Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Donà, Mirco (2013) Mathematical models for the use of low and medium temperature geothermal energy. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi)
8Mb

Abstract (inglese)

This thesis looks at the geothermal energy, that is, energy emitted continuously in the form of heat from our planet, that from the deepest areas propagates towards the surface. The research activities have been carried out for evaluating different aspects related to geothermal energy and more specifically the way in which this energy can be extracted. The present work has tried to deal with all the different levels of temperature in which the geothermal energy is classified, i.e. low temperature, medium temperature and high temperature, as hereafter described more in detail.
Geothermal Energy low temperature: this energy is transferred by means of ground heat exchangers coupled with a heat pump. In this case usually the heat transfer fluid can be water or a mixture containing water and an antifreeze fluid. In the frame of this technology first the characteristics of a GRT (ground response test) has been tested, in order to check the accuracy of the method to evaluate the average temperature of the ground, as well as to determine the thermal conductivity of the soil and the overall coefficient of linear heat exchange between the transfer fluid and the soil. The accuracy of the GRT has been evaluated for different sizes of the grout (an usual ground heat exchanger and a pile) as well as for different velocities of the aquifer. The simulations have been carried out by means of a Finite Element Method (FEM) software. Then the FEM has been used for evaluating the energy and structural analysis on piles foundations when they are used as ground heat exchangers. The work has shown the combined effect of structural loads in heating and cooling periods. The results are in agreement to the theory as well as to results carried out by measurements which have been found in literature. Finally a study for comparing different heat pumps and different fluids in the ground heat exchangers has been carried out in mild climates. The work shows the benefits of using pure water as heat transfer fluid in almost all conditions, since in mild climates the temperature of the ground is around 14°C and usually heat pumps are used for both heating and cooling, thus allowing the ground to be regenerated over one year. The use of flooded evaporators in the heat pumps will allow the ground heat pumps to be more attractive in the next future.
Geothermal Energy medium temperature: in this case the ATES (Aquifer Thermal Energy Storage) has been investigated. ATES is a particular type of thermal storage which uses water from the subsoil where the groundwater can vary between 15 °C and 130 °C. The extraction and reinjection wells should be sufficiently distant in order to avoid short-circuits. This technology could be used also for low temperature aquifers; in this case the water of the aquifer is used for cooling the condenser during summertime, while it is cooled down in winter time to transfer heat to the evaporator. The wells are used alternatively in order to accumulate a cold storage during winter time and a warm storage during summer time. The work of the present thesis has focused on the thermal influence of the reinjection well on the undisturbed temperature conditions along the aquifer, depending on the thickness of the aquifer. Results of a FEM model have been compared to the analytical solution of various authors (Carslaw and Jaeger, Lauwerier, Ghassemi). The goal is to evaluate the distance between the two wells in order to prevent thermal interference, as a function of the thickness of the aquifer.
Geothermal Energy high temperature: it allows to extract dry and superheated steam without liquid phase (in this case they are called "dominant steam systems") or liquid water mixed with steam (in this case they are called "water-dominated systems"). The usual depth of these systems is between 3 km and 15 km in correspondence of magmatic intrusions. For these systems the thesis has the aim to study the heat exchange between the rock and hot water, considering the variation of the outlet temperature of the water as a function of time. These studies were developed at first considering a single fracture in the rock, then we moving to a more realistic model consisting in a multi rock-fracture. The model proposed in literature based on analytical methods have been compared with a FEM mathematical model. The models have been then applied to a site in the Philippines where experimental data were available

Abstract (italiano)

