Cerca con Google

127. Letai,A., Bassik,M.C., Walensky,L.D., Sorcinelli,M.D., Weiler,S., and Korsmeyer,S.J. (2002). Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183-192. Cerca con Google

128. Li,L.Y., Luo,X., and Wang,X. (2001). Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412, 95-99. Cerca con Google

129. Lindsten,T., Ross,A.J., King,A., Zong,W.X., Rathmell,J.C., Shiels,H.A., Ulrich,E., Waymire,K.G., Mahar,P., Frauwirth,K., Chen,Y., Wei,M., Eng,V.M., Adelman,D.M., Simon,M.C., Ma,A., Golden,J.A., Evan,G., Korsmeyer,S.J., MacGregor,G.R., and Thompson,C.B. (2000). The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389-1399. Cerca con Google

130. Liu,X., Kim,C.N., Yang,J., Jemmerson,R., and Wang,X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. Cerca con Google

131. Lockshin,R.A. and Williams,C.M. (1965). Programmed cell death. V. Cytolytic enzymes in relation to the breakdown of the intersegmental muscles of silkmoths. J. Insect Physiol 11, 831-844. Cerca con Google

132. Lodi,R., Tonon,C., Valentino,M.L., Iotti,S., Clementi,V., Malucelli,E., Barboni,P., Longanesi,L., Schimpf,S., Wissinger,B., Baruzzi,A., Barbiroli,B., and Carelli,V. (2004). Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy. Ann. Neurol. 56, 719-723. Cerca con Google

133. Luo,X., Budihardjo,I., Zou,H., Slaughter,C., and Wang,X. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481-490. Cerca con Google

134. Mannella,C.A., Marko,M., Penczek,P., Barnard,D., and Frank,J. (1994). The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Microsc. Res. Tech. 27, 278-283. Cerca con Google

135. Mannella,C.A., Pfeiffer,D.R., Bradshaw,P.C., Moraru,I.I., Slepchenko,B., Loew,L.M., Hsieh,C.E., Buttle,K., and Marko,M. (2001). Topology of the mitochondrial inner membrane: dynamics and bioenergetic implications. IUBMB. Life 52, 93-100. Cerca con Google

136. Marchbank,N.J., Craig,J.E., Leek,J.P., Toohey,M., Churchill,A.J., Markham,A.F., Mackey,D.A., Toomes,C., and Inglehearn,C.F. (2002). Deletion of the OPA1 gene in a dominant optic atrophy family: evidence that haploinsufficiency is the cause of disease. J. Med. Genet. 39, e47. Cerca con Google

137. Martins,L.M., Morrison,A., Klupsch,K., Fedele,V., Moisoi,N., Teismann,P., Abuin,A., Grau,E., Geppert,M., Livi,G.P., Creasy,C.L., Martin,A., Hargreaves,I., Heales,S.J., Okada,H., Brandner,S., Schulz,J.B., Mak,T., and Downward,J. (2004). Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice. Mol. Cell Biol. 24, 9848-9862. Cerca con Google

138. Marzo,I., Brenner,C., Zamzami,N., Jurgensmeier,J.M., Susin,S.A., Vieira,H.L., Prevost,M.C., Xie,Z., Matsuyama,S., Reed,J.C., and Kroemer,G. (1998). Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 2027-2031. Cerca con Google

139. mati-Bonneau,P., Valentino,M.L., Reynier,P., Gallardo,M.E., Bornstein,B., Boissiere,A., Campos,Y., Rivera,H., de la Aleja,J.G., Carroccia,R., Iommarini,L., Labauge,P., Figarella-Branger,D., Marcorelles,P., Furby,A., Beauvais,K., Letournel,F., Liguori,R., La,M.C., Montagna,P., Liguori,M., Zanna,C., Rugolo,M., Cossarizza,A., Wissinger,B., Verny,C., Schwarzenbacher,R., Martin,M.A., Arenas,J.I., Ayuso,C., Garesse,R., Lenaers,G., Bonneau,D., and Carelli,V. (2007). OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. Brain. Cerca con Google

