Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Cipolat, Sara (2008) From mitochondrial morphology to apoptosis: genetic analysis of OPA1 function and regulation. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Mitochondria are essential organelles for life and death of the cell: they produce most of the cellular ATP (Danial et al., 2003), regulate cytosolic Ca2+ signalling (Rizzuto et al., 2000), and integrate and amplify different apoptotic stimuli (Green and Kroemer, 2004). Such a functional versatility is matched by a complex and dynamic morphology, both at the ultrastructural and at the cellular level (Griparic and van der Bliek). At the ultrastructural level, the mitochondrial cristae constitute a separate compartment connected to the thin intermembrane space by narrow tubular junctions (Frey and Mannella, 2000). In the cytosol, mitochondria are organized in a network of individual organelles that dynamically fuse and divide. Mitochondrial morphology results from the equilibrium between fusion and fission processes, controlled by a family of "mitochondria-shaping" proteins, many of which are dynamin-related proteins initially identified by genetic screens in buddying yeast (Dimmer et al., 2002; Shaw and Nunnari, 2002). Dynamins are ubiquitous mechano-enzymes that hydrolyze GTP to regulate fusion, fission, tubulation and elongation of cellular membranes (McNiven et al., 2000). In mammalians, mitochondrial fission is controlled by a cytosolic dynamin related protein DRP-1 (Smirnova et al., 2001) that translocates to sites of mitochondrial fragmentation where it binds to FIS1, its adapter in the outer membrane (Yoon et al., 2003) (James et al., 2003). Fusion is controlled by mitofusin-1 (MFN1) and-2 (MFN2), two large GTPases of the outer mitochondrial membrane, orthologues of S. cerevisiae Fzo1p (Rapaport et al., 1998). OPA1, the mammalian homologue of S. cerevisiae Mgm1p, is the only dynamin-related protein of the inner mitochondrial membrane (Olichon et al., 2002). Loss-of-function or dominant-negative mutations in Opa1 are associated with autosomal dominant optic atrophy (DOA), the leading cause of inherited optic neuropathy, characterized by retinal ganglion cells degeneration followed by ascending atrophy of the optic nerve (Alexander et al., 2000; Delettre et al., 2000).
The aim of my PhD has been to generate, use and analyze genetic models in order to unravel the biological function of OPA1 as well as its regulation.
In order to dissect the biological function of OPA1, we undertook a combination of genetics and imaging to address its role in regulating mitochondrial fusion/fission equilibrium. Imaging of wild type mouse embryonic fibroblasts (MEFs) cotransfected with a mitochondrially targeted cyan fluorescent protein (mtCFP) showed mitochondria as individual organelles, rod or round-shaped, with an average length of 3±0.34 µm along their major axis. Morphometric analysis confirmed that only 23% of the analyzed cells displayed elongated mitochondria, i.e. cells with axial length >5 µm and roundness index <0.5 in more than 50% of mitochondria. Cotransfection of OPA1 with mtCFP induced visible changes in the shape of the mitochondrial reticulum. The rod-shaped mitochondria appeared now to be interconnected in a branched network. Morphometric analysis confirmed this mitochondria-shaping effect of OPA1, with more than 50% of the cells analyzed showing elongated mitochondria. Furthermore, we analyzed the effect of pathogenic mutations of OPA1 on its ability to elongate mitochondria. A missense mutation in the GTPase domain (K301A) that reduces the GTPase activity of more than 80%, as well as a truncative one in the coiled coil domain (R905stop), which eliminates the C-terminal coiled-coil domain required in protein-protein interactions, abolished the ability of OPA1 to elongate mitochondria, indicating that it requires a functional GTPase and coiled-coil domain.
To address the effect of reduced OPA1 levels on mitochondrial morphology we turned to stable, plasmid-generated RNA interference (RNAi). In cell clones where OPA1 was ablated, mitochondria appeared globular and fragmented as opposed to the rod, elongated organelles of the control clones. Tubulation induced by OPA1 is not the results of simple juxtaposition of mitochondria, but it represents the steady state appearance of increased mitochondrial fusion events, as substantiated by assays of mitochondrial fusion in polykarions induced by PEG treatment. Expression of OPA1 significantly speeded up mixing of matricial content, whereas its downregulation reduced mitochondrial fusion.
In yeast, the pro-fusion activity of Mgm1p, the orthologue of OPA1, depends on the outer membrane mitochondria-shaping protein Fzo1p. We therefore wished to ascertain whether this paradigm was maintained in higher eukaryotes. We turned to a genetic approach, testing the ability of overexpressed OPA1 to promote mitochondrial tubulation in MEFs deficient for either Mfn1 or Mfn2. Expression of OPA1 induced mitochondrial tabulation and fusion in wt and in Mfn2-/- but not in Mfn1-/- cells. This defect was complemented by re-introduction of MFN1 but not MFN2, unequivocally identifying outer membrane MFN1 as an essential functional partner of OPA1. Moreover, MFN1 was unable to promote mitochondrial elongation if OPA1 had been ablated. Thus, OPA1 and MFN1 appear to functionally depend one on each other. To address whether Mfn1-/- MEFs displayed any defect in the preparatory events of mitochondrial juxtaposition and docking, we performed 4D-imaging of mitochondria, i.e. time series of z-stacks of mitochondrial images. The total number of contacts between mitochondria was not affected by OPA1 overexpression or by MFN deficiency. OPA1 facilitated fusion following contacts between wt and Mfn2-/- but not Mfn1-/- mitochondria. Taken together, our results suggested that OPA1 requires MFN1 to fuse the membranes of two juxtaposed mitochondria and not to produce inter-mitochondrial contacts. Our genetic analysis provided the first evidence of a functional diversity between MFN1 and MFN2, suggesting a functional axis between OPA1 and MFN1 (Cipolat et al., 2004).
The discovery that OPA1 is a pro-fusion protein raised the question of whether this protein participated in the regulation of apoptosis, during which fusion is impaired. We therefore decided to genetically dissect the role of OPA1 in fusion and apoptosis. We could demonstrate that OPA1 has an antiapoptotic activity, controlling the cristae remodelling pathway of apoptosis, independently of mitochondrial fusion. OPA1 did not interfere with the activation of the core mitochondrial apoptotic pathway of BAX and BAK activation. Yet OPA1 inhibited the release of cytochrome c by preventing the remodelling of the cristae and the intramitochondrial redistribution of cytochrome c. Inactivating mutations in the GTPase domain of OPA1 impaired its anti-apoptotic activity, enhancing susceptibility to apoptosis induced by stimuli that recruit the mitochondrial pathway.
While our results contributed to clarify the biological function of OPA1, they left open a number of questions. In particular, if the pro-fusion activity of OPA1 was dispensable for the inhibition of apoptosis, how was this function controlled? In yeast Mgm1p is processed by the inner mitochondrial membrane rhomboid protease Rbd1/Pcp1 into a short active form, responsible for the effects of Mgm1p on mitochondrial morphology (Herlan et al., 2003; McQuibban et al., 2003). The mammalian orthologue of Rbd1p, PARL, could similarly play a role in the regulation of one of the two biological functions we ascribed to OPA1, i.e. its effect in mitochondrial fusion and its anti-apoptotic activity. In order to address this issue, we decided to analyze the phenotype of a mouse model of Parl deletion. Parl-/- mice were born with normal Mendelian frequency and developed normally up to 4 weeks. From then on, mice displayed severe growth retardation and progressive atrophy in multiple tissues, leading to cachexia and death. The atrophy of Parl-/- tymi, spleens and muscular tissues was caused by an increased apoptosis of double-positive (CD4+CD8+) thymic lymphocytes, splenic B lymphocytes (B220+) and myoblasts, respectively. We investigated to what extent mitochondrial dysfunction and morphology dysregulation contributed to this multisystemic atrophy. PARL was not required for normal mitochondrial function: Parl-/- mitochondria did not display primary respiratory defects or latent mitochondrial dysfunction in hepatocytes, MEFs, primary myocytes and myotubes. Mitochondrial dysfunction therefore did not explain Parl-/- muscular atrophy and multisystem failure. Moreover Parl was not required for maintenance of mitochondrial shape and fusion, even in tissues severely affected by Parl ablation like muscle, and Parl was dispensable for regulation of mitochondrial dynamics by OPA1. We therefore investigated whether PARL regulates mitochondrial apoptotic machinery by analyzing apoptosis in MEFs treated with different intrinsic mitochondria utilizing stimuli. Parl-/- MEFs were more sensitive to all the stimuli tested as compared to their wt counterparts. Reintroduction of a catalytically active PARL showed that the defect was specific. PARL exerted its antiapoptotic effect at the mitochondrial level, since cytochrome c release and mitochondrial dysfunction following treatment with an apoptotic stimulus occurred faster in Parl-/- fibroblasts than in their relative wt counterparts. PARL did not regulate activation of the core BAX, BAK dependent apoptotic pathway, but it was required to keep in check the cristae remodelling pathway and to prevent mobilization of the cristae stores of cytochrome c during apoptosis. Since these results pointed to a role for PARL in the cristae remodelling pathway, regulated by OPA1, we ought to understand whether OPA1 required PARL to regulate apoptosis. OPA1 protected wt but not Parl-/- MEFs from apoptosis; furthermore, expression of OPA1 in Parl-/- MEFs did not reduce cytochrome c release, or mitochondrial depolarization following intrinsic stimuli. When Opa1 was silenced by siRNA in Parl-/- cells, they were no longer rescued by re-expression of PARL, demonstrating that PARL is genetically positioned upstream of OPA1. This genetic interaction was confirmed at multiple levels, since PARL and OPA1 interacted in a yeast two-hybrid and co-immunoprecipitation assays. PARL participated in the production of a soluble, IMS located, "anti-apoptotic" form of OPA1. The catalytic activity of PARL was required for the efficient production of soluble OPA1 and the re-introduction of a form of OPA1 in the IMS rescued the pro-apoptotic phenotype of Parl-/- cells. Thus, this IMS form resulted pivotal in controlling the pathway of cristae remodelling and cytocrome c redistribution. IMS and integral IM OPA1 indeed were both found to participate in the assembly of OPA1-containing oligomers that are early targets during cristae remodelling and greatly reduced in Parl /- mitochondria. The reduced level of OPA1 oligomers could account for the faster remodelling and cytochrome c mobilization observed in the absence of PARL.
OPA1 affects complex cellular functions other than apoptosis, as substantiated in overexpression studies showing a role for this protein in movement of leukocytes (Campello et al., 2006) and formation of dendritic spines (Li et al., 2004). Furthermore, Opa1 knockout mice demonstrated that OPA1 is required for embryonic development. Homozygous mutant mice die in uterus at 13.5 dpc, with first notable developmental delay at E8.5 (Alavi et al., 2007). We therefore reasoned that levels of OPA1 are likely to affect development and function of multiple organs, by regulating mitochondrial fusion or apoptosis. In the last part of this Thesis, we therefore decided to study whether ablation of OPA1 influences differentiation of embryonic stem (ES) cells in vitro using a hanging-drop differentiation system. To this end, we analyzed an ES cell line where Opa1 had been gene trapped (Opa1gt), resulting in an Opa1+/- genotype. We compared the differentiation potential into cardiomyocytes and neurons of this Opa1gt ES cell line to its relative wt ES cell line. Opa1gt ES cells displayed a decreased capacity to differentiate into beating cardiomyocytes, while they retained a normal neuronal differentiation potential. These preliminary results indicate that OPA1 is a good candidate to regulate differentiation of ES cells in vitro. We now aim at understanding the molecular mechanism by which levels of OPA1 influence differentiation into cardiomyocytes.
In conclusion, the data presented in this Thesis demonstrate genetically distinct roles of the mitochondrial dynamin related protein OPA1 in the regulation of organellar shape and apoptosis. The individuation that the functional axis between OPA1 and MFN1 (that regulates mitochondrial fusion) and the regulatory IMM network comprised of the couple substrate-protease Parl-Opa1 could perhaps even control embryonic differentiation opens novel, unexpected avenues to investigate the role of mitochondria in life and death of the cell.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Scorrano, Luca
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOSCIENZE > BIOLOGIA CELLULARE
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):OPA1, mitochondrial morphology, apoptosis, PARL, mitochondria
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/13 Biologia applicata
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche Sperimentali
Codice ID:605
Depositato il:25 Set 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Alavi,M.V., Bette,S., Schimpf,S., Schuettauf,F., Schraermeyer,U., Wehrl,H.F., Ruttiger,L., Beck,S.C., Tonagel,F., Pichler,B.J., Knipper,M., Peters,T., Laufs,J., and Wissinger,B. (2007). A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain 130, 1029-1042. Cerca con Google

