Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Rabbane, Md.Golam (2013) Effects of egg enrichment with glucocorticoid hormone, antagonist and receptor messenger in the modulation of gene expression in zebrafish (Danio rerio) embryos with transgenerational follow up till adulthood. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi di Dottorato) - Versione aggiornata
2609Kb

Abstract (inglese)

This study is relevant to the recent field of investigation on the genetic programming of embryo development by maternal glucocorticoid and its receptor messenger with lasting influences on subsequent life stages. This research has been undertaken with an articulate experimental design supported by an ample repertoire of biomolecular techniques, ranging from whole-genome microarray to relative and absolute qPCRs of glucocorticoid-dependent up- and down-regulated genes. I have found that cortisol enrichment of newly fertilized eggs by immersion in a solution of the steroid (13:M) for 2 h brings about significant up-regulation of 100 genes with no down-regulation at 5 h post-fertilization (hpf), when only maternal cortisol is available to the embryo. At 12 hpf, 143 genes were up-regulated and 6 down-regulated with only 30 genes in common with those at 5 hpf, indicating that substantial changes in responsiveness to maternal cortisol may occur at early developmental phases. At 24 hpf, responsiveness to cortisol was enlarged to hundreds of genes. Subsequently, I analyzed by relative qPCR seven target genes during development, observing a significant decrement of expression from 10 to 24 hpf of both vasp and plp1a genes, when ef1α was used as a calibration reference. Moreover, four genes that were up-regulated at 5 hpf (mat1a, notch2, parn and stmn2a), were no longer so at 20 hpf.
The work has been extended to the analysis of cortisol-induced changes in the expression of two target genes, igf-2a and casp8. It was demonstrated that the expression of igf-2a was significantly enhanced by egg microinjection with the zebrafish glucocorticoid receptor mRNA (z-gr mRNA), and more so by z-gr mRNA plus cortisol at 5 hpf and, to a lesser extent, at 10 hpf. This is of interest since igf-2a is considered as a major growth factor during embryogenesis. A stimulatory response was obtained also with casp8 at 5 hpf with both treatments, with a non-significant decrement at 10 hpf. Using absolute qPCR, I confirmed an expression enhancement of casp8 transcription by z-gr mRNA w/wo cortisol at 5 hpf, which was depressed by both the glucocorticoid antagonist RU486 and the z-gr mRNA translation knockdown by morpholino. Surprisingly, at 10 hpf, the latter negative modulations were reversed. The complexity of glucocorticoid action on embryonic gene expression was highlighted also by absolute qPCR of another gene, mcm6, whose transcripts were significantly increased by both cortisol and RU486 when administered alone, but decreased when in combination with z-gr mRNA at both 5 and 10 hpf.
Further, I examined in details the effects of the above treatments on larval survival after hatching (3 days pf) and undertook a study on the influence of cortisol enrichment of fertilized eggs on fish growth till 180 days of age by comparing a lineage in which the treatment was repeated along four generations (F1-F4) with another lineage acting as an untreated control. Since both lineages were homozygous for different colour patterns, they could be co-cultured, thus eliminating any differential environmental influence. This experiment was intended to determine whether exposure of early embryos to cortisol exerts a permanent imprinting on subsequent body growth and to elucidate the transgenerational pattern of this epigenetic modulation. Through statistical analysis, I established greater growth in cortisol-treated F1 and F2 from 120 to 180 dpf in terms of length and body weight. But, in F3 and F4, the difference in length disappeared, while that in body weight was somehow reversed. This seems to suggest that the priming effect was compensated rather than intensified along generations, as if a sort of adaptation has occurred.

Abstract (italiano)