La presente tesi si basa sullo studio di ricerca dell’energia geotermica, energia continuamente emessa sottoforma di calore dal nostro pianeta, che si propaga dalle zone più profonde della Terra verso la superficie. Le attività di ricerca sono state svolte per valutare differenti aspetti legati all’energia geotermica e più specificamente i modi con cui questa energia può essere estratta. Il presente lavoro è stato effettuato considerando i diversi livelli di temperatura per i quali viene classificata l’energia geotermica: bassa temperatura, media temperatura e alta temperatura, come di seguito descritto in dettaglio.
Geotermia a bassa temperatura: questa energia è trasferita dal terreno mediante una pompa di calore utilizzando un fluido termovettore che può essere acqua o una miscela contenente acqua e fluido anticongelante. Per tale tecnologia sono stati analizzati i risultati derivanti dalla prova denominata GRT (Ground Response Test), che permette di valutare la temperatura media del terreno e determina la conduttività termica del terreno stesso ed il coefficiente globale di scambio termico lineare tra il fluido termovettore ed il sottosuolo. L’accuratezza del GRT è stata analizzata per differenti dimensioni cementizia del diametro dello scambiatore di calore al terreno e per differenti velocità dell’acquifero. Le simulazioni sono state eseguite mediante un software che applica il Metodo agli Elementi Finiti (FEM). Successivamente il metodo FEM è stato applicato anche per valutare l’energia e l’analisi strutturale sui pali di fondazione utilizzati come scambiatori di calore a terreno. A tal fine è stato analizzato l’effetto combinato di carichi strutturali con quelli derivanti da sollecitazioni termiche nei periodi di riscaldamento e raffrescamento. I risultati ottenuti sono in accordo sia con le teorie presenti in letteratura che con i dati sperimentali raccolti in bibliografia. Gli studi svolti sulla geotermia a bassa temperatura si concludono con uno studio di confronto in Pianura Padana tra diverse pompe di calore e differenti fluidi termovettori all’interno di un campo di sonde geotermiche. Tale studio ha dimostrato i possibili benefici usando acqua pura come fluido termovettore in quasi tutte le condizioni, visto l’utilizzo delle pompe di calore sia per il riscaldamento che per il raffrescamento, permettendo in tal modo che il terreno si rigeneri tra una stagione e l’altra. L’uso dell’evaporatore allagato in una pompa di calore geotermica permette maggiore attrattiva nei confronti degli impianti geotermici nel prossimo futuro.
Geotermia a media temperatura: in questo caso sono stati studiati i sistemi ATES (stoccaggio energetico in acquiferi termali). I sistemi ATES sono un particolare tipo di stoccaggio termico nel quale si usa acqua del sottosuolo con temperature variabili tra 15°C 130°C. I pozzi di estrazione e di reiniezione dovranno essere sufficientemente distanti per evitare il cortocircuito. Questa tecnologia può essere usata anche per acquiferi a bassa temperatura; in questo caso l’acqua dell’acquifero è usata come raffreddamento al condensatore durante il periodo estivo, mentre è raffreddato in inverno per trasferire calore all’evaporatore. I pozzi sono usati alternativamente al fine di accumulare uno stoccaggio di energia frigorifera durante il periodo invernale e uno stoccaggio di energia termica durante il periodo estivo. Il lavoro della tesi è stato focalizzato sull’interferenza termica del pozzo di reiniezione sulle condizioni di temperatura indisturbata lungo l’acquifero, in funzione dello spessore dell’acquifero. I risultati del modello FEM sono stati poi confrontati con la soluzione analitica proposta da vari autori (Carslaw-Jaeger, Lauwerier, Ghassemi). L’obiettivo è valutare la distanza tra i due pozzi così da prevenire l’interferenza termica in funzione dello spessore dell’acquifero.
Geotermia ad alta temperatura: consente l’estrazione di vapore secco surriscaldato in assenza di fase liquida (in questo caso è definito “sistema di vapore dominante”) o acqua in fase liquida miscelata a vapore (in questo caso è definito “sistema ad acqua dominante). Generalmente la profondità di questi sistemi è tra 3 km e 15 km in corrispondenza di intrusioni magmatici. Per questi sistemi la ricerca si è concentrata sullo scambio termico tra roccia e acqua, considerandola variazione della temperatura di uscita dell’acqua in funzione del tempo. Inizialmente lo studio si è concentrato sullo scambio di calore all’interno di una singola frattura; l’analisi si è poi estesa al caso di roccia con multiple fratture. Il modello proposto è stato descritto in letteratura mediante metodi analitici, per poi essere confrontato con metodi FEM. I modelli sono stati applicati ad un sito nelle Filippine dove erano disponibili alcuni dati sperimentali

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:De Carli, Michele
Correlatore:Jóhannesson, Guðni A. - Sævarsdóttir, Guðrún A.
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > INGEGNERIA INDUSTRIALE > FISICA TECNICA
Data di deposito della tesi:27 Febbraio 2013
Anno di Pubblicazione:27 Febbraio 2013
Parole chiave (italiano / inglese):geothermal energy, low temperature, medium temperature, high temperature, ATES, HDR
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/10 Fisica tecnica industriale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:6077
Depositato il:14 Ott 2013 10:47
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. References Cerca con Google

Axelsson G., Gunnlaugsson E., 2000. Background: Geothermal utilization, management and monitoring. In: Long-term monitoring of high- and low enthalpy fields under exploitation, WGC 2000 Short Courses, Japan, 3-10. Cerca con Google