2. Alexander,C., Votruba,M., Pesch,U.E., Thiselton,D.L., Mayer,S., Moore,A., Rodriguez,M., Kellner,U., Leo-Kottler,B., Auburger,G., Bhattacharya,S.S., and Wissinger,B. (2000). OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26, 211-215. Cerca con Google

3. Alirol,E., James,D., Huber,D., Marchetto,A., Vergani,L., Martinou,J.C., and Scorrano,L. (2006). The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol. Biol. Cell 17, 4593-4605. Cerca con Google

4. Allen,J.F., Puthiyaveetil,S., Strom,J., and Allen,C.A. (2005). Energy transduction anchors genes in organelles. Bioessays 27, 426-435. Cerca con Google

5. Amchenkova,A.A., Bakeeva,L.E., Chentsov,Y.S., Skulachev,V.P., and Zorov,D.B. (1988). Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J. Cell Biol. 107, 481-495. Cerca con Google

6. Amutha,B., Gordon,D.M., Gu,Y., and Pain,D. (2004). A novel role of Mgm1p, a dynamin-related GTPase, in ATP synthase assembly and cristae formation/maintenance. Biochem J 381, 19-23. Cerca con Google

7. Anderson,L. (1981). Identification of mitochondrial proteins and some of their precursors in two-dimensional electrophoretic maps of human cells. Proc. Natl. Acad. Sci. U. S. A 78, 2407-2411. Cerca con Google

8. Atorino,L., Silvestri,L., Koppen,M., Cassina,L., Ballabio,A., Marconi,R., Langer,T., and Casari,G. (2003). Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J. Cell Biol. 163, 777-787. Cerca con Google

9. Attardi,G. and Schatz,G. (1988). Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4, 289-333. Cerca con Google

10. Bach,D., Pich,S., Soriano,F.X., Vega,N., Baumgartner,B., Oriola,J., Daugaard,J.R., Lloberas,J., Camps,M., Zierath,J.R., Rabasa-Lhoret,R., Wallberg-Henriksson,H., Laville,M., Palacin,M., Vidal,H., Rivera,F., Brand,M., and Zorzano,A. (2003). Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J. Biol. Chem. 278, 17190-17197. Cerca con Google

11. Banfi,S., Bassi,M.T., Andolfi,G., Marchitiello,A., Zanotta,S., Ballabio,A., Casari,G., and Franco,B. (1999). Identification and characterization of AFG3L2, a novel paraplegin-related gene. Genomics 59, 51-58. Cerca con Google

12. Baricault,L., Segui,B., Guegand,L., Olichon,A., Valette,A., Larminat,F., and Lenaers,G. (2007). OPA1 cleavage depends on decreased mitochondrial ATP level and bivalent metals. Exp. Cell Res. 313, 3800-3808. Cerca con Google

13. Berger,K.H. and Yaffe,M.P. (1996). Mitochondrial distribution and inheritance. Experientia 52, 1111-1116. Cerca con Google

14. Bernardi,P. and Azzone,G.F. (1981). Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J. Biol. Chem. 256, 7187-7192. Cerca con Google

15. Bernardi,P., Petronilli,V., Di,L.F., and Forte,M. (2001). A mitochondrial perspective on cell death. Trends Biochem. Sci. 26, 112-117. Cerca con Google

16. Bouhon,I.A., Joannides,A., Kato,H., Chandran,S., and Allen,N.D. (2006). Embryonic stem cell-derived neural progenitors display temporal restriction to neural patterning. Stem Cells 24, 1908-1913. Cerca con Google

17. Breckenridge,D.G., Stojanovic,M., Marcellus,R.C., and Shore,G.C. (2003). Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 160, 1115-1127. Cerca con Google

18. Brown,M.S., Ye,J., Rawson,R.B., and Goldstein,J.L. (2000). Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391-398. Cerca con Google

19. Calvo,S., Jain,M., Xie,X., Sheth,S.A., Chang,B., Goldberger,O.A., Spinazzola,A., Zeviani,M., Carr,S.A., and Mootha,V.K. (2006). Systematic identification of human mitochondrial disease genes through integrative genomics. Nat. Genet. 38, 576-582. Cerca con Google