Questo studio è rilevante dal momento che recenti ricerche si sono concentrate sul ruolo svolto dai glucocorticoidi di origine materna e dai messaggeri codificanti per il loro recettore nella programmazione genetica dello sviluppo embrionale, con particolare attenzione alle fasi di vita successive. Tale ricerca è stata effettuata seguendo un articolato disegno sperimentale supportato dall’utilizzo di molteplici tecniche biomolecolari, quali, ad esempio, il microarray e la real time PCR sia relativa che assoluta. E’stato dimostrato che l’arricchimento delle uova di zebrafish appena fecondate con cortisolo, mediante immersione per 2 ore in una soluzione 13:M dello steroide, provoca una significativa up-regolazione di 100 geni a 5 ore dopo la fecondazione (hpf), quando nell’embrione è presente solo il cortisolo di origine materna. Nessun gene è risultato invece down-regolato allo stesso stadio di sviluppo. A 12 hpf, 143 geni sono risultati up-regolati e 6 down-regolati, con solo 30 geni in comune con l’esperimento delle 5 hpf: questo indica che probabilmente nelle fasi precoci di sviluppo embrionale avvengono dei cambiamenti sostanziali nella risposta al cortisolo materno. A 24 hpf la risposta al cortisolo interessa centinaia di geni. Successivamente ho analizzato mediante real time PCR relativa sette geni bersaglio dei glucocorticoidi durante lo sviluppo, osservando una significativa diminuzione dell’espressione dalle 10 alle 24 hpf dei geni vasp e plp1a, con ef1α come “gene housekeeping”. Inoltre ho dimostrato che quattro geni, precedentemente risultati up-regolati a 5 hpf (mat1a, notch2, parn e stmn2a), non risultano più sovraespressi a 20 hpf.
Successivamente ho esteso l’analisi anche ai cambiamenti indotti dal cortisolo sull’espressione dei geni target igf-2a e casp8. In particolare ho potuto dimostrare che l’espressione di igf-2a aumenta significativamente in seguito alla microiniezione delle uova con il messaggero codificante per il recettore dei glucocorticoidi di zebrafish (z-gr mRNA), e più ancora se alla microiniezione viene abbinato il trattamento con cortisolo. Questo è stato dimostrato a 5 hpf e, in misura minore, anche a 10 hpf. Questo dato è interessante dal momento che igf-2a viene considerato il principale fattore di crescita durante l’embriogenesi. Un aumento di espressione è stato ottenuto anche per il gene casp8 con entrambi i trattamenti a 5 hpf, mentre a 10 hpf c’è una diminuzione di espressione non significativa. Mediante real time PCR assoluta ho confermato l’aumento di trascrizione del gene casp8 a 5 hpf successivamente alla microiniezione con z-gr mRNA, indipendentemente dall’aggiunta di cortisolo; una diminuzione di espressione è stata invece ottenuta sia con l’utilizzo dell’antagonista dei glucocorticoidi RU486, sia dopo silenziamento del recettore tramite microiniezione con morfolino. Sorprendentemente, a 10 hpf, le modulazioni che erano risultate precedentemente negative hanno avuto un’inversione di tendenza.
La complessità dell’azione dei glucocorticoidi sull’espressione genica durante lo sviluppo embrionale è stata messa in evidenza anche dall’esperimento di real time PCR assoluta per il gene mcm6, i cui trascritti sono risultati notevolmente aumentati sia dopo trattamento con cortisolo che con RU486, quando questi reagenti sono stati utilizzati da soli; una diminuzione dei trascritti è stata invece osservata per entrambi i reagenti, sia a 5 hpf che a 10 hpf, quando sono stati impiegati contemporaneamente alla microiniezione con z-gr mRNA.
Ho poi esaminato in dettaglio gli effetti di tutti i trattamenti descritti precedentemente sulla sopravvivenza delle larve dopo la schiusa (3 giorni pf) ed ho condotto uno studio sull’influenza dell’arricchimento con cortisolo sulla crescita dello zebrafish, effettuando misurazioni ad intervalli di tempo definiti, fino ai 180 giorni pf. L’analisi è stata fatta comparando una linea in cui il trattamento con cortisolo è stato ripetuto per quattro generazioni successive (F1- F4) con un’altra utilizzata come controllo non trattato. Poichè entrambe le linee erano omozigoti per differenti pattern di colorazione si è potuto anche allevarle assieme, eliminando ogni possibile influenza ambientale. Lo scopo dell’esperimento era determinare se l’esposizione dell’embrione al cortisolo, a stadi di sviluppo precoci, esercitasse un’influenza permanente sulla crescita ed inoltre spiegare il pattern transgenerazionale di tale modulazione epigenetica. Attraverso analisi statistica ho dimostrato che c’è una maggiore crescita nei trattati con cortisolo delle generazioni F1 e F2 dai 120 ai 180 giorni pf in termini di lunghezza e peso corporeo. Nelle generazioni F3 e F4 scompaiono le differenze di lunghezza rispetto ai controlli, mentre il peso corporeo risulta addirittura diminuito. Questi risultati sembrano suggerire che l’effetto iniziale del trattamento viene compensato, e non intensificato, nel corso delle generazioni, come se avvenisse una sorta di adattamento.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Colombo, Lorenzo
Correlatore:Dalla Valle, Luisa
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > BIOLOGIA E MEDICINA DELLA RIGENERAZIONE > BIOLOGIA DELL'INTEGRAZIONE CELLULARE
Data di deposito della tesi:25 Febbraio 2013
Anno di Pubblicazione:25 Febbraio 2013
Parole chiave (italiano / inglese):zebrafish, microarray, cortisolo/ zebrafish, microarray, cortisol
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/06 Anatomia comparata e citologia
Struttura di riferimento:Dipartimenti > Dipartimento di Biologia
Codice ID:6061
Depositato il:23 Ott 2013 10:06
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Alsop, D., Vijayan, M.M. 2008. Development of the corticosteroid stress axis and receptor expression in zebrafish. Am. J. Physiol. Regul. Integr. Comp. Physiol., 294, R711–R719. Cerca con Google

Alsop, D., Vijayan, M.M. 2009. Molecular programming of the corticosteroid stress axis during zebrafish development. Comp. Biochem. Physiol. Part A, 153, 49-54. Cerca con Google

Alsop, D., Vijayan, M.M. 2009. The zebrafish stress axis: molecular fallout from the teleost-specific genome duplication event. Gen. Comp. Endocrinol., 161, 62–66. Cerca con Google

Aluru, N., Vijayan, M.M. 2007. Hepatic transcriptome response to glucocorticoid receptor activation in rainbow trout. Physiol. Genomics, 31, 483–491. Cerca con Google

Aluru, N., Vijayan, M.M. 2008. Molecular characterization, tissue-specific expression and regulation of melanocortin 2 receptor in rainbow trout. Endocrinology, 149, 4577–4588. Cerca con Google

Arends, R.J., Vermeer, H., Martens, G.J., Leunissen, J.A., Wendelaar Bonga, S.E., Flik, G. 1998. Cloning and expression of two proopiomelanocortin mRNAs in the common carp (Cyprinus carpio L.). Mol. Cell. Endocrinol., 143, 23–31. Cerca con Google

Auperin, B., Geslin, M. 2008. Plasma cortisol response to stress in juvenile rainbow trout is influenced by their life history during early development and by egg cortisol content. Gen. Comp. Endocrinol., 158, 234–239. Cerca con Google

Ayson, F.G., Lam, T.J. 1993. Thyroxin injection of female rabbitfish (Siganus guttatus) broodstock: changes in thyroid hormone levels in plasma, eggs, and yolk-sac larvae, and its effect on larval growth and survival. Aquaculture, 109, 83–93. Cerca con Google