140. Mattenberger,Y., James,D.I., and Martinou,J.C. (2003). Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett. 538, 53-59. Cerca con Google

141. McQuibban,G.A., Saurya,S., and Freeman,M. (2003). Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537-541. Cerca con Google

142. Meeusen,S., DeVay,R., Block,J., Cassidy-Stone,A., Wayson,S., McCaffery,J.M., and Nunnari,J. (2006). Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127. Cerca con Google

143. Meeusen,S., McCaffery,J.M., and Nunnari,J. (2004). Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747-1752. Cerca con Google

144. Minauro-Sanmiguel,F., Wilkens,S., and Garcia,J.J. (2005). Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc. Natl. Acad. Sci. U. S. A. 102, 12356-12358. Cerca con Google

145. Misaka,T., Miyashita,T., and Kubo,Y. (2002). Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J. Biol. Chem. 277, 15834-15842. Cerca con Google

146. Mitchell,P. and Moyle,J. (1965). Stoichiometry of proton translocation through the respiratory chain and adenosine triphosphatase systems of rat liver mitochondria. Nature 208, 147-151. Cerca con Google

147. Mootha,V.K., Wei,M.C., Buttle,K.F., Scorrano,L., Panoutsakopoulou,V., Mannella,C.A., and Korsmeyer,S.J. (2001). A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO J. 20, 661-671. Cerca con Google

148. Moraru, I. I. Role of cristae morphology in regulating mitochondrial adenine nucleotide and H+ dynamics. Biophys.J. [78], 194A. 2000. Ref Type: Abstract Cerca con Google

149. Muchmore,S.W., Sattler,M., Liang,H., Meadows,R.P., Harlan,J.E., Yoon,H.S., Nettesheim,D., Chang,B.S., Thompson,C.B., Wong,S.L., Ng,S.L., and Fesik,S.W. (1996). X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381, 335-341. Cerca con Google

150. Myung,J.K., Gulesserian,T., Fountoulakis,M., and Lubec,G. (2003). Deranged hypothetical proteins Rik protein, Nit protein 2 and mitochondrial inner membrane protein, Mitofilin, in fetal Down syndrome brain. Cell. Mol. Biol. (Noisy. -le. -grand. ) 49, 739-746. Cerca con Google

151. Nakamura,N., Kimura,Y., Tokuda,M., Honda,S., and Hirose,S. (2006). MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7, 1019-1022. Cerca con Google

152. Narita,M., Shimizu,S., Ito,T., Chittenden,T., Lutz,R.J., Matsuda,H., and Tsujimoto,Y. (1998). Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. U. S. A 95, 14681-14686. Cerca con Google

153. Neuspiel,M., Zunino,R., Gangaraju,S., Rippstein,P., and McBride,H.M. (2005). Activated Mfn2 signals mitochondrial fusion, interferes with Bax activation and reduces susceptibility to radical induced depolarization. J. Biol. Chem. 280, 25060-25070. Cerca con Google

154. Neutzner,A. and Youle,R.J. (2005). Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae. J Biol Chem 280. Cerca con Google

155. Oakley,M.G. and Hollenbeck,J.J. (2001). The design of antiparallel coiled coils. Curr. Opin. Struct. Biol. 11, 450-457. Cerca con Google

156. Olichon,A., Baricault,L., Gas,N., Guillou,E., Valette,A., Belenguer,P., and Lenaers,G. (2003). Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743-7746. Cerca con Google

157. Olichon,A., Emorine,L.J., Descoins,E., Pelloquin,L., Brichese,L., Gas,N., Guillou,E., Delettre,C., Valette,A., Hamel,C.P., Ducommun,B., Lenaers,G., and Belenguer,P. (2002). The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171-176. Cerca con Google