Bank of America, “Merrill Lynch Renewable Energy Report”, Geothermal, 22 July 2011 Us Department of Energy . Cerca con Google

Benderitter Y., Cormy G., 1990. Possible approach to geothermal research and relative costs. In:Dickson, M.H. and Fanelli, M., eds., Small Geothermal Resources: A Guide to Development and Utilization, UNITAR, New York, pp. 59—69. Cerca con Google

Bertani R., 2005, World geothermal power generation in the period 2001 – 2005, Geothermics 34 pp. 651 – 690. Cerca con Google

Dickson, M.H and Fanelli, M., 2004. What is Geothermal Energy?, UNESCO publication. Cerca con Google

Dickson, M.H and Fanelli, M., Cos’è l’energia Geotermica, Istituto di Geoscienze e Georisorse, CNR, Pisa, Italy, febbraio 2004 Cerca con Google

ENEA, Rapporto Energia Ambiente 2009, analisi e scenari, Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile Cerca con Google

Hochstein M.P.,1990. Classification and assessment of geothermal resources. In: Dickson, M.H. and Fanelli, M., eds., Small Geothermal Resources: A Guide to Development and Utilization, UNITAR, New York, pp. 31—57. Cerca con Google

Muffler P., Cataldi R., 1978. Methods for regional assessment of geothermal resources.Geothermics , 7, 53—89. Cerca con Google

Nicholson K., 1993. Geothermal Fluids. Springer Verlag, Berlin, XVIII—264 pp. Cerca con Google

Orkustofnun, National Energy Authority, Energy statistic in Iceland, 2011. Cerca con Google

Renner J.L., Geothermal Energy in the United States, IEEE power engineering society energy development and power generating committee, IEEE 2002 summer power meeting, Chicago, July 22, 2002. Cerca con Google

Unione Geotermica Italiana, Geologia tecnica ed ambientale, -“La Geotermia, Ieri, oggi, domani”-, 2007 Cerca con Google

Web site: Cerca con Google

Landsvirkjun Annual Report 2009. (2009). http://www.landsvirkjun.com/media/enska/finances/Annual_report_2009.pdf Vai! Cerca con Google

MIT, 2006. The future of geothermal Energy. Impact of Enhance Geothermal System (EGS) on the United States in the 21th Century. Assessment by a Massachusetts Institute of Tecnology-led interdisciplinary panel (J. F. Tester, Chairman), 372 pp. http://geothermal.inel.gov/publications/future_of_geothermal_energy.pdf Vai! Cerca con Google

Regione Toscana: Miniere e geotermia. http://www.regione.toscana.it/sportelloenergia/leftmenu/geotermia/index.html Vai! Cerca con Google

http://www.geothermal.uwa.edu.au/home/energy Vai! Cerca con Google

2. Reference Cerca con Google

Atti del convegno “Geotermia: applicazioni a bassa temperatura”. Vicenza (Italy), 26 maggio 2006. Cerca con Google

Baietto A., Pochettino M., Salvatici E., (2010), Progettazione di impianti geotermici: sonde verticali e pozzi d’acqua, ISBN 978 – 88- 579 – 0058 – 2, Dario Flaccovio Editore s.r.l. Cerca con Google

Banks D. – “An Introduction to Thermogeology: Ground Source Heating and Cooling” - Blackwell, Oxford (2008) Cerca con Google

Basta S., Minchio F., Geotermia e pompe di calore, Hoepli Italia, (2007). Cerca con Google

Bear J., Verruijt A., Modelling groundwater flow and pollution with computer programs for sample cases, theory and applications of transport in porous media, Vol. 1, J. Bear, Ed. Kluwer, Hardbound 1987. Cerca con Google

Bejan A. – “Convection Heat Transfer” – J. Wiley and Sons, NY (1984) Cerca con Google

Boennec O. – “Shallow ground energy systems” – Faber Maunsell, London, UK (2008) Cerca con Google

Bourne-Webb P.J., Amatya B., Soga K., Amis T. Davidson C., Payne P. – “Energy pile test at Lambeth College, London: geotechnical and thermodynamics aspects of pile response to heat cycles” – Cementation Skanska, University of Cambridge, Geothermal International, UK (2008) Cerca con Google

Brandl H. – “Energy foundations and other thermo-active ground structures” – Institute of Soil Mechanics and Geotechnical Engineering, Vienna University of Technology, Austria (2006). Cerca con Google