Barman, R.P. 1991. A taxonomic revision of the Indo-Burmese species of Danio rerio. Rec. Zool. Surv. India. Misc. Publ., Occas. Pap., 137, 1–91. Cerca con Google

Barnes, P.J. 2006. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol., 148, 245–254. Cerca con Google

Barry, T.P., Malison, J.A., Held, J.A., Parrish, J.J. 1995a. Ontogeny of the cortisol stress response in larval rainbow trout. Gen. Comp. Endocrinol., 97, 57–65. Cerca con Google

Barry, T.P., Ochiai, M., Malison, J.A. 1995b. In vitro effects of ACTH on interregnal corticosteroidogenesis during early larval development in rainbow trout. Gen. Comp. Endocrinol., 99, 382–387. Cerca con Google

Barton, B.A., Iwama, G.K. 1991. Physiological changes in fish from stress in aquaculture with emphasis on the response and effect of corticosteroids. Ann. Rev. Fish Dis., 1, 3–26. Cerca con Google

Barton, B.A., Morgan, J.D., Vijayan, M.M. 2002. Physiological and condition-related indicators of environmental stress in fish, In: Adams, S.M. (Ed.), Biological Indicators of Stress in Fish, 2nd ed. American Fisheries Society, Bethesda, Maryland, pp. 111–148. Cerca con Google

Beckman, M. 2007. Zebrafish take the stage in cancer research. Journal of the National Cancer Institute, 99, 500-501. Cerca con Google

Belvedere, P., Vianello, S., Dalla Valle L., Ramina, A., Manzalini, A., Salvato, B., Colombo, L. 1999. Long-term effects on body growth induced by oocyte exposure to exogenous cortisol and estradiol-17βin rainbow trout. In: Roubous W, Wendelaar Bonga SE, Vaudry H, De Loot A, editors. Recent developments in comparative endocrinology and neurobiology. Maastricht: Shaker Publishing. pp. 258–260. Cerca con Google

Bernier, N.J. 2006. The corticotropin-releasing factor system as a mediator of the appetite-suppressing effects of stress in fish. Gen. Comp. Endocrinol., 146, 45–55. Cerca con Google

Bhat, A. 2003. Diversity and composition of freshwater fishes in streams of Central Western Ghats, India. Environ. Biol. Fishes, 68, 25–38. Cerca con Google

Bilotta, J. 2000. Effects of abnormal lighting on the development of zebrafish visual behaviour. Behav. Brain Res., 116, 81–87. Cerca con Google

Boron, W. F., Boulpaep, E. L. 2006. Medical Physiology. Elsevier Publication, pp. 1017-1022. Cerca con Google

Bridgham, J.T., Carroll, S.M., Thornton, J.W. 2006. Evolution of hormone-receptor complexity by molecular exploitation. Science, 312, 97–101. Cerca con Google

Brösamle, C., Halpern, M. 2002. Characterization of myelination in the developing zebrafish. Glia, 39, 47-57. Cerca con Google

Brown, C.L., Bern, H.A. 1989. Hormones in early development, with special reference to teleost fish. In: Scanes, C.G., Scheibman, M.P. (Eds), Academic Press, San Diego, pp. 189–306. Cerca con Google

Brown, C.L., Doroshov, S.I., Cochran, M.D., Bern, H.A. 1989. Enhanced survival in striped bass fingerlings after maternal triiodothyronine treatment. Fish. Physiol. Biochem., 7, 295–299. Cerca con Google

Bury, N.R., Sturm, A., Le Rouzic, P., Lethimonier, C., Ducouret, B., Guiguen, Y., Robinson- Rechavi, M., Laudet, V., Rafestin-Oblin, M.E., Prunet, P. 2003. Evidence for two distinct functional glucocorticoid receptors in teleost fish. J. Mol. Endocrinol., 31, 141–156. Cerca con Google

Campbell, P.M., Pottinger, T.G., Sumpter, J.P. 1992. Stress reduces the quality of gametes produced by rainbow trout. Biol. Reprod. 47, 1140–1150. Cerca con Google

Campbell, P.M., Pottinger, T.G., Sumpter, J.P. 1994. Preliminary evidence that chronic confinement stress reduces the quality of gametes produced by brown and rainbow trout. Aquaculture, 120, 151–169. Cerca con Google

Castranova, D.A., King, V.W., Woods III, L.C. 2005. The effects of stress on androgen production, spermiation response and sperm quality in high and low cortisol responsive domesticated male striped bass. Aquaculture, 246, 413–422. Cerca con Google

Chakraborty, C., Hsu, C. H., Wen, Z.H., Lin C.S., Agoramoorthy, G. 2009. Zebrafish: A complete animal model for in vivo drug discovery and development. Current Drug Metab., 10, 116-124. Cerca con Google

Chandrasekar, G., Lauter, G., Hauptmann, G. 2007. Distribution of corticotropin-releasing hormone in the developing zebrafish brain. J. Comp. Neurol., 505, 337–351. Cerca con Google

Contreras-Sanchez, W.M., 1995. Effects of stress on the reproductive performance and physiology of rainbow trout (Oncorhynchus mykiss). MS thesis, Oregon State University, pp. 60. Cerca con Google

Contreras-Sanchez, W.M., Schreck, C.B., Fitzpatrick, M.S., Pereira, C.B. 1998. Effects of stress on the reproductive performance of rainbow trout (Oncorhynchus mykiss). Biol. Reprod., 58, 439–447. Cerca con Google

Corey, D.R., Abrams, J. M. 2001. Morpholino antisense oligonucleotides: tools for investigating vertebrate development. Genome Biol., 2 (5), 1015.1- 1015.3. Cerca con Google