20. Campello,S., Lacalle,R.A., Bettella,M., Manes,S., Scorrano,L., and Viola,A. (2006). Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J. Exp. Med. 203, 2879-2886. Cerca con Google

21. Carelli,V., Ross-Cisneros,F.N., and Sadun,A.A. (2004). Mitochondrial dysfunction as a cause of optic neuropathies. Prog. Retin. Eye Res. 23, 53-89. Cerca con Google

22. Casari,G., De,F.M., Ciarmatori,S., Zeviani,M., Mora,M., Fernandez,P., De,M.G., Filla,A., Cocozza,S., Marconi,R., Durr,A., Fontaine,B., and Ballabio,A. (1998). Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93, 973-983. Cerca con Google

23. Castellani,R., Hirai,K., Aliev,G., Drew,K.L., Nunomura,A., Takeda,A., Cash,A.D., Obrenovich,M.E., Perry,G., and Smith,M.A. (2002). Role of mitochondrial dysfunction in Alzheimer's disease. J. Neurosci. Res. 70, 357-360. Cerca con Google

24. Catlett,N.L. and Weisman,L.S. (2000). Divide and multiply: organelle partitioning in yeast. Curr. Opin. Cell Biol. 12, 509-516. Cerca con Google

25. Cerveny,K.L. and Jensen,R.E. (2003). The WD-repeats of Net2p interact with Dnm1p and Fis1p to regulate division of mitochondria. Mol Biol Cell 14. Cerca con Google

26. Chang,C.R. and Blackstone,C. (2007). Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282, 21583-21587. Cerca con Google

27. Chen,H., Detmer,S.A., Ewald,A.J., Griffin,E.E., Fraser,S.E., and Chan,D.C. (2003). Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160, 189-200. Cerca con Google

28. Chen,H., McCaffery,J.M., and Chan,D.C. (2007). Mitochondrial Fusion Protects against Neurodegeneration in the Cerebellum. Cell 130, 548-562. Cerca con Google

29. Chen,K.H., Guo,X., Ma,D., Guo,Y., Li,Q., Yang,D., Li,P., Qiu,X., Wen,S., Xiao,R.P., and Tang,J. (2004). Dysregulation of HSG triggers vascular proliferative disorders. Nat. Cell Biol. 6, 872-883. Cerca con Google

30. Cheng,E.H., Wei,M.C., Weiler,S., Flavell,R.A., Mak,T.W., Lindsten,T., and Korsmeyer,S.J. (2001). Bcl-2, bcl-x(l) sequester bh3 domain-only molecules preventing bax- and bak-mediated mitochondrial apoptosis. Mol. Cell 8, 705-711. Cerca con Google

31. Cho,Y.M., Kwon,S., Pak,Y.K., Seol,H.W., Choi,Y.M., Park,d.J., Park,K.S., and Lee,H.K. (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem. Biophys. Res. Commun. 348, 1472-1478. Cerca con Google

32. Choi,S.Y., Huang,P., Jenkins,G.M., Chan,D.C., Schiller,J., and Frohman,M.A. (2006). A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 8, 1255-1262. Cerca con Google

33. Chung,S., Dzeja,P.P., Faustino,R.S., Perez-Terzic,C., Behfar,A., and Terzic,A. (2007). Mitochondrial oxidative metabolism is required for the cardiac differentiation of stem cells. Nat. Clin. Pract. Cardiovasc. Med. 4 Suppl 1, S60-S67. Cerca con Google

34. Cipolat,S., de Brito,O.M., Dal Zilio,B., and Scorrano,L. (2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc. Natl. Acad. Sci. U. S. A 101, 15927-15932. Cerca con Google

35. Cipolat,S., Rudka,T., Hartmann,D., Costa,V., Serneels,L., Craessaerts,K., Metzger,K., Frezza,C., Annaert,W., D'Adamio,L., Derks,C., Dejaegere,T., Pellegrini,L., D'Hooge,R., Scorrano,L., and De Strooper,B. (2006). Mitochondrial Rhomboid PARL Regulates Cytochrome c Release during Apoptosis via OPA1-Dependent Cristae Remodeling. Cell 126, 163-175. Cerca con Google

36. Collins,T.J., Berridge,M.J., Lipp,P., and Bootman,M.D. (2002). Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J. 21, 1616-1627. Cerca con Google

37. D'Herde,K., De Prest,B., Mussche,S., Schotte,P., Beyaert,R., Coster,R.V., and Roels,F. (2001). Ultrastructural localization of cytochrome c in apoptosis demonstrates mitochondrial heterogeneity. Cell Death. Differ. 7, 331-337. Cerca con Google

38. Danial,N.N., Gramm,C.F., Scorrano,L., Zhang,C.Y., Krauss,S., Ranger,A.M., Datta,S.R., Greenberg,M.E., Licklider,L.J., Lowell,B.B., Gygi,S.P., and Korsmeyer,S.J. (2003). BAD and glucokinase reside in a mitochondrial complex that integrates glycolysis and apoptosis. Nature 424, 952-956. Cerca con Google

39. Danial,N.N. and Korsmeyer,S.J. (2004). Cell death: critical control points. Cell 116, 205-219. Cerca con Google

40. Davies,V.J., Hollins,A.J., Piechota,M.J., Yip,W., Davies,J.R., White,K.E., Nicols,P.P., Boulton,M.E., and Votruba,M. (2007). Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum Mol Genet 16, 1307-1318. Cerca con Google

41. Dawson,T.M. and Dawson,V.L. (2003). Molecular pathways of neurodegeneration in Parkinson's disease. Science 302, 819-822. Cerca con Google

42. de Brito,O.M. and Scorrano,L. (2007). Mitofusin-2, A Mitochondria-Shaping Protein with Signaling Roles Beyond Fusion. Antioxid. Redox. Signal. Cerca con Google

43. De Strooper,B., Annaert,W., Cupers,P., Saftig,P., Craessaerts,K., Mumm,J.S., Schroeter,E.H., Schrijvers,V., Wolfe,M.S., Ray,W.J., Goate,A., and Kopan,R. (1999). A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518-522. Cerca con Google

44. De Strooper,B., Saftig,P., Craessaerts,K., Vanderstichele,H., Guhde,G., Annaert,W., Von Figura,K., and Van Leuven,F. (1998). Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387-390. Cerca con Google

45. Del Rio,A., Dutta,K., Chavez,J., Ubarretxena-Belandia,I., and Ghose,R. (2007). Solution structure and dynamics of the N-terminal cytosolic domain of rhomboid intramembrane protease from Pseudomonas aeruginosa: insights into a functional role in intramembrane proteolysis. J. Mol. Biol. 365, 109-122. Cerca con Google

46. Delettre,C., Griffoin,J.M., Kaplan,J., Dollfus,H., Lorenz,B., Faivre,L., Lenaers,G., Belenguer,P., and Hamel,C.P. (2001). Mutation spectrum and splicing variants in the OPA1 gene. Hum. Genet. 109, 584-591. Cerca con Google

47. Delettre,C., Lenaers,G., Griffoin,J.M., Gigarel,N., Lorenzo,C., Belenguer,P., Pelloquin,L., Grosgeorge,J., Turc-Carel,C., Perret,E., Astarie-Dequeker,C., Lasquellec,L., Arnaud,B., Ducommun,B., Kaplan,J., and Hamel,C.P. (2000). Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26, 207-210. Cerca con Google

48. Delettre,C., Lenaers,G., Pelloquin,L., Belenguer,P., and Hamel,C.P. (2002). OPA1 (Kjer type) dominant optic atrophy: a novel mitochondrial disease. Mol. Genet. Metab. 75, 97-107. Cerca con Google

49. Dimmer,K.S., Fritz,S., Fuchs,F., Messerschmitt,M., Weinbach,N., Neupert,W., and Westermann,B. (2002). Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 847-853. Cerca con Google

50. Dimmer,K.S., Jakobs,S., Vogel,F., Altmann,K., and Westermann,B. (2005). Mdm31 and Mdm32 are inner membrane proteins required for maintenance of mitochondrial shape and stability of mitochondrial DNA nucleoids in yeast. J. Cell Biol. 168, 103-115. Cerca con Google

51. Dimmer,K.S., Navoni,F., Casarin,A., Trevisson,E., Endele,S., Winterpacht,A., Salviati,L., and Scorrano,L. (2008). LETM1, deleted in Wolf Hirschhorn syndrome is required for normal mitochondrial morphology and cellular viability. Hum. Mol. Genet. 17, 201-214. Cerca con Google