158. Ott,M., Robertson,J.D., Gogvadze,V., Zhivotovsky,B., and Orrenius,S. (2002). Cytochrome c release from mitochondria proceeds by a two-step process. Proc. Natl. Acad. Sci. U. S. A 99, 1259-1263. Cerca con Google

159. Pacher,P. and Hajnoczky,G. (2001). Propagation of the apoptotic signal by mitochondrial waves. EMBO J. 20, 4107-4121. Cerca con Google

160. Palade,G.E. (1952). The fine structure of mitochondria. Anat. Rec. 114, 427-451. Cerca con Google

161. Parone,P.A., James,D.I., Da,C.S., Mattenberger,Y., Donze,O., Barja,F., and Martinou,J.C. (2006). Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol. Cell. Biol. 26, 7397-7408. Cerca con Google

162. Pastorino,J.G., Chen,S.T., Tafani,M., Snyder,J.W., and Farber,J.L. (1998). The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J. Biol. Chem. 273, 7770-7775. Cerca con Google

163. Paumard,P., Vaillier,J., Coulary,B., Schaeffer,J., Soubannier,V., Mueller,D.M., Brethes,D., di Rago,J.P., and Velours,J. (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21, 221-230. Cerca con Google

164. Pavlov,E.V., Priault,M., Pietkiewicz,D., Cheng,E.H., Antonsson,B., Manon,S., Korsmeyer,S.J., Mannella,C.A., and Kinnally,K.W. (2001). A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J. Cell Biol. 155, 725-731. Cerca con Google

165. Pelloquin,L., Belenguer,P., Menon,Y., Gas,N., and Ducommun,B. (1999). Fission yeast Msp1 is a mitochondrial dynamin-related protein. J. Cell Sci. 112. Cerca con Google

166. Perotti,M.E., Anderson,W.A., and Swift,H. (1983). Quantitative cytochemistry of the diaminobenzidine cytochrome oxidase reaction product in mitochondria of cardiac muscle and pancreas. J. Histochem. Cytochem. 31, 351-365. Cerca con Google

167. Pesch,U.E., Fries,J.E., Bette,S., Kalbacher,H., Wissinger,B., Alexander,C., and Kohler,K. (2004). OPA1, the disease gene for autosomal dominant optic atrophy, is specifically expressed in ganglion cells and intrinsic neurons of the retina. Invest. Ophthalmol. Vis. Sci. 45, 4217-4225. Cerca con Google

168. Pesch,U.E., Leo-Kottler,B., Mayer,S., Jurklies,B., Kellner,U., Apfelstedt-Sylla,E., Zrenner,E., Alexander,C., and Wissinger,B. (2001). OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. Hum. Mol Genet. 10, 1359-1368. Cerca con Google

169. Petronilli,V., Miotto,G., Canton,M., Colonna,R., Bernardi,P., and Di Lisa,F. (1999). Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes of mitochondrial calcein fluorescence. Biophys. J. 76, 725-734. Cerca con Google

170. Petrosillo,G., Ruggiero,F.M., and Paradies,G. (2003). Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. FASEB. J. 17, 2202-2208. Cerca con Google

171. Petrosillo,G., Ruggiero,F.M., Pistolese,M., and Paradies,G. (2004). Ca2+-induced reactive oxygen species production promotes cytochrome c release from rat liver mitochondria via mitochondrial permeability transition (MPT)-dependent and MPT-independent mechanisms: role of cardiolipin. J. Biol. Chem. 279, 53103-53108. Cerca con Google

172. Pfohler,C., Preuss,K.D., Tilgen,W., Stark,A., Regitz,E., Fadle,N., and Pfreundschuh,M. (2007). Mitofilin and titin as target antigens in melanoma-associated retinopathy. Int. J. Cancer. 120, 788-795. Cerca con Google

173. Praefcke,G.J. and McMahon,H.T. (2004). The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 5, 133-147. Cerca con Google