Cortemeglia, C., Beitinger, T.L. 2005. Temperature tolerances of wild-type and red transgenic zebra danios. Trans. Amer. Fish. Soc., 134, 1431-1437. Cerca con Google

Dahm, R. 2002. Atlas of embryonic stages of development in the zebrafish. In: Zebrafish: A Practical Approach, Nüsslein-Volhard C. Dahm R. (eds), Oxford: Oxford University Press, pp. 219–236. Cerca con Google

Dahm, R., Geisler, R. 2006. Learning from small fry: the zebrafish as a genetic model organism for aquaculture fish species. Mar. Biotechnol., 8, 329-345. Cerca con Google

De Souza, F.S.J., Bumaschny, V.F., Low, M.J., Rubinstein, M. 2005. Subfunctionalization of expression and peptide domains following the ancient duplication of the proopiomelanocortin gene in teleost fishes. Mol. Biol. Evol., 22, 2417–2427. Cerca con Google

De Kloet, E.R., Joels, M., Holsboer, F. 2005. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci., 6, 463–475. Cerca con Google

De Jesus, E.G., Hirano, T. 1992. Changes in wholes body concentrations of cortisol, thyroid hormones, and sex steroids during early development of the chum salmon, Oncorhynchus keta. Gen. Comp. Endocrinol., 85, 55–61. Cerca con Google

De Jesus, E.G., Hirano, T., Inui, Y. 1991. Changes in cortisol and thyroid hormone concentrations during early development and metamorphosis in Japanese Flounder, Paralichthys olivaceus. Gen. Comp. Endocrinol., 82, 369–376. Cerca con Google

Dorsett, Y., Tuschl, T. 2004. siRNAs: applications in functional genomics and potential as therapeutics. Nat. Rev. Drug Discov., 3(4), 318-329. Cerca con Google

Eisen, J.S., Smith, J.C. 2008. Controlling morpholino experiments: don’t stop making antisense. Development, 135, 1735-1743. Cerca con Google

Eriksen, M., Bakken, M., Espmark, Å., Braastad, B., Salte, R., 2006. Prespawning stress in farmed Atlantic salmon Salmo salar: maternal cortisol exposure and hyperthermia during embryonic development affect offspring survival, growth and incidence of malformations. J. Fish Biol. 69, 114–129. Cerca con Google

Feist, G., Schreck, C.B., Fitzpatrick, M.S., Redding, J.M. 1990. Sex steroid profiles of coho salmon (Oncorhynchus kisutch) during early development and sexual differentiation. Gen. Comp. Endocrinol., 80, 299-313. Cerca con Google

Ferg, M., Sanges, R., Gehrig, J., Kiss, J., Bauer, M., Lovas, A., Szabo, M., Yang, L., Straehle, U., Pankratz, M. J., Olasz, F., Stupka, E., Müller, F. 2007. The TATA-binding protein regulates maternal mRNA degradation and differential zygotic transcription in zebrafish. The EMBO Journal, 26, 3945–3956. Cerca con Google

Flik, G., Klaren, P.H.M., Van den Burg, E.H., Metz, J.R., Huising, M.O. 2006. CRF and stress in fish. Gen. Comp. Endocrinol., 146, 36–44. Cerca con Google

Flick, G., Stouthart, X.J.H.X., Spanings, F.A.T., Lock, R.A.C., Fenwick, J.C., Wendelaar Bonga, S.E. 2002. Stress response to waterborne Cu during early life stages of carp, Cyprinus carpio. Aquat. Toxicol., 56, 167–176. Cerca con Google

Foo, J.T.W., Lam, T.J. 1993. Retardation of ovarian growth and depression of serum steroid levels in the tilapia, Oreochromis mossambicus, by cortisol implantation. Aquaculture, 115, 133–143. Cerca con Google

Fox, H.E., White, S.A., Kao, M.H.F., Fernald, R.D. 1997. Stress and dominance in a social fish. J. Neurosci., 17, 6463–6469. Cerca con Google

Francis, M. 2008. Aquatics labs: five questions you don’t want to have to ask. CALAS/ACSAL membership magazine, 42 (3), 25-27. Cerca con Google

Giguere, V., Hollenberg, S.M., Rosenfeld, M.G., Evans, R.M. 1986. Functional domains of the human glucocorticoid receptor. Cell, 46, 645–652. Cerca con Google

Greenwood, A.K., Butler, P.C., White, R.B., DeMarco, U., Pearce, D., Fernald, R.D. 2003. Multiple corticosteroid receptors in a teleost fish: distinct sequences, expression patterns, and transcriptional activities. Endocrinology, 144, 4226–4236. Cerca con Google

Gowaty, P.A., Anderson, W.W., Bluhm, C.K., Drickamer, L.C., Kim, Y.K., Moore, A.J. 2007. The hypothesis of reproductive compensation and its assumptions about mate preferences and offspring viability. Proc. Natl. Acad. Sci., 104, 15023– 15027. Cerca con Google

Harland, R., Weintraub, H. 1985. Translation of mRNA injected into Xenopus oocytes is specifically inhibited by antisense RNA. J. Cell Biol., 101, 1094-1099. Cerca con Google

Heasman, J. 2002. Morpholino oligos: making sense of antisense? Dev. Biol., 243, 209-214. Cerca con Google

Herzog,W., Sonntag, C.,Walderich, B., Odenthal, J., Maischein, H.M., Hammerschmidt, M. 2004. Genetic analysis of adenohypophysis formation in zebrafish. Mol. Endocrinol., 18, 1185–1195. Cerca con Google

Holder, N. Xu, Q. 1999. Microinjection of DNA, RNA, and protein into the fertilized zebrafish egg for analysis of gene function. Meth. Mol. Biol., 97, 487–490. Cerca con Google