52. Dudkina,N.V., Heinemeyer,J., Keegstra,W., Boekema,E.J., and Braun,H.P. (2005). Structure of dimeric ATP synthase from mitochondria: an angular association of monomers induces the strong curvature of the inner membrane. FEBS Lett. 579, 5769-5772. Cerca con Google

53. Dumollard,R., Duchen,M., and Carroll,J. (2007). The role of mitochondrial function in the oocyte and embryo. Curr. Top. Dev. Biol. 77, 21-49. Cerca con Google

54. Duvezin-Caubet,S., Jagasia,R., Wagener,J., Hofmann,S., Trifunovic,A., Hansson,A., Chomyn,A., Bauer,M.F., Attardi,G., Larsson,N.G., Neupert,W., and Reichert,A.S. (2006). Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J. Biol. Chem. Cerca con Google

55. Escobar-Henriques,M., Westermann,B., and Langer,T. (2006). Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 173, 645-650. Cerca con Google

56. Esser,K., Tursun,B., Ingenhoven,M., Michaelis,G., and Pratje,E. (2002). A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J Mol Biol 323, 835-843. Cerca con Google

57. Eura,Y., Ishihara,N., Yokota,S., and Mihara,K. (2003). Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. (Tokyo) 134, 333-344. Cerca con Google

58. Evans,M.J. and Kaufman,M.H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156. Cerca con Google

59. Facucho-Oliveira,J.M., Alderson,J., Spikings,E.C., Egginton,S., and St John,J.C. (2007). Mitochondrial DNA replication during differentiation of murine embryonic stem cells. J. Cell Sci. 120, 4025-4034. Cerca con Google

60. Fannjiang,Y., Cheng,W.C., Lee,S.J., Qi,B., Pevsner,J., McCaffery,J.M., Hill,R.B., Basanez,G., and Hardwick,J.M. (2004). Mitochondrial fission proteins regulate programmed cell death in yeast. Genes Dev. 18, 2785-2797. Cerca con Google

61. Fehrenbacher,K.L., Yang,H.C., Gay,A.C., Huckaba,T.M., and Pon,L.A. (2004). Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr. Biol. 14, 1996-2004. Cerca con Google

62. Fernandez-Silva,P., Enriquez,J.A., and Montoya,J. (2003). Replication and transcription of mammalian mitochondrial DNA. Exp. Physiol 88, 41-56. Cerca con Google

63. Ferre,M., Amati-Bonneau,P., Tourmen,Y., Malthiery,Y., and Reynier,P. (2005). eOPA1: an online database for OPA1 mutations. Hum. Mutat. 25, 423-428. Cerca con Google

64. Ferreirinha,F., Quattrini,A., Pirozzi,M., Valsecchi,V., Dina,G., Broccoli,V., Auricchio,A., Piemonte,F., Tozzi,G., Gaeta,L., Casari,G., Ballabio,A., and Rugarli,E.I. (2004). Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J. Clin. Invest 113, 231-242. Cerca con Google

65. Feuerhake,F., Sigg,W., Hofter,E.A., Dimpfl,T., and Welsch,U. (2000). Immunohistochemical analysis of Bcl-2 and Bax expression in relation to cell turnover and epithelial differentiation markers in the non-lactating human mammary gland epithelium. Cell Tissue Res. 299, 47-58. Cerca con Google

66. Frank,S., Gaume,B., Bergmann-Leitner,E.S., Leitner,W.W., Robert,E.G., Catez,F., Smith,C.L., and Youle,R.J. (2001). The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1, 515-525. Cerca con Google

67. Frederick,R.L., McCaffery,J.M., Cunningham,K.W., Okamoto,K., and Shaw,J.M. (2004). Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J. Cell Biol. 167, 87-98. Cerca con Google

68. Frey,T.G. and Mannella,C.A. (2000). The internal structure of mitochondria. Trends. Biochem. Sci. 25, 319-324. Cerca con Google

69. Frezza,C., Cipolat,S., Martins,d.B., Micaroni,M., Beznoussenko,G.V., Rudka,T., Bartoli,D., Polishuck,R.S., Danial,N.N., De Strooper,B., and Scorrano,L. (2006). OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion. Cell 126, 177-189. Cerca con Google

70. Frieden,M., James,D., Castelbou,C., Danckaert,A., Martinou,J.C., and Demaurex,N. (2004). Ca2+ homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J. Biol. Chem. 279, 22704-22714. Cerca con Google

71. Fritz,S., Weinbach,N., and Westermann,B. (2003). Mdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast. Mol. Biol. Cell 14, 2303-2313. Cerca con Google

72. Gakh,O., Cavadini,P., and Isaya,G. (2002). Mitochondrial processing peptidases. Biochim Biophys Acta 1592, 63-77. Cerca con Google

73. Gallop,J.L., Butler,P.J., and McMahon,H.T. (2005). Endophilin and CtBP/BARS are not acyl transferases in endocytosis or Golgi fission. Nature 438, 675-678. Cerca con Google

74. Gallop,J.L., Jao,C.C., Kent,H.M., Butler,P.J., Evans,P.R., Langen,R., and McMahon,H.T. (2006). Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898-2910. Cerca con Google

75. Germain,M., Mathai,J.P., McBride,H.M., and Shore,G.C. (2005). Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J. 24, 1546-1556. Cerca con Google

76. Glater,E.E., Megeath,L.J., Stowers,R.S., and Schwarz,T.L. (2006). Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173, 545-557. Cerca con Google

77. Gorsich,S.W. and Shaw,J.M. (2004). Importance of mitochondrial dynamics during meiosis and sporulation. Mol. Biol. Cell 15, 4369-4381. Cerca con Google

78. Gossler,A., Doetschman,T., Korn,R., Serfling,E., and Kemler,R. (1986). Transgenesis by means of blastocyst-derived embryonic stem cell lines. Proc. Natl. Acad. Sci. U. S. A 83, 9065-9069. Cerca con Google

79. Green,D.R. and Kroemer,G. (2004). The pathophysiology of mitochondrial cell death. Science 305, 626-629. Cerca con Google

80. Griffin,E.E., Graumann,J., and Chan,D.C. (2005). The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J Cell Biol 170. Cerca con Google

81. Griparic,L., Kanazawa,T., and van der Bliek,A.M. (2007). Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol 178, 757-764. Cerca con Google

82. Griparic,L. and van der Bliek,A.M. (2001). The many shapes of mitochondrial membranes. Traffic 2, 235-244. Cerca con Google

83. Guillery,O., Malka,F., Landes,T., Guillou,E., Blackstone,C., Lombes,A., Belenguer,P., Arnoult,D., and Rojo,M. (2007). Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol. Cell. Cerca con Google

84. Guo,X., Macleod,G.T., Wellington,A., Hu,F., Panchumarthi,S., Schoenfield,M., Marin,L., Charlton,M.P., Atwood,H.L., and Zinsmaier,K.E. (2005). The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47, 379-393. Cerca con Google

85. Hackenbrock,C.R. (1966). Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J. Cell Biol. 30, 269-297. Cerca con Google

86. Hacker,G. (2000). The morphology of apoptosis. Cell Tissue Res. 301, 5-17. Cerca con Google

87. Hajek,P., Chomyn,A., and Attardi,G. (2007). Identification of a novel mitochondrial complex containing mitofusin 2 and stomatin-like protein 2. J. Biol. Chem. 282, 5670-5681. Cerca con Google

88. Hales,K.G. and Fuller,M.T. (1997). Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90, 121-129. Cerca con Google

89. Hanahan,D. and Weinberg,R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. Cerca con Google

90. Harder,Z., Zunino,R., and McBride,H. (2004). Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr. Biol. 14, 340-345. Cerca con Google

91. Hengartner,M.O. (2000). The biochemistry of apoptosis. Nature 407, 770-776. Cerca con Google

92. Herlan,M., Bornhovd,C., Hell,K., Neupert,W., and Reichert,A.S. (2004). Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J Cell Biol 165, 167-173. Cerca con Google

93. Herlan,M., Vogel,F., Bornhovd,C., Neupert,W., and Reichert,A.S. (2003). Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 278, 27781-27788. Cerca con Google

94. Hermann,G.J. and Shaw,J.M. (1998). Mitochondrial dynamics in yeast. Annu. Rev. Cell Dev. Biol. 14, 265-303. Cerca con Google