174. Rak,M., Tetaud,E., Godard,F., Sagot,I., Salin,B., Duvezin-Caubet,S., Slonimski,P.P., Rytka,J., and di Rago,J.P. (2007). Yeast cells lacking the mitochondrial gene encoding the ATP synthase subunit 6 exhibit a selective loss of complex IV and unusual mitochondrial morphology. J. Biol. Chem. 282, 10853-10864. Cerca con Google

175. Rojo,M., Legros,F., Chateau,D., and Lombes,A. (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663-1674. Cerca con Google

176. Roucou,X., Montessuit,S., Antonsson,B., and Martinou,J.C. (2002). Bax oligomerization in mitochondrial membranes requires tBid (caspase-8-cleaved Bid) and a mitochondrial protein. Biochem. J. 368, 915-921. Cerca con Google

177. Rytomaa,M. and Kinnunen,P.K. (1995). Reversibility of the binding of cytochrome c to liposomes. Implications for lipid-protein interactions. J. Biol. Chem. 270, 3197-3202. Cerca con Google

178. Saito,M., Korsmeyer,S.J., and Schlesinger,P.H. (2000). BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat. Cell Biol. 2, 553-555. Cerca con Google

179. Santel,A., Frank,S., Gaume,B., Herrler,M., Youle,R.J., and Fuller,M.T. (2003). Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 116, 2763-2774. Cerca con Google

180. Santel,A. and Fuller,M.T. (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867-874. Cerca con Google

181. Satoh,M., Hamamoto,T., Seo,N., Kagawa,Y., and Endo,H. (2003). Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem. Biophys. Res. Commun. 300, 482-493. Cerca con Google

182. Schatz,G. (2007). The magic garden. Annu. Rev. Biochem. 76, 673-678. Cerca con Google

183. Schlame,M., Brody,S., and Hostetler,K.Y. (1993). Mitochondrial cardiolipin in diverse eukaryotes. Comparison of biosynthetic reactions and molecular acyl species. Eur. J. Biochem. 212, 727-735. Cerca con Google

184. Schmidt,A., Wolde,M., Thiele,C., Fest,W., Kratzin,H., Podtelejnikov,A.V., Witke,W., Huttner,W.B., and Soling,H.D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133-141. Cerca con Google

185. Scorrano,L., Ashiya,M., Buttle,K., Weiler,S., Oakes,S.A., Mannella,C.A., and Korsmeyer,S.J. (2002). A Distinct Pathway Remodels Mitochondrial Cristae and Mobilizes Cytochrome c during Apoptosis. Dev. Cell 2, 55-67. Cerca con Google

186. Scorrano,L. and Korsmeyer,S.J. (2003). Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochemical and Biophysical Research Communications 304, 437-444. Cerca con Google

187. Sesaki,H., Southard,S.M., Yaffe,M.P., and Jensen,R.E. (2003). Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14, 2342-2356. Cerca con Google

188. Shidoji,Y., Komura,S., Ohishi,N., and Yagi,K. (2002). Interaction between cytochrome c and oxidized mitochondrial lipids. Subcell. Biochem. 36, 19-37. Cerca con Google

189. Shimizu,S., Narita,M., and Tsujimoto,Y. (1999). Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399, 483-487. Cerca con Google

190. Smirnova,E., Griparic,L., Shurland,D.L., and van der Bliek,A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256. Cerca con Google

191. Song,Z., Chen,H., Fiket,M., Alexander,C., and Chan,D.C. (2007). OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol 178, 749-755. Cerca con Google

192. Stojanovski,D., Koutsopoulos,O.S., Okamoto,K., and Ryan,M.T. (2004). Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J. Cell Sci. 117, 1201-1210. Cerca con Google

193. Sugioka,R., Shimizu,S., and Tsujimoto,Y. (2004). Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 279, 52726-52734. Cerca con Google

194. Sun,M.G., Williams,J., Munoz-Pinedo,C., Perkins,G.A., Brown,J.M., Ellisman,M.H., Green,D.R., and Frey,T.G. (2007). Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat. Cell Biol. 9, 1057-1065. Cerca con Google