Huising, M.O., Metz, J.R., van Schooten, C., Taverne-Thiele, A.J., Hermsen, T., Verburg-van Cerca con Google

Kemenade, B.M., Flik, G. 2004. Structural characterisation of a cyprinid (Cyprinus carpio L.) CRH, CRH-BP and CRH-R1, and the role of these proteins in the acute stress response. J. Mol. Endocrinol., 32, 627–648. Cerca con Google

Hwang, P.P., Wu, S.M., Lin, J.H., Wu, L.S. 1992. Cortisol content of eggs and larvae of teleosts. Gen. Comp. Endocrinol., 86, 189–196. Cerca con Google

Irie, T., Seki, T. 2002. Retinoid composition and retinal localization in the eggs of teleost fishes. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 131, 209-219. Cerca con Google

Iwama, G.K., Afonso, L.O.B., Vijayan, M.M. 2006. Stress in fish, In: Evans, D.H., Claiborne, J.B. (Eds.), The Physiology of Fishes, Third ed. CRC Press, Boca Raton, Florida, pp. 319–34. Cerca con Google

Iwamatsu, T., Kobayashi, H., Sagegami, R., Shuo, T. 2006. Testosterone content of developing eggs and sex reversal in the medaka (Oryzias latipes). Gen. Comp. Endocrinol., 145, 67-74. Cerca con Google

Izant, J.G., Weintraub, H. 1984. Inhibition of thymidine kinase gene expression by anti-sense RNA: a molecular approach to genetic analysis. Cell, 36, 1007-1015. Cerca con Google

Izant, J.G. Weintraub, H. 1985. Constitutive and conditional suppression of exogenous and endogenous genes by anti-sense RNA. Science, 229, 345-352. Cerca con Google

Jalabert, B. 2008. An overview of 30 years of international research in some selected fields of the reproductive physiology of fish. Cybium, 32, 7–13. Cerca con Google

Jentoft, S., Held, J.A., Malison, J.A., Barry, T.P. 2002. Ontogeny of the cortisol stress response in yellow perch (Perca flavescens). Fish Physiol. Biochem., 26, 371–378. Cerca con Google

Kane, D.A., Kimmel, C.B. 1993. The zebrafish midblastula transition. Development, 119, 447–456. Cerca con Google

King, W., Berlinsky, D. 2006. Whole-body corticosteroid and plasma cortisol concentrations in larval and juvenile atlantic cod Gadus morhua L. following acute stress. Aquac. Res., 37, 1282–1289. Cerca con Google

Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., Schilling, T.F. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn., 203, 255-310. Cerca con Google

Kimmel, C.B., Law, R.D. 1985. Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer. Dev. Biol., 108, 86-93. Cerca con Google

Kishi, S. 2004. Functional senescence and gradual aging in zebrafish. Ann. N. Y. Acad. Sci., 1019, 521-526. Cerca con Google

Koob, G.F., Heinrichs, S.C. 1999. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res., 848, 141–152. Cerca con Google

Kreiberg, H. 2000. Stress and anaesthesia. In: G. K. Ostrander (ed.) The Laboratory Fish. Academic Press: New York, pp. 503-511. Cerca con Google

Lam, T.J. 1985. Role of thyroid hormone on larval development in fish. In: Lofts, B., Holms, W.N. (Eds.), Current Trends in Comparative Endocrinology. Hong Kong Univ. Press, Hong Kong, pp. 481–485. Cerca con Google

Leitz, T. 1987. Social control of testicular steroidogenic capacities in the Siamese fighting fish Betta splendens Regan. J. Exp. Zool., 244, 473–478. Cerca con Google

Leonhardt, S.A., Edwards, D.P. 2002. Mechanism of action of progesterone antagonists. Exp. Biol. Med., 227, 969-980. Cerca con Google

Li, M., Bureau, D., King, W.A., Leatherland, J.F. 2010. The actions of in ovo cortisol on egg fertility, embryo development and the expression of growth-related genes in rainbow trout embryos, and the growth performance of juveniles. Mol. Reprod. Dev., 77, 922-931. Cerca con Google

Livak, K.J., and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25, 402–408. Cerca con Google

Lowry, C.A., Moore, F.L. 2006. Regulation of behavioral responses by corticotropin-releasing factor. Gen. Comp. Endocrinol., 146, 19–27. Cerca con Google

Mathavan, S., Lee, S.G.P., Mak, A., Miller, L.D., Murthy, K.R.K., Govindarajan, K.R., Tong, Y., Wu, Y.L., Lam, S.H., Yang, H., Ruan, Y., Korzh, V., Gong, Z., Liu, E.T., Lufkin, T. 2005. Transcriptome analysis of zebrafish embryogenesis using microarrays. Plos Genet., 1, 260–276. Cerca con Google

Matthews, M., Trevarrow, B., Matthews, J. 2002. A virtual tour of the guide for zebrafish users. Lab Animal, 31, 34-40. Cerca con Google

Mathew, L.K., Sengupta, S., Kawakami, A., Andreasen, E.A., Lohr, C.V., Loynes, C.A., Renshaw, S.A., Peterson, R.T., Tanguay, R.L. 2007. Unraveling tissue regeneration pathways using chemical genetics. J. Biol. Chem., 282, 35202–35210. Cerca con Google

McCormick, M.I. 1998. Behaviorally induced maternal stress in a fish influences progeny quality by a hormonal mechanism. Ecology, 79, 1873–1883. Cerca con Google

McCormick, M.I. 1999. Experimental test of the effect of maternal hormones on larval quality of a coral reef fish. Oecologia, 118, 412-422. Cerca con Google