95. Hermann,G.J., Thatcher,J.W., Mills,J.P., Hales,K.G., Fuller,M.T., Nunnari,J., and Shaw,J.M. (1998). Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143, 359-373. Cerca con Google

96. Hinshaw,J.E. (1999). Dynamin spirals. Curr. Opin. Struct. Biol 9, 260-267. Cerca con Google

97. Hobbs,A.E., Srinivasan,M., McCaffery,J.M., and Jensen,R.E. (2001). Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J. Cell Biol. 152, 401-410. Cerca con Google

98. Hollenbeck,P.J. and Saxton,W.M. (2005). The axonal transport of mitochondria. J. Cell Sci. 118, 5411-5419. Cerca con Google

99. Huang,T.T. and D'Andrea,A.D. (2006). HAUSP hunting the FOX(O). Nat. Cell Biol. 8, 1043-1045. Cerca con Google

100. Igaki,T., Kanuka,H., Inohara,N., Sawamoto,K., Nunez,G., Okano,H., and Miura,M. (2000). Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. Proc. Natl. Acad. Sci U. S. A 97, 662-667. Cerca con Google

101. Ishihara,N., Eura,Y., and Mihara,K. (2004). Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117, 6535-6546. Cerca con Google

102. Ishihara,N., Fujita,Y., Oka,T., and Mihara,K. (2006). Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25, 2966-2977. Cerca con Google

103. Jacobs,H.T., Lehtinen,S.K., and Spelbrink,J.N. (2000). No sex please, we're mitochondria: a hypothesis on the somatic unit of inheritance of mammalian mtDNA. Bioessays 22, 564-572. Cerca con Google

104. Jagasia,R., Grote,P., Westermann,B., and Conradt,B. (2005). DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433, 754-760. Cerca con Google

105. James,D.I., Parone,P.A., Mattenberger,Y., and Martinou,J.C. (2003). hFis1, a novel component of the mammalian mitochondrial fission machinery. J. Biol. Chem. 278, 36373-36379. Cerca con Google

106. Jeyaraju,D., Xu,L., Letellier,M.C., Bandaru,S., Zunino,R., Berg,E.A., McBride,H., and Pellegrini,L. (2006). Phosphorylation and cleavage of a vertebrate-specific domain of the rhomboid protease PARL regulate mitochondrial morphology. Proc Natl Acad Sci U S A. 2006 103(49):18562-7. Cerca con Google

107. John,G.B., Shang,Y., Li,L., Renken,C., Mannella,C.A., Selker,J.M., Rangell,L., Bennett,M.J., and Zha,J. (2005). The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol. Biol. Cell 16, 1543-1554. Cerca con Google

108. Johnson,E.S. (2004). Protein modification by SUMO. Annu. Rev Biochem 73, 355-382. Cerca con Google

109. Jones,B.A. and Fangman,W.L. (1992). Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev. 6, 380-389. Cerca con Google

110. Jouaville,L.S., Ichas,F., Holmuhamedov,E.L., Camacho,P., and Lechleiter,J.D. (1995). Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377, 438-441. Cerca con Google

111. Kang,D., Kim,S.H., and Hamasaki,N. (2007). Mitochondrial transcription factor A (TFAM): roles in maintenance of mtDNA and cellular functions. Mitochondrion. 7, 39-44. Cerca con Google

112. Kanki,T., Nakayama,H., Sasaki,N., Takio,K., Alam,T.I., Hamasaki,N., and Kang,D. (2004). Mitochondrial nucleoid and transcription factor A. Ann. N. Y. Acad. Sci. 1011, 61-68. Cerca con Google

113. Karbowski,M., Arnoult,D., Chen,H., Chan,D.C., Smith,C.L., and Youle,R.J. (2004a). Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol. 164, 493-499. Cerca con Google

114. Karbowski,M., Jeong,S.Y., and Youle,R.J. (2004b). Endophilin B1 is required for the maintenance of mitochondrial morphology. J. Cell Biol. 166, 1027-1039. Cerca con Google

115. Karbowski,M., Neutzner,A., and Youle,R.J. (2007). The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol 178, 71-84. Cerca con Google

116. Karbowski,M., Norris,K.L., Cleland,M.M., Jeong,S.Y., and Youle,R.J. (2006). Role of Bax and Bak in mitochondrial morphogenesis. Nature 443, 658-662. Cerca con Google

117. Karbowski,M. and Youle,R.J. (2003). Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death. Differ. 10, 870-880. Cerca con Google

118. Karren,M.A., Coonrod,E.M., Anderson,T.K., and Shaw,J.M. (2005). The role of Fis1p-Mdv1p interactions in mitochondrial fission complex assembly. J Cell Biol 171, 291-301. Cerca con Google

119. Kay,B.K., Williamson,M.P., and Sudol,M. (2000). The importance of being proline: the interaction of proline-rich motifs in signaling proteins with their cognate domains. FASEB J. 14, 231-241. Cerca con Google

120. Kerr,J.F., Wyllie,A.H., and Currie,A.R. (1972). Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239-257. Cerca con Google

121. Kijima,K., Numakura,C., Izumino,H., Umetsu,K., Nezu,A., Shiiki,T., Ogawa,M., Ishizaki,Y., Kitamura,T., Shozawa,Y., and Hayasaka,K. (2005). Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum. Genet. 116, 23-27. Cerca con Google

122. Kim,J.Y., Hwang,J.M., Ko,H.S., Seong,M.W., Park,B.J., and Park,S.S. (2005). Mitochondrial DNA content is decreased in autosomal dominant optic atrophy. Neurology 64, 966-972. Cerca con Google

123. Kjer,B., Eiberg,H., Kjer,P., and Rosenberg,T. (1996). Dominant optic atrophy mapped to chromosome 3q region. II. Clinical and epidemiological aspects. Acta Ophthalmol Scand 74. Cerca con Google

124. Koehler,C.M. (2004). New developments in mitochondrial assembly. Annu Rev Cell Dev Biol 20. Cerca con Google

125. Koehler,C.M., Leuenberger,D., Merchant,S., Renold,A., Junne,T., and Schatz,G. (1999). Human deafness dystonia syndrome is a mitochondrial disease. Proc. Natl. Acad. Sci U. S. A 96, 2141-2146. Cerca con Google

126. Kondoh,H., Lleonart,M.E., Nakashima,Y., Yokode,M., Tanaka,M., Bernard,D., Gil,J., and Beach,D. (2007). A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid. Redox. Signal. 9, 293-299. Cerca con Google

127. Koonin,E.V., Makarova,K.S., Rogozin,I.B., Davidovic,L., Letellier,M.C., and Pellegrini,L. (2003). The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol. 4, R19. Cerca con Google

128. Koshiba,T., Detmer,S.A., Kaiser,J.T., Chen,H., McCaffery,J.M., and Chan,D.C. (2004). Structural basis of mitochondrial tethering by mitofusin complexes. Science 305, 858-862. Cerca con Google

129. Krammer,P.H. (2000). CD95's deadly mission in the immune system. Nature 407, 789-795. Cerca con Google

130. Kroemer,G. and Zitvogel,L. (2007). Death, danger, and immunity: an infernal trio. Immunol. Rev. 220, 5-7. Cerca con Google

131. Labrousse,A.M., Zappaterra,M.D., Rube,D.A., and van der Bliek,A.M. (1999b). C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815-826. Cerca con Google

132. Labrousse,A.M., Zappaterra,M.D., Rube,D.A., and van der Bliek,A.M. (1999a). C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4, 815-826. Cerca con Google

133. Langer,T., Kaser,M., Klanner,C., and Leonhard,K. (2001). AAA proteases of mitochondria: quality control of membrane proteins and regulatory functions during mitochondrial biogenesis. Biochem. Soc. Trans. 29, 431-436. Cerca con Google

134. Lawson,V.H., Graham,B.V., and Flanigan,K.M. (2005). Clinical and electrophysiologic features of CMT2A with mutations in the mitofusin 2 gene. Neurology 65, 197-204. Cerca con Google

135. Leahy,A., Xiong,J.W., Kuhnert,F., and Stuhlmann,H. (1999). Use of developmental marker genes to define temporal and spatial patterns of differentiation during embryoid body formation. J. Exp. Zool. 284, 67-81. Cerca con Google

136. Lee,Y.J., Jeong,S.Y., Karbowski,M., Smith,C.L., and Youle,R.J. (2004). Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15, 5001-5011. Cerca con Google

137. Legros,F., Lombes,A., Frachon,P., and Rojo,M. (2002). Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13, 4343-4354. Cerca con Google