195. Susin,S.A., Lorenzo,H.K., Zamzami,N., Marzo,I., Snow,B.E., Brothers,G.M., Mangion,J., Jacotot,E., Costantini,P., Loeffler,M., Larochette,N., Goodlett,D.R., Aebersold,R., Siderovski,D.P., Penninger,J.M., and Kroemer,G. (1999). Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441-446. Cerca con Google

196. Suzuki,M., Jeong,S.Y., Karbowski,M., Youle,R.J., and Tjandra,N. (2003). The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. J. Mol. Biol. 334, 445-458. Cerca con Google

197. Suzuki,M., Youle,R.J., and Tjandra,N. (2000). Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103, 645-654. Cerca con Google

198. Szabadkai,G., Simoni,A.M., Chami,M., Wieckowski,M.R., Youle,R.J., and Rizzuto,R. (2004). Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16, 59-68. Cerca con Google

199. Taguchi,N., Ishihara,N., Jofuku,A., Oka,T., and Mihara,K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521-11529. Cerca con Google

200. Thornberry,N.A. and Lazebnik,Y. (1998). Caspases: enemies within. Science 281, 1312-1316. Cerca con Google

201. Tondera,D., Czauderna,F., Paulick,K., Schwarzer,R., Kaufmann,J., and Santel,A. (2005). The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118. Cerca con Google

202. Tondera,D., Santel,A., Schwarzer,R., Dames,S., Giese,K., Klippel,A., and Kaufmann,J. (2004). Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J Biol Chem 279. Cerca con Google

203. Tuominen,E.K., Wallace,C.J., and Kinnunen,P.K. (2002). Phospholipid-cytochrome c interaction: evidence for the extended lipid anchorage. J. Biol. Chem. 277, 8822-8826. Cerca con Google

204. van,L.G., van,G.M., Depuydt,B., Srinivasula,S.M., Rodriguez,I., Alnemri,E.S., Gevaert,K., Vandekerckhove,J., Declercq,W., and Vandenabeele,P. (2002). The serine protease Omi/HtrA2 is released from mitochondria during apoptosis. Omi interacts with caspase-inhibitor XIAP and induces enhanced caspase activity. Cell. Death. Differ. 9, 20-26. Cerca con Google

205. Verhagen,A.M., Ekert,P.G., Pakusch,M., Silke,J., Connolly,L.M., Reid,G.E., Moritz,R.L., Simpson,R.J., and Vaux,D.L. (2000). Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. 102, 43-53. Cerca con Google

206. Vogel,F., Bornhovd,C., Neupert,W., and Reichert,A.S. (2006). Dynamic subcompartmentalization of the mitochondrial inner membrane. J. Cell Biol. 175, 237-247. Cerca con Google

207. Votruba,M., Aijaz,S., and Moore,A.T. (2003). A review of primary hereditary optic neuropathies. J. Inherit. Metab. Dis. 26, 209-227. Cerca con Google

208. Walensky,L.D., Pitter,K., Morash,J., Oh,K.J., Barbuto,S., Fisher,J., Smith,E., Verdine,G.L., and Korsmeyer,S.J. (2006). A stapled BID BH3 helix directly binds and activates BAX. Mol. Cell. 24, 199-210. Cerca con Google

209. Wang,J., Rosconi,M.P., and London,E. (2006a). Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether. Biochemistry 45, 8124-8134. Cerca con Google

210. Wang,J., Rosconi,M.P., and London,E. (2006b). Topography of the hydrophilic helices of membrane-inserted diphtheria toxin T domain: TH1-TH3 as a hydrophilic tether. Biochemistry 45, 8124-8134. Cerca con Google

211. Wang,L., Dong,J., Cull,G., Fortune,B., and Cioffi,G.A. (2003). Varicosities of intraretinal ganglion cell axons in human and nonhuman primates. Invest. Ophthalmol. Vis. Sci. 44, 2-9. Cerca con Google