Melton, D.A. 1985. Injected anti-sense RNAs specifically block messenger RNA translation in vivo. Proc. Natl. Acad. Sci. USA, 82, 144-148. Cerca con Google

Menon, A.G.K. 1999. Check list-fresh water fishes of India. Rec. Zool. Surv. India. Misc. Publ., Occas. Pap., 175 (366), 234–259. Cerca con Google

Migliaccio, S., Brama, M., Fornari, R., Greco, E.A., Spera, G., Malavolta, N. 2007. Glucocorticoid-induced osteoporosis: an osteoblastic disease. Aging Clin. Exp. Res., 19, 5–10. Cerca con Google

Mommsen, T.P., Vijayan, M.M., Moon, T.W. 1999. Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fish., 9, 211–268. Cerca con Google

Morehead, D.T., Ritar, A.J., Pankhurst, N.W. 2000. Effect of consecutive 9- or 12-month photothermal cycles and handling on sex steroid levels, oocyte development, and reproductive performance in female striped trumpeter Latris lineata (Latrididae). Aquaculture, 189, 293–305. Cerca con Google

Nasevicius, A., Ekker, S.C. 2000. Effective targeted gene ‘knockdown’ in zebrafish. Nat. Genet., 26, 216-220. Cerca con Google

Nesan, D., Kamkar, M., Burrows, J., Scott, I.C., Marsden, M., Vijayan, M.M. 2012. Glucocorticoid receptor signaling is essential for mesoderm formation and muscle development in zebrafish. Endocrinology, 153, 1288–1300. Cerca con Google

Nesan, D., Vijayan, M. M. 2012. Embryo exposure to elevated cortisol level leads to cardiac performance dysfunction in zebrafish. Mol. Cell. Endocrinol., 363, 85–91. Cerca con Google

Nicholl, D.S.T. 1996. An introduction to genetic engineering. Cambridge University Press. pp. 23. Cerca con Google

Oates, A.C., Bruce, A.E., Ho, R.K. 2000. Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev. Biol., 224, 20-28. Cerca con Google

Okuzawa, K. 2002. Puberty in teleosts. Fish Physiol. Biochem., 26, 31–41. Cerca con Google

Parng, C. 2005. In vivo zebrafish assays for toxicity testing. Current Opinions in Drug Discovery and Development, 8, 100-106. Cerca con Google

Pelegri, F. 2003. Maternal Factors in Zebrafish Development. Dev. Dyn., 228, 535-554. Cerca con Google

Phuc Le, P., Friedman, J.R., Schug, J., Brestelli, J.E., Parker, J.B., Bochkis, I.M., Kaestner, K.H. 2005. Glucocorticoid receptor-dependent gene regulatory networks. PLoS Genet., 1, e16. Cerca con Google

Pickering, A.D., Pottinger, T.G., Carragher, J., Sumpter, J.P. 1987. The effects of acute and chronic stress on the levels of reproductive hormones in the plasma of mature brown trout, Salmo trutta L. Gen. Comp. Endocrinol., 68, 249–259. Cerca con Google

Pikulkaew, S., Benato, F., Celeghin, A., Zucal, C., Skobo, T., Colombo, L., Valle, L.D. 2011. The knockdown of maternal glucocorticoid receptor mRNA alters embryo development in zebrafish. Dev. Dyn. 240, 874–889. Cerca con Google

Pikulkaew, S., De Nadai, A., Belvedere, P., Colombo, L., Dalla Valle, L. 2010. Expression analysis of steroid hormone receptor mRNAs during zebrafish embryogenesis. Gen. Comp. Endocrinol., 165, 215–220. Cerca con Google

Pottinger, T.G., Mosuwe, E. 1994. The corticosteroidogenic response of brown and rainbow trout alevins and fry to environmental stress during a “critical period”. Gen. Comp. Endocrinol., 95, 350–362. Cerca con Google

Pottinger, T.G., Moran, T.A. 1993. Differences in plasma cortisol and cortisone dynamics during stress in two strains of rainbow trout (Oncorhynchus mykiss). J. Fish Biol., 43, 121–130. Cerca con Google

Pottinger, T.G., Pickering, A.D., Hurley, M.A. 1992. Consistency of the stress response of individuals of two strains of rainbow trout, Oncorhynchus mykiss. Aquaculture, 103, 275–289. Cerca con Google

Pratt,W.B., Toft, D.O. 2003. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperonemachinery. Exp. Biol.Med., 228, 111–133. Cerca con Google

Rahman, A.K.A. 1989. Freshwater fishes of Bangladesh. Zoological Society of Bangladesh, Department of Zoology, University of Dhaka, pp. 364. Cerca con Google

Sakata, S., Yan, Y., Satou, Y., Momoi, A., Ngo-Hazelett, P., Nozaki, M., Furutani-Seiki, M., Postlethwait, J.H., Yonehara, S., Sakamaki, K. 2007. Conserved function of caspase-8 in apoptosis during bony fish evolution. Gene, 396, 134-48. Cerca con Google

Sampath-Kumar, R., Byers, R.E., Munro, A.D., Lam, T.J. 1995. Profile of cortisol during ontogeny of the asian sea bass, Lates calcarifer. Aquaculture, 132, 349– 359. Cerca con Google

Schaaf, M.J., Chatzopoulou A., Spaink H.P. 2009. The zebrafish as a model system for glucocorticoid receptor research. Comp. Biochem. Physiol., 253, 75-82. Cerca con Google

Schaaf, M.J., Champagne, D., van Laanen, I.H., van Wijk, D.C., Meijer, A.H., Meijer, O.C., Spaink, H.P., Richardson, M.K. 2008. Discovery of a functional glucocorticoid receptor beta-isoform in zebrafish. Endocrinology, 149, 1591–1599. Cerca con Google