138. Legros,F., Malka,F., Frachon,P., Lombes,A., and Rojo,M. (2004). Organization and dynamics of human mitochondrial DNA. J Cell Sci 117, 2653-2662. Cerca con Google

139. Lemberg,M.K., Menendez,J., Misik,A., Garcia,M., Koth,C.M., and Freeman,M. (2005). Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J 24. Cerca con Google

140. Leonhard,K., Guiard,B., Pellecchia,G., Tzagoloff,A., Neupert,W., and Langer,T. (2000). Membrane protein degradation by AAA proteases in mitochondria: extraction of substrates from either membrane surface. Mol. Cell 5, 629-638. Cerca con Google

141. Lettre,G. and Hengartner,M.O. (2006). Developmental apoptosis in C. elegans: a complex CEDnario. Nat Rev Mol Cell Biol 7, 97-108. Cerca con Google

142. Li,Z., Okamoto,K., Hayashi,Y., and Sheng,M. (2004). The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119, 873-887. Cerca con Google

143. Liu,S., Dontu,G., and Wicha,M.S. (2005). Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res. 7, 86-95. Cerca con Google

144. Liu,X., Kim,C.N., Yang,J., Jemmerson,R., and Wang,X. (1996). Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147-157. Cerca con Google

145. Lodi,R., Tonon,C., Valentino,M.L., Iotti,S., Clementi,V., Malucelli,E., Barboni,P., Longanesi,L., Schimpf,S., Wissinger,B., Baruzzi,A., Barbiroli,B., and Carelli,V. (2004). Deficit of in vivo mitochondrial ATP production in OPA1-related dominant optic atrophy. Ann. Neurol. 56, 719-723. Cerca con Google

146. Lonergan,T., Brenner,C., and Bavister,B. (2006). Differentiation-related changes in mitochondrial properties as indicators of stem cell competence. J. Cell Physiol 208, 149-153. Cerca con Google

147. Malka,F., Lombes,A., and Rojo,M. (2006). Organization, dynamics and transmission of mitochondrial DNA: focus on vertebrate nucleoids. Biochim. Biophys. Acta 1763, 463-472. Cerca con Google

148. Mannella,C.A., Marko,M., Penczek,P., Barnard,D., and Frank,J. (1994). The internal compartmentation of rat-liver mitochondria: tomographic study using the high-voltage transmission electron microscope. Microsc Res Tech 27. Cerca con Google

149. Margulis,L. (1971). The origin of plant and animal cells. Am. Sci. 59, 230-235. Cerca con Google

150. Martin,G.R. (1980). Teratocarcinomas and mammalian embryogenesis. Science 209, 768-776. Cerca con Google

151. mati-Bonneau,P., Valentino,M.L., Reynier,P., Gallardo,M.E., Bornstein,B., Boissiere,A., Campos,Y., Rivera,H., de la Aleja,J.G., Carroccia,R., Iommarini,L., Labauge,P., Figarella-Branger,D., Marcorelles,P., Furby,A., Beauvais,K., Letournel,F., Liguori,R., La,M.C., Montagna,P., Liguori,M., Zanna,C., Rugolo,M., Cossarizza,A., Wissinger,B., Verny,C., Schwarzenbacher,R., Martin,M.A., Arenas,J.I., Ayuso,C., Garesse,R., Lenaers,G., Bonneau,D., and Carelli,V. (2007). OPA1 mutations induce mitochondrial DNA instability and optic atrophy 'plus' phenotypes. Brain. Cerca con Google

152. McQuibban,G.A., Lee,J.R., Zheng,L., Juusola,M., and Freeman,M. (2006). Normal mitochondrial dynamics requires rhomboid-7 and affects Drosophila lifespan and neuronal function. Curr Biol 16, 537-541. Cerca con Google

153. McQuibban,G.A., Saurya,S., and Freeman,M. (2003). Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423, 537-541. Cerca con Google

154. Meeusen,S., McCaffery,J.M., and Nunnari,J. (2004). Mitochondrial fusion intermediates revealed in vitro. Science 305, 1747-1752. Cerca con Google

155. Meier,P., Finch,A., and Evan,G. (2000). Apoptosis in development. Nature 407, 796-801. Cerca con Google

156. Messerschmitt,M., Jakobs,S., Vogel,F., Fritz,S., Dimmer,K.S., Neupert,W., and Westermann,B. (2003). The inner membrane protein Mdm33 controls mitochondrial morphology in yeast. J. Cell Biol. 160, 553-564. Cerca con Google

157. Minauro-Sanmiguel,F., Wilkens,S., and Garcia,J.J. (2005). Structure of dimeric mitochondrial ATP synthase: novel F0 bridging features and the structural basis of mitochondrial cristae biogenesis. Proc. Natl. Acad. Sci. U. S. A 102, 12356-12358. Cerca con Google

158. Misaka,T., Miyashita,T., and Kubo,Y. (2002). Primary structure of a dynamin-related mouse mitochondrial GTPase and its distribution in brain, subcellular localization, and effect on mitochondrial morphology. J Biol Chem 277. Cerca con Google

159. Mitchell,P. (1979). Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206, 1148-1159. Cerca con Google

160. Morris,R.L. and Hollenbeck,P.J. (1995). Axonal transport of mitochondria along microtubules and F-actin in living vertebrate neurons. J. Cell Biol. 131, 1315-1326. Cerca con Google

161. Nakamura,N., Kimura,Y., Tokuda,M., Honda,S., and Hirose,S. (2006). MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 7, 1019-1022. Cerca con Google

162. Neutzner,A. and Youle,R.J. (2005). Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae. J Biol Chem 280. Cerca con Google

163. Nosek,J. and Tomaska,L. (2003). Mitochondrial genome diversity: evolution of the molecular architecture and replication strategy. Curr. Genet. 44, 73-84. Cerca con Google

164. Nowikovsky,K., Froschauer,E.M., Zsurka,G., Samaj,J., Reipert,S., Kolisek,M., Wiesenberger,G., and Schweyen,R.J. (2004). The LETM1/YOL027 gene family encodes a factor of the mitochondrial K+ homeostasis with a potential role in the Wolf-Hirschhorn syndrome. J. Biol. Chem. 279, 30307-30315. Cerca con Google

165. Okamoto,K. and Shaw,J.M. (2005). Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu. Rev. Genet. 39, 503-536. Cerca con Google

166. Olichon,A., Baricault,L., Gas,N., Guillou,E., Valette,A., Belenguer,P., and Lenaers,G. (2003). Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278, 7743-7746. Cerca con Google

167. Olichon,A., Emorine,L.J., Descoins,E., Pelloquin,L., Brichese,L., Gas,N., Guillou,E., Delettre,C., Valette,A., Hamel,C.P., Ducommun,B., Lenaers,G., and Belenguer,P. (2002). The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 523, 171-176. Cerca con Google

168. Olichon,A., Landes,T., Arnaune-Pelloquin,L., Emorine,L.J., Mils,V., Guichet,A., Delettre,C., Hamel,C., Amati-Bonneau,P., Bonneau,D., Reynier,P., Lenaers,G., and Belenguer,P. (2007). Effects of OPA1 mutations on mitochondrial morphology and apoptosis: relevance to ADOA pathogenesis. J. Cell Physiol 211, 423-430. Cerca con Google

169. Pacher,P. and Hajnoczky,G. (2001). Propagation of the apoptotic signal by mitochondrial waves. EMBO J. 20, 4107-4121. Cerca con Google

170. Palade,G.E. (1952). The fine structure of mitochondria. Anat. Rec. 114, 427-451. Cerca con Google

171. Paumard,P., Vaillier,J., Coulary,B., Schaeffer,J., Soubannier,V., Mueller,D.M., Brethes,D., di Rago,J.P., and Velours,J. (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. EMBO J. 21, 221-230. Cerca con Google

172. Pellegrini,L., Passer,B.J., Canelles,M., Lefterov,I., Ganjei,J.K., Fowlkes,B.J., Koonin,E.V., and D'Adamio,L. (2001). PAMP and PARL, two novel putative metalloproteases interacting with the COOH-terminus of Presenilin-1 and -2. J. Alzheimers. Dis. 3, 181-190. Cerca con Google

173. Pelloquin,L., Belenguer,P., Menon,Y., Gas,N., and Ducommun,B. (1999). Fission yeast Msp1 is a mitochondrial dynamin-related protein. J. Cell Sci. 112. Cerca con Google