Carslaw H. S. and Jaeger J. C., Conduction of Heat in Solids, 2nd ed. Clarendon Oxford, 1959, p. 396. Cerca con Google

Casciaro S., Thome J.R., (2001a), Thermal performance of flooded evaporators, Part 1: Review of boiling heat transfer studies, ASHRAE Transactions, 107 (1) (2001) 919 – 930. Cerca con Google

Casciaro S., Thome J.R., (2001b). Thermal performance of flooded evaporators, Part 2: Review of void fraction, two-phase pressure drop, and flow pattern studies. ASHRAE Transactions, 107 (2) (2001) 443 – 453. Cerca con Google

Claesson, J. and Eskilson, P., (1987), Thermal Analysis of Heat Extraction Bore Holes, 264 p., PhD-thesis, Lund-MPh-87/13, Lund University of Technology, Sweden. Cerca con Google

Chen X., Yang H., Performance analysis of a proposed solar assisted ground coupled heat pump system, Applied Energy 97(2012) 888 – 896. Cerca con Google

Comsol Multiphysics – Heat Transfer Module User’s Manual and Structural Mechanics Module User’s Manual – COMSOL AB. (2008) Cerca con Google

Cotchin C., Boyd E., Boiling of refrigerant and refrigerant/oil mixtures in a flooded evaporator Heat Transfer, 3rd UK National Conference Incorporating 1st European Conference on Thermal Sciences, Taylor & Francis, London, 1 (1992) 131 – 137. Cerca con Google

Cullin J. R., Spitler J. D., Comparison of Simulation-based Design Procedures for Hybrid Ground Source Heat Pump Systems, 8th International Conference on System Simulation in Buildings, Liege, December 13-15 (2010), pp. 1 – 15. Cerca con Google

Den Braven K.R., Antifreeze acceptability for ground – coupled heat pump ground loops in the United States. ASHRAE Transactions, 104(1) (1998) 938 – 942. Cerca con Google

De Carli M., Donà M., Vergani D. – “Dimensionare i pali energetici” – AICARR Journal (2010). Cerca con Google

De Carli M., Roncato N., Zarrella A., Zecchin R. – “Energia dal Terreno” – Dipartimento di Fisica Tecnica, Università degli Studi di Padova, Convegno AICARR (2007) Cerca con Google

De Carli M., Tonon M., Zarrella A., Zecchin R., A computational capacity resistance model (CaRM) for vertical ground - coupled heat exchangers, Renewable Energy, 35 (2010) 1537–1550. Cerca con Google

Del Mastro R., Noce G., Manuale di geotermia a sonde verticali, Hoepli Milano (Italy), 2011, ISBN 978 – 88 – 203 – 4539 – 6. Cerca con Google

Fernandez-Seara J., Sieres J., Ammonia – water absorption refrigeration systems with flooded evaporators. Applied Thermal Engineering 26 (2006) 2236 – 2246. Cerca con Google

Forcellini Merlo F., Rampazzo A. – “Geotecnica” – Univer Editrice Cerca con Google

Gehlin S. (2002). Thermal Response Teast, Meathod Development and Evaluation. Doctoral Thesis 2002:39. Luleå University of Technology. Sweden. Cerca con Google

Guernsey E.N., Betz P.L., Skan N.H. (1949), Earth as a heat source and storage medium for the heat pump, ASHVE Trans. 55, 321 – 344. Cerca con Google

Hamada Y., H. Saitoh, M. Nakamura, H. Kubota, K. Ochifuji – “Field performance of an energy pile system for space heating” – Graduate School of Engineering, Hokkaido University, Japan (2006) Cerca con Google

Heinonen E.W., Wildin M.W., Beall A.N., Tapscott R.E., Assessment of antifreeze solutions for ground – source heat pump systems, ASHRAE Transactions, Vol. 103(2) (1997) 747 – 756. Cerca con Google

Heinonen E.W., Wildin M.W., Beall A.N., Tapscott R.E., Assessment of antifreeze solution for ground – source heat pump systems. The Second Stockton International Geothermal Conference. March 16 17 (1998). Cerca con Google

Heinonen E.W., Wildin M.W., Beall A.N., Tapscott R.E., Anti-Freeze Fluid Environmental and Health Evaluation - An Update. Cerca con Google

http://intraweb.stockton.edu/eyos/energy_studies/content/docs/proceedings/HEINO.PDF Vai! Cerca con Google

Hellstrom G. (2006) Duct heat ground storage Model, manual for computer code, March 1989 workshop of IEA HP Annex 29, January 15 – 17, Sapporo, Japan. Cerca con Google