Scherer, L., Rossi, J.J. 2004. RNAi applications in mammalian cells. Biotechniques, 36 (4), 557-561. Cerca con Google

Scholz, S., Mayer, I. 2008. Molecular biomarkers of endocrine disruption in small model fish. Mol. Cell. Endocrinol., 293, 57–70. Cerca con Google

Schreck, C.B. 2010. Stress and fish reproduction: The roles of allostasis and hormesis. Gen. Comp. Endocrinol., 165, 549–556. Cerca con Google

Schreck, C.B., Li, H.W. 1991. Performance capacity of fish: stress and water quality. In: Brune, D.E., Tomasso, J.R. (Eds.), Aquaculture and Water Quality, vol. 3. World Aquaculture Society, Baton Rouge, Advances in World Aquaculture, pp. 21–29. Cerca con Google

Schreck, C.B., Maule, A.G. 2001. Are the endocrine and immune systems really the same thing? In: Goos, H.J.T., Rostogi, R.K., Vaudry, H., Pierantoni, R. (Eds.), Monduzzi Editore. CD ROM Book, Naples, pp. 351–357. Cerca con Google

Schreck, C.B., Fitzpatrick, M.S., Feist, G.W., Yeoh, C.G. 1991. Steroids: developmental continuum between mother and offspring. In: Scott, A.P., Sumpter, J.P., Kime, D.E., Rolfe, M.S. (Eds.), Proceedings of the 4th International Symposium on the Reproductive Physiology of Fish, FishSymp 91, Sheffield, pp. 256–258. Cerca con Google

Schreck, C.B. 1981. Stress and compensation in teleostean fishes: response to social and physical factors. In: Pickering, A.D. (Ed.), Stress and Fish. Academic Press, London, pp. 295–321. Cerca con Google

Schreck, C.B., Contreras-Sanchez, W., Fitzpatrick, M.S. 2001. Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture, 197, 3-24. Cerca con Google

Shiraishi, K., Matsuda, M., Mori, T., Hirano, T. 1999. Changes in expression of prolactin and cortisol-receptor genes during early-life stages of euryhaline tilapia (Oreochromis mossambicus) in fresh water and seawater. Zool. Sci., 16, 139-146. Cerca con Google

Simontacchi, C., Negrato, E., Pazzaglia, M., Bertotto, D., Poltronieri, C. and Radaelli, G. 2009. Whole-body concentrations of cortisol and sex steroids in white sturgeon (Acipenser transmontanus, Richardson 1836) during early development and stress response. Aquacult. Int., 17, 7–14. Cerca con Google

Solnica-Krezel, L., and Driever, W. 1994. Microtubule arrays of the zebrafish yolk cell: organization and function during epiboly. Development, 120, 2443-2455. Cerca con Google

Soso, A.B., Barcellos, L.J.G., Ranzani-Paiva, M.J. 2008. The effects of stressful broodstock handling on hormonal profiles and reproductive performance of Rhamdia quelen (Quoy & Gaimard) females. J. World Aquacult. Soc., 39, 835–841. Cerca con Google

Spence, R., Gerlach, G., Lawrence, C., Smith, C. 2008. The behaviour and ecology of the zebrafish, Danio rerio. Biol. Rev., 83 (1), 13-34. Cerca con Google

Spitsbergen, J.M., Kent, M.L. 2003. The state of the art of the zebrafish model for toxicology and toxicologic pathology research-advantages and current limitations. Toxicol. Pathol., 31 (Suppl.), 62-87. Cerca con Google

Steck, W.J., Zon, G., Egan, W., Stec, B. 1984. Automated solid-phase synthesis, separation, and stereochemistry of phosphorothioate analogs of oligodeoxyribonucleotides. J. Am. Chem. Soc., 106, 6077. Cerca con Google

Stephens, Z.M., Alkindi, Y.A., Waring, C.P., Brown, J.A. 1997. Corticosteroid and thyroid responses of larval and juvenile turbot exposed to the water-soluble fraction of crude oil. J. Fish Biol., 50, 953–964. Cerca con Google

Stolte, E., De Mazon, A., Leon, K., Jesiak, M., Bury, N., Sturm, A., Savelkoul, H., van Kemenade, L., Flik, G. 2008. Corticosteroid receptors involved in stress regulation in common carp, Cyprinus carpio. J. Endocrinol., 198, 403–417. Cerca con Google

Stolte, E.H., van Kemenade, B.M., Savelkoul, H.F., Flik, G. 2006. Evolution of glucocorticoid receptors with different glucocorticoid sensitivity. J. Endocrinol., 190, 17–28. Cerca con Google

Stratholt, M.L., Donaldson, E.M., Liley, N.R. 1997. Stress induced elevation of plasma cortisol in adult female coho salmon (Oncorhynchus kisutch), is reflected in egg cortisol content, but does not appear to affect early development. Aquaculture, 158, 141–153. Cerca con Google

Sumanas, S., Lin, S. 2004. Zebrafish as a model system for drug target screening and validation. Drug Discov., Today, 3, 89-96. Cerca con Google

Summerton, J. 2007. Morpholino, siRNA, and S-DNA Compared: Impact of Structure and Mechanism of Action on Off-Target Effects and Sequence Specificity. Curr. Topics Med. Chem., 7, 651-660. Cerca con Google

Summerton, J. 2004. Morpholinos and PNAs compared. Lett. Pep. Sci., 10, 215- 236. Cerca con Google

Summerton, J. Weller, D. 1997. Morpholino Antisense Oligomers: Design, Preparation and Properties. Antisense Nucleic Acid Drug Dev., 7, 187- 195. Cerca con Google