174. Perkins,G.A., Renken,C.W., Frey,T.G., and Ellisman,M.H. (2001). Membrane architecture of mitochondria in neurons of the central nervous system. J Neurosci Res 66. Cerca con Google

175. Perotti,M.E., Anderson,W.A., and Swift,H. (1983). Quantitative cytochemistry of the diaminobenzidine cytochrome oxidase reaction product in mitochondria of cardiac muscle and pancreas. J. Histochem. Cytochem. 31, 351-365. Cerca con Google

176. Peters,R., Leyvraz,S., and Perey,L. (1998). Apoptotic regulation in primitive hematopoietic precursors. Blood 92, 2041-2052. Cerca con Google

177. Pevny,L.H., Sockanathan,S., Placzek,M., and Lovell-Badge,R. (1998). A role for SOX1 in neural determination. Development 125, 1967-1978. Cerca con Google

178. Poyton,R.O. and McEwen,J.E. (1996). Crosstalk between nuclear and mitochondrial genomes. Annu. Rev. Biochem. 65, 563-607. Cerca con Google

179. Prokisch,H., Scharfe,C., Camp,D.G., Xiao,W., David,L., Andreoli,C., Monroe,M.E., Moore,R.J., Gritsenko,M.A., Kozany,C., Hixson,K.K., Mottaz,H.M., Zischka,H., Ueffing,M., Herman,Z.S., Davis,R.W., Meitinger,T., Oefner,P.J., Smith,R.D., and Steinmetz,L.M. (2004). Integrative analysis of the mitochondrial proteome in yeast. PLoS. Biol. 2, e160. Cerca con Google

180. Rapaport,D., Brunner,M., Neupert,W., and Westermann,B. (1998). Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 273, 20150-20155. Cerca con Google

181. Rawson,R.B., Zelenski,N.G., Nijhawan,D., Ye,J., Sakai,J., Hasan,M.T., Chang,T.Y., Brown,M.S., and Goldstein,J.L. (1997). Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol Cell 1, 45-57. Cerca con Google

182. Reiter,R.E., Gu,Z., Watabe,T., Thomas,G., Szigeti,K., Davis,E., Wahl,M., Nisitani,S., Yamashiro,J., Le Beau,M.M., Loda,M., and Witte,O.N. (1998). Prostate stem cell antigen: a cell surface marker overexpressed in prostate cancer. Proc. Natl. Acad. Sci. U. S. A 95, 1735-1740. Cerca con Google

183. Reya,T., Morrison,S.J., Clarke,M.F., and Weissman,I.L. (2001b). Stem cells, cancer, and cancer stem cells. Nature 414, 105-111. Cerca con Google

184. Reya,T., Morrison,S.J., Clarke,M.F., and Weissman,I.L. (2001a). Stem cells, cancer, and cancer stem cells. Nature 414, 105-111. Cerca con Google

185. Rizzuto,R., Bernardi,P., and Pozzan,T. (2000). Mitochondria as all-round players of the calcium game. J Physiol 529 Pt 1, 37-47. Cerca con Google

186. Robertson,E., Bradley,A., Kuehn,M., and Evans,M. (1986). Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector. Nature 323, 445-448. Cerca con Google

187. Rodriguez,J. and Lazebnik,Y. (1999). Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev. 13, 3179-3184. Cerca con Google

188. Rojo,M., Legros,F., Chateau,D., and Lombes,A. (2002). Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J. Cell Sci. 115, 1663-1674. Cerca con Google

189. Rolletschek,A., Chang,H., Guan,K., Czyz,J., Meyer,M., and Wobus,A.M. (2001). Differentiation of embryonic stem cell-derived dopaminergic neurons is enhanced by survival-promoting factors. Mech. Dev. 105, 93-104. Cerca con Google

190. Santel,A., Frank,S., Gaume,B., Herrler,M., Youle,R.J., and Fuller,M.T. (2003). Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J. Cell Sci. 116, 2763-2774. Cerca con Google

191. Santel,A. and Fuller,M.T. (2001). Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867-874. Cerca con Google

192. Satoh,M., Hamamoto,T., Seo,N., Kagawa,Y., and Endo,H. (2003). Differential sublocalization of the dynamin-related protein OPA1 isoforms in mitochondria. Biochem. Biophys. Res. Commun. 300, 482-493. Cerca con Google

193. Schapira,A.H. (2006). Mitochondrial disease. Lancet 368, 70-82. Cerca con Google

194. Schmidt,A., Wolde,M., Thiele,C., Fest,W., Kratzin,H., Podtelejnikov,A.V., Witke,W., Huttner,W.B., and Soling,H.D. (1999). Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 401, 133-141. Cerca con Google

195. Scorrano,L., Ashiya,M., Buttle,K., Weiler,S., Oakes,S.A., Mannella,C.A., and Korsmeyer,S.J. (2002). A Distinct Pathway Remodels Mitochondrial Cristae and Mobilizes Cytochrome c during Apoptosis. Dev. Cell 2, 55-67. Cerca con Google

196. Scorrano,L. and Korsmeyer,S.J. (2003). Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochemical and Biophysical Research Communications 304, 437-444. Cerca con Google

197. Sesaki,H., Dunn,C.D., Iijima,M., Shepard,K.A., Yaffe,M.P., Machamer,C.E., and Jensen,R.E. (2006). Ups1p, a conserved intermembrane space protein, regulates mitochondrial shape and alternative topogenesis of Mgm1p. J. Cell Biol. 173, 651-658. Cerca con Google

198. Sesaki,H. and Jensen,R.E. (2001). UGO1 encodes an outer membrane protein required for mitochondrial fusion. J. Cell Biol. 152, 1123-1134. Cerca con Google

199. Sesaki,H. and Jensen,R.E. (2004). Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J Biol Chem. 279, 28298-28303. Cerca con Google

200. Sesaki,H., Southard,S.M., Hobbs,A.E., and Jensen,R.E. (2003a). Cells lacking Pcp1p/Ugo2p, a rhomboid-like protease required for Mgm1p processing, lose mtDNA and mitochondrial structure in a Dnm1p-dependent manner, but remain competent for mitochondrial fusion. Biochem. Biophys. Res. Commun. 308, 276-283. Cerca con Google

201. Sesaki,H., Southard,S.M., Yaffe,M.P., and Jensen,R.E. (2003b). Mgm1p, a dynamin-related GTPase, is essential for fusion of the mitochondrial outer membrane. Mol. Biol. Cell 14, 2342-2356. Cerca con Google

202. Shaw,J.M. and Nunnari,J. (2002). Mitochondrial dynamics and division in budding yeast. Trends Cell Biol. 12, 178-184. Cerca con Google

203. Shoubridge,E.A. and Wai,T. (2007). Mitochondrial DNA and the mammalian oocyte. Curr. Top. Dev. Biol. 77, 87-111. Cerca con Google

204. Sickmann,A., Reinders,J., Wagner,Y., Joppich,C., Zahedi,R., Meyer,H.E., Schonfisch,B., Perschil,I., Chacinska,A., Guiard,B., Rehling,P., Pfanner,N., and Meisinger,C. (2003). The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. U. S. A 100, 13207-13212. Cerca con Google

205. Sik,A., Passer,B.J., Koonin,E.V., and Pellegrini,L. (2004). Self-regulated cleavage of the mitochondrial intramembrane-cleaving protease PARL yields Pbeta, a nuclear-targeted peptide. J Biol Chem. 279, 15323-15329. Cerca con Google

206. Smirnova,E., Griparic,L., Shurland,D.L., and van der Bliek,A.M. (2001). Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol. Biol. Cell 12, 2245-2256. Cerca con Google

207. Smithies,O., Gregg,R.G., Boggs,S.S., Koralewski,M.A., and Kucherlapati,R.S. (1985). Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317, 230-234. Cerca con Google

208. Song,Z., Chen,H., Fiket,M., Alexander,C., and Chan,D.C. (2007). OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol 178, 749-755. Cerca con Google

209. Spitkovsky,D., Sasse,P., Kolossov,E., Bottinger,C., Fleischmann,B.K., Hescheler,J., and Wiesner,R.J. (2004). Activity of complex III of the mitochondrial electron transport chain is essential for early heart muscle cell differentiation. FASEB J. 18, 1300-1302. Cerca con Google