212. Wei,M.C., Lindsten,T., Mootha,V.K., Weiler,S., Gross,A., Ashiya,M., Thompson,C.B., and Korsmeyer,S.J. (2000). tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060-2071. Cerca con Google

213. Wei,M.C., Zong,W.X., Cheng,E.H., Lindsten,T., Panoutsakopoulou,V., Ross,A.J., Roth,K.A., MacGregor,G.R., Thompson,C.B., and Korsmeyer,S.J. (2001). Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727-730. Cerca con Google

214. Wells,R.C., Picton,L.K., Williams,S.C., Tan,F.J., and Hill,R.B. (2007). Direct binding of the dynamin-like GTPase, Dnm1, to mitochondrial dynamics protein Fis1 is negatively regulated by the Fis1 N-terminal arm. J. Biol. Chem. 282, 33769-33775. Cerca con Google

215. Wojtczak,L., Zaluska,H., Wroniszewska,A., and Wojtczak,A.B. (1972). Assay for the intactness of the outer membrane in isolated mitochondria. Acta. Biochim. Pol. 19, 227-234. Cerca con Google

216. Wong,E.D., Wagner,J.A., Gorsich,S.W., McCaffery,J.M., Shaw,J.M., and Nunnari,J. (2000). The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341-352. Cerca con Google

217. Wong,E.D., Wagner,J.A., Scott,S.V., Okreglak,V., Holewinske,T.J., Cassidy-Stone,A., and Nunnari,J. (2003). The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160, 303-311. Cerca con Google

218. Xie,J., Marusich,M.F., Souda,P., Whitelegge,J., and Capaldi,R.A. (2007). The mitochondrial inner membrane protein mitofilin exists as a complex with SAM50, metaxins 1 and 2, coiled-coil-helix coiled-coil-helix domain-containing protein 3 and 6 and DnaJC11. FEBS. Lett. 581, 3545-3549. Cerca con Google

219. Yoon,Y., Krueger,E.W., Oswald,B.J., and McNiven,M.A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell Biol. 23, 5409-5420. Cerca con Google

220. Youle,R.J. and Karbowski,M. (2005). Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6, 657-663. Cerca con Google

221. Zha,J., Weiler,S., Oh,K.J., Wei,M.C., and Korsmeyer,S.J. (2000). Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290, 1761-1765. Cerca con Google

222. Zhang,M., Mileykovskaya,E., and Dowhan,W. (2002). Gluing the respiratory chain together. Cardiolipin is required for supercomplex formation in the inner mitochondrial membrane. J. Biol. Chem. 277, 43553-43556. Cerca con Google

223. Zhang,Y. and Chan,D.C. (2007). Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proc. Natl. Acad. Sci. U. S. A. 104, 18526-18530. Cerca con Google

224. Zhivotovsky,B., Orrenius,S., Brustugun,O.T., and Doskeland,S.O. (1998). Injected cytochrome c induces apoptosis. Nature 391, 449-450. Cerca con Google

225. Zhu,P.P., Patterson,A., Stadler,J., Seeburg,D.P., Sheng,M., and Blackstone,C. (2004). Intra- and intermolecular domain interactions of the C-terminal GTPase effector domain of the multimeric dynamin-like GTPase Drp1. J. Biol. Chem. 279, 35967-35974. Cerca con Google

226. Zoratti,M. and Szabo,I. (1995). The mitochondrial permeability transition. Biochim. Biophys. Acta 1241, 139-176. Cerca con Google

227. Zou,H., Henzel,W.J., Liu,X., Lutschg,A., and Wang,X. (1997). Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90, 405-413. Cerca con Google

228. Zunino,R., Schauss,A., Rippstein,P., ndrade-Navarro,M., and McBride,H.M. (2007). The SUMO protease SENP5 is required to maintain mitochondrial morphology and function. J. Cell. Sci. 120, 1178-1188. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record