Ingersoll L.R., Plass H. J. (1948), Theory of the ground pipe source fort he heat pump, ASHVE Trans. 54, 339 – 348. Cerca con Google

Jun Gao, Xu Zhang, Jun iu, Kiushan Li, Jie Wang – “Thermal performance and ground temperature of vertical pile-foundation heat exchangers: A case study” – College of Mechanical Engineering, Tongji University Shanghai, China (2008) Cerca con Google

Jun Gao, Xu Zhang, Jun iu, Kiushan Li, Jie Wang – “Numerical and experimental assessment of thermal performance of vertical energy piles: An application” - College of Mechanical Engineering, Tongji University Shanghai, China (2008) Cerca con Google

Kavanaugh, S. P., Rafferty K.. (1997). Ground Source Heat Pumps: Design of Geothermal Systems for Commercial and Institutional Buildings. Atlanta:., American Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, Georgia. Cerca con Google

Kavanaugh S.P., A design method for hybrid groundsource heat pumps, ASHRAE Transactions, 104 (2) (1998), pp. 691 – 698. Cerca con Google

Khan M.H., Spitler J.D., Performance analysis of a residential ground source heat pump system with antifreeze solution, Proceedings of SimBuild, Boulder, Colorado, August 4 – 6 (2004). Cerca con Google

Klotzbucher T., Kappler A., Straub K., Haderlein S., Biodegradability and groundwater pollutant potential of organic anti-freeze liquids used in borehole heat exchangers, Geothermics 36 (2007) 348 – 361. Cerca con Google

Laloui L, Moreni M, Steinmann G, Vulliet L, Fromentin A, Pahud D. Test en conditions re´elles du comportement statique d’un pieu soumis a` des sollicitations thermo-me´caniques. Report of the Swiss Federal Office of Energy OFEN, 1999. Cerca con Google

Laloui L., Nuth M., Vulliet L. – “Experimental and numerical investigations of the behavior of a heat exchanger pile” – EPFL, Switzerland (2006) Cerca con Google

Lancellotta, R. – “Geotecnica” – Zanichelli Ed. (1992) Cerca con Google

Lee S.R. – “Energy Piles – Piles as heat exchangers” – Dept. of Civil and Environmental Engineering, KAIST (2009) Cerca con Google

Lokke H., Leaching of ethylene glycol and ethanol in subsoils. Water, Air, and Soil Pollution 22 (1984) 373-387. Cerca con Google

Man Y., Yang H., Diao N., Liu J., Fang Z. – “A new model and analytical solutions for borehole and pile ground heat exchangers” – The GSHP Research Center, China, Renewable Energy Research Group, Hong Kong Polytechnic University, China (2010) Cerca con Google

McCartney J. – “Geothermal Foundations and Thermally-Active Ground Structures” – Dept. of Civil, Environmental and Architectural Engineering, University of Colorado, USA (2009) Cerca con Google

Minetto S., Fornasieri E., An innovative system for feeding once-through evaporators in flooded conditions. Applied Thermal Engineering 31 (2011) 370 – 375. Cerca con Google

Mogensen P. (1983). Fluid to Duct Wall Heat Transfer in Duct System Heat Storage. Proc. Int. Conf. On Subsurface Heat Storage in Theory and Practice. Stockholm. Sweden, June 6–8, 1983. PP: 652-657. Cerca con Google

Nova, R. – “Fondamenti di meccanica delle terre” – McGraw Hill (2002) Cerca con Google

Pahud D. – “Sistemi con pali energetici” – SUPSI, DACD, ISAAC, Svizzera Cerca con Google

Rad F.M., Fung A.S., Leong W.H., Combined solar thermal and ground source heat pump system, In proceedings of Building Simulation 2009, 11th International IBPSA Conference, Glasgow, Scotland, pp. 2297 – 2305. Cerca con Google

Ramamoorthy M. H. Jin, Chiasson A., Spitler J.D., Optimal Sizing of Hybrid Ground-Source Heat Pump Systems that use a Cooling Pond as a Supplemental Heat Rejecter – A System Simulation Approach, ASHRAE Transactions, 107(1) (2001) 26-38. Cerca con Google

Rao S. S. – “Finite element Method in Engineering” – Pergamon Press, Oxkord, UK (1999) Cerca con Google

Remund C.P., (1999), Borehole thermal resi stance: laboratori and field studies: ASHRAE Transactions 105(1). Cerca con Google