210. St John,J.C., Ramalho-Santos,J., Gray,H.L., Petrosko,P., Rawe,V.Y., Navara,C.S., Simerly,C.R., and Schatten,G.P. (2005). The expression of mitochondrial DNA transcription factors during early cardiomyocyte in vitro differentiation from human embryonic stem cells. Cloning Stem Cells 7, 141-153. Cerca con Google

211. Staub,O. and Rotin,D. (2006). Role of ubiquitylation in cellular membrane transport. Physiol Rev. 86, 669-707. Cerca con Google

212. Stojanovski,D., Koutsopoulos,O.S., Okamoto,K., and Ryan,M.T. (2004). Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J Cell Sci 117. Cerca con Google

213. Stowers,R.S., Megeath,L.J., Gorska-Andrzejak,J., Meinertzhagen,I.A., and Schwarz,T.L. (2002). Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein. Neuron 36, 1063-1077. Cerca con Google

214. Sugioka,R., Shimizu,S., and Tsujimoto,Y. (2004). Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 279, 52726-52734. Cerca con Google

215. Suzuki,M., Jeong,S.Y., Karbowski,M., Youle,R.J., and Tjandra,N. (2003). The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. J. Mol. Biol. 334, 445-458. Cerca con Google

216. Szabadkai,G., Simoni,A.M., Chami,M., Wieckowski,M.R., Youle,R.J., and Rizzuto,R. (2004). Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16, 59-68. Cerca con Google

217. Taguchi,N., Ishihara,N., Jofuku,A., Oka,T., and Mihara,K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521-11529. Cerca con Google

218. Tatsuta,T., Augustin,S., Nolden,M., Friedrichs,B., and Langer,T. (2007). m-AAA protease-driven membrane dislocation allows intramembrane cleavage by rhomboid in mitochondria. EMBO J. 26, 325-335. Cerca con Google

219. Terskikh,A.V., Easterday,M.C., Li,L., Hood,L., Kornblum,H.I., Geschwind,D.H., and Weissman,I.L. (2001). From hematopoiesis to neuropoiesis: evidence of overlapping genetic programs. Proc. Natl. Acad. Sci. U. S. A 98, 7934-7939. Cerca con Google

220. Thomas,K.R. and Capecchi,M.R. (1987). Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51, 503-512. Cerca con Google

221. Thompson,S., Clarke,A.R., Pow,A.M., Hooper,M.L., and Melton,D.W. (1989). Germ line transmission and expression of a corrected HPRT gene produced by gene targeting in embryonic stem cells. Cell 56, 313-321. Cerca con Google

222. Thundathil,J., Filion,F., and Smith,L.C. (2005). Molecular control of mitochondrial function in preimplantation mouse embryos. Mol. Reprod. Dev. 71, 405-413. Cerca con Google

223. Tieu,Q., Okreglak,V., Naylor,K., and Nunnari,J. (2002). The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J. Cell Biol. 158, 445-452. Cerca con Google

224. Tondera,D., Czauderna,F., Paulick,K., Schwarzer,R., Kaufmann,J., and Santel,A. (2005). The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118. Cerca con Google

225. Tondera,D., Santel,A., Schwarzer,R., Dames,S., Giese,K., Klippel,A., and Kaufmann,J. (2004). Knockdown of MTP18, a novel phosphatidylinositol 3-kinase-dependent protein, affects mitochondrial morphology and induces apoptosis. J Biol Chem 279. Cerca con Google

226. Trimmer,P.A., Swerdlow,R.H., Parks,J.K., Keeney,P., Bennett,J.P., Jr., Miller,S.W., Davis,R.E., and Parker,W.D., Jr. (2000). Abnormal mitochondrial morphology in sporadic Parkinson's and Alzheimer's disease cybrid cell lines. Exp. Neurol. 162, 37-50. Cerca con Google

227. Urban,S. and Freeman,M. (2003). Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol. Cell 11, 1425-1434. Cerca con Google

228. Urban,S. and Freeman,M. (2002). Intramembrane proteolysis controls diverse signalling pathways throughout evolution. Curr Opin Genet Dev 12. Cerca con Google

229. Urban,S., Lee,J.R., and Freeman,M. (2001). Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107, 173-182. Cerca con Google

230. Urban,S. and Wolfe,M.S. (2005). Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc Natl Acad Sci U S A 102, 1883-1888. Cerca con Google

231. van der Bliek,A.M. (2000). A mitochondrial division apparatus takes shape. J. Cell Biol. 151, F1-F4. Cerca con Google

232. Votruba,M., Moore,A.T., and Bhattacharya,S.S. (1997). Genetic refinement of dominant optic atrophy (OPA1) locus to within a 2 cM interval of chromosome 3q. J. Med. Genet. 34, 117-121. Cerca con Google

233. Votruba,M., Moore,A.T., and Bhattacharya,S.S. (1998). Clinical features, molecular genetics, and pathophysiology of dominant optic atrophy. J. Med. Genet. 35, 793-800. Cerca con Google

234. Wang,X. (2001). The expanding role of mitochondria in apoptosis. Genes Dev. 15, 2922-2933. Cerca con Google

235. Wang,Y., Zhang,Y., and Ha,Y. (2006). Crystal structure of a rhomboid family intramembrane protease. Nature 444, 179-180. Cerca con Google

236. WARBURG,O. (1956). On respiratory impairment in cancer cells. Science 124, 269-270. Cerca con Google

237. Waterham,H.R., Koster,J., van Roermund,C.W., Mooyer,P.A., Wanders,R.J., and Leonard,J.V. (2007). A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356, 1736-1741. Cerca con Google

238. Weiss,M.J. and Orkin,S.H. (1996). In vitro differentiation of murine embryonic stem cells. New approaches to old problems. J. Clin. Invest 97, 591-595. Cerca con Google

239. Welchman,R.L., Gordon,C., and Mayer,R.J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 6, 599-609. Cerca con Google

240. Wilkinson,D.G., Bhatt,S., and Herrmann,B.G. (1990a). Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657-659. Cerca con Google

241. Wilkinson,D.G., Bhatt,S., and Herrmann,B.G. (1990b). Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657-659. Cerca con Google

242. Willis,S.N., Chen,L., Dewson,G., Wei,A., Naik,E., Fletcher,J.I., Adams,J.M., and Huang,D.C. (2005). Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 19, 1294-1305. Cerca con Google

243. Wong,E.D., Wagner,J.A., Gorsich,S.W., McCaffery,J.M., Shaw,J.M., and Nunnari,J. (2000). The dynamin-related GTPase, Mgm1p, is an intermembrane space protein required for maintenance of fusion competent mitochondria. J. Cell Biol. 151, 341-352. Cerca con Google

244. Wong,E.D., Wagner,J.A., Scott,S.V., Okreglak,V., Holewinske,T.J., Cassidy-Stone,A., and Nunnari,J. (2003). The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160, 303-311. Cerca con Google

245. Yonashiro,R., Ishido,S., Kyo,S., Fukuda,T., Goto,E., Matsuki,Y., Ohmura-Hoshino,M., Sada,K., Hotta,H., Yamamura,H., Inatome,R., and Yanagi,S. (2006). A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 25, 3618-3626. Cerca con Google

246. Yoon,Y., Krueger,E.W., Oswald,B.J., and McNiven,M.A. (2003). The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell Biol. 23, 5409-5420. Cerca con Google

247. Youle,R.J. and Karbowski,M. (2005). Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6, 657-663. Cerca con Google

248. Zhou,S., Schuetz,J.D., Bunting,K.D., Colapietro,A.M., Sampath,J., Morris,J.J., Lagutina,I., Grosveld,G.C., Osawa,M., Nakauchi,H., and Sorrentino,B.P. (2001). The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat. Med. 7, 1028-1034. Cerca con Google

249. Zou,H., Li,Y., Liu,X., and Wang,X. (1999). An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274. Cerca con Google

250. Zuchner,S., Mersiyanova,I.V., Muglia,M., Bissar-Tadmouri,N., Rochelle,J., Dadali,E.L., Zappia,M., Nelis,E., Patitucci,A., Senderek,J., Parman,Y., Evgrafov,O., Jonghe,P.D., Takahashi,Y., Tsuji,S., Pericak-Vance,M.A., Quattrone,A., Battologlu,E., Polyakov,A.V., Timmerman,V., Schroder,J.M., and Vance,J.M. (2004). Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. Cerca con Google

251. Zuchner,S. and Vance,J.M. (2006). Mechanisms of disease: a molecular genetic update on hereditary axonal neuropathies. Nat. Clin. Pract. Neurol. 2, 45-53. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record