Summerton, J. 1999. Morpholino antisense oligomers: the case for an RNase H-independent structural type. Biochim. Biophys. Acta, 1489, 141-158. Cerca con Google

Tadros, W., Lipshitz, H.D. 2009. The maternal-to-zygotic transition: a play in two acts. Development, 136, 3033-3042. Cerca con Google

Talwar, P.K., Jhingran, A.G. 1991. Inland Fishes of India and Adjacent Countries. A.A. Balkema, Rotterdam, pp. 1158. Cerca con Google

Terova, G., Gornati, R., Rimoldi, S., Bernardini, G., Saroglia, M. 2005. Quantification of a glucocorticoid receptor in sea bass (Dicentrarchus labrax, L.) reared at high stocking density. Gene, 357, 144–151. Cerca con Google

To, T.T., Hahner, S., Nica, G., Rohr, K.B., Hammerschmidt, M., Winkler, C., Allolio, B. 2007. Pituitary–interrenal interaction in zebrafish interrenal organ development. Mol. Endocrinol., 21, 472–485. Cerca con Google

Trede, N.S., Langenau, D.M., Traver, D., Look, A.T., Zon, L.I. 2004. The use of zebrafish to understand immunity. Immunity, 20, 367-79. Cerca con Google

Vallée, M., Mayo, W., Dellu, F., Le Moal, M., Simon, H., Maccari, S. 1997. Prenatal stress induces high anxiety and postnatal handling induces low anxiety in adult offspring: correlation with stress induced-corticosterone secretion. J. Neurosci., 17, 2626–2636. Cerca con Google

Vargesson, N.A. 2007. ‘Zebrafish’ in Manual of Animal Technology (ed. S. Barnett). Blackwell Publishing Ltd: Oxford, UK. Cerca con Google

Vegiopoulos, A., Herzig, S. 2007. Glucocorticoids, metabolism and metabolic diseases. Mol. Cell. Endocrinol., 275, 43–61. Cerca con Google

Vizzini, A., Vazzana, M., Cammarata, M., Parrinello, N. 2007. Peritoneal cavity phagocytes from the teleost sea bass express a glucocorticoid receptor (cloned and sequenced) involved in genomic modulation of the in vitro chemiluminescence response to zymosan. Gen. Comp. Endocrinol., 150, 114–123. Cerca con Google

Wang, M. 2005. The role of glucocorticoid action in the pathophysiology of the metabolic syndrome. Nutr. Metab., (Lond.) 2, 3. Cerca con Google

Watanabe, M., Iwashita, M., Ishii, M., Kurachi, Y., Kawakami, A., Kondo, S., Okada, N. 2006. Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Reports, 7(9), 893-897. Cerca con Google

Weinstock, M. 2005. The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav. Immun., 19, 296–308. Cerca con Google

Weltzien, F.A., Andersson, E., Andersen, O., Shalchian-Tabrizi, K., Norberg, B. 2004. The brain–pituitary–gonad axis in male teleosts, with emphasis on the flatfish (Pleuronectiformes). Comp. Biochem. Physiol., 137A, 447–477. Cerca con Google

Wendelaar Bonga, S.E. 1997. The stress response in fish. Physiol. Rev., 77, 591–625. Cerca con Google

Westerfield, M. 2007. The Zebrafish Book: A guide for the laboratory use of zebrafish (Danio rerio), 5th Edition. University of Oregon Press, Eugene, OR, USA. Cerca con Google

Wright, D., Nakamichi, R., Krause, J., Butlin, R.K. 2006. QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behavior Genetics, 36, 271-284. Cerca con Google

You, Z., Masai, H. 2008. Cdt1 forms a complex with the minichromosome maintenance protein (MCM) and activates its helicase activity. J. Biol. Chem., 283, 24469–24477. Cerca con Google

Yeoh, C.G. 1993. The effects of hormones on development of embryonic and post embryonic salmonids, and hormone metabolism during these stages. MS Thesis, Oregon State University, pp. 120. Cerca con Google

Yeoh, C.G., Schreck, C.B., Feist, G.W., Fitzpatrick, M.S. 1996a. Endogenous steroid metabolism is indicated by fluctuations of endogenous steroid and steroid glucorinide levels in early development of the steelhead trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol., 103, 107–114. Cerca con Google

Yeoh, C.G., Schreck, C.B., Fitzpatrick, M.S., Feist, G.W. 1996b. In vivo steroid metabolism in embryonic and newly hatched steelhead trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol., 102, 197–209. Cerca con Google

Zamir, E., Kam, Z., Yarden, A. 1997. Transcription-dependent induction of G1 phase during the zebra fish midblastula transition. Mol. Cell. Biol., 17, 529-536. Cerca con Google

Zhang, Z., Burch, P.E., Cooney, A.J., Lanz, R.B., Pereira, F.A., Wu, J., Gibbs, R.A.,Weinstock, G., Wheeler, D.A. 2004. Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome. Genome Res., 14, 580–590. Cerca con Google

Zimmer, M., Fink, T., Fischer, L., Hauser, W., Scherer, K., Lichter, P., Walter, U. 1997. Cloning of the VASP (vasodilator-stimulated phosphoprotein) genes in human and mouse: structure, sequence, and chromosomal localization. Genomics, 36, 227–233. Cerca con Google

Zon, L.I., Peterson, R.T. 2005. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov., 4, 35–44. Cerca con Google

Zou, S., Kamei, H., Modi, Z., Duan, C. 2009. Zebrafish IGF genes: gene duplication, conservation and divergence, and novel roles in midline and notochord development. PLoS ONE, 4(9), e7026. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record