Reuss M., Sanner E. (2001), Design of closed loop heat exchanger, Iternational summer school on direct applications of geothermal energy, Chapter 2.5 Bad Urach. Cerca con Google

Sanner, B., 1992. ErdgekoppelteW¨armepumpen, Geschichte, Systeme, Auslegung, Installation. IZW-Bereicht 2/92, FIZ, Karlsruhe, Germany, 328 pp. Cerca con Google

Staples C.A., Williams J.B., Craig G.R., Roberts K.M., Fate, effects and potential environmental risks of ethylene glycol: a review, Chemosphere, 43(3) (2001) 377 – 383. Cerca con Google

Spitler, J.D., Rees, S. and Yavuzturk, C.: More Comments on In-situ Borehole Thermal Conductivity Testing. The Source 3-4/99, 1999 Cerca con Google

Spitler, J.D., Yavuzturk, C. and Jain, N.: Refinement and Validation of In-situ Parameter Estimation Models. short report, OSU, 1999 Cerca con Google

Skouby, A.: Thermal Conductivity Testing. The Source 11 - 12/98, 1998 Cerca con Google

Theis, C.V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, Am. Geophys. Union Trans., vol. 16, pp. 519-524. Cerca con Google

Tirillò L. – “L’utilizzo della geotermia a bassa entalpia: applicazioni con geoscambiatore a sviluppo verticale” – McQuay Italia S.p.A. Cerca con Google

TRNSYS, A Transient Simulation Program - Solar Energy Laboratory, University of Wisconsin, Madison, USA, (1990). Cerca con Google

VDI 4640, Verein Deutscher Ingenieure – Dusseldorf (2000) Cerca con Google

Viggiani, C. – “Fondazioni“ – Hevelius Ed. (2002) Cerca con Google

Zeng, H., N. Diao, and Z. Fang. (2003). Heat transfer analysis of boreholes in vertical ground heat exchangers. International Journal of Heat and Mass Transfer. 46(23): 4467-4481. Cerca con Google

Zeng, H., N. Diao, and Z. Fang. (2003), Efficiency of vertical geothermal heat exchangers in ground source heat pump system Cerca con Google

Zeng H.Y., Diao N.R., Fang Z.H., Efficiency of vertical geothermal heat exchangers in ground source heat pump systems, J. Thermal Sci. 12 (1) (2003) 77–81. Cerca con Google

Zienkevich O., Taylor R. – “The Finite Element Method” – McGraw Hill (1994) Cerca con Google

Zheng J.H., Jin G.P., Chyu M.C., Ayub Z.H., Boiling of ammonia/lubricant mixture on a horizontal tube in a flooded evaporator with inlet vapor quality. Experimental Thermal and Fluid Science 30 (2006) 223–231. Cerca con Google

Wang H., Qi C., Wang E., Zhao J., A case study of underground thermal storage in a solar ground coupled heat pump system for residential buildings. Renewable Energy 34(1) (2009) 307– 314. Cerca con Google

Wood C. J., H. Liu and S. B. Riffat – “Use of energy piles in a residential buildings, and effects on ground temperature and heat pump efficiency” - Institute of Sustainable Energy Technology, School of the Built Environment, University of Nottingham, UK (2009) Cerca con Google

Yang W., Li S., Zhang X., Numerical Simulation on Heat Transfer Characteristics of Soil Around U-Tube Underground Heat Exchangers, International Refrigeration and Air Conditioning Conference at Purdue, July 14-17 896(2008). Cerca con Google

Yavuzturk C., Spitler J.D., Comparative study of operating and control strategies for hybrid groundsource heat pump systems using a short time step simulation model, ASHRAE Transactions, 106 (2) (2000) 192 – 209. Cerca con Google

Web site: Cerca con Google

www.geothermie.ch Vai! Cerca con Google

3. Reference Cerca con Google

Axelsson, G., 2008a: Importance of geothermal reinjection. Proceedings of “Workshop for Decision Makers on the Direct Heating Use of Geothermal Resources in Asia”, organized by UNU-GTP, TBLRREM and TBGMED, Tianjin, China, 15 pp. Cerca con Google

Axelsson, G., 2008b: Management of geothermal resources. Proceedings of “Workshop for Decision Makers on the Direct Heating Use of Geothermal Resources in Asia”, organized by UNU-GTP, TBLRREM and TBGMED, Tianjin, China, 15 pp. Cerca con Google

Axelsson G., Role and management of geothermal reinjection, (2012), Presented at “Short Course on Geothermal Development and Geothermal Wells”, organized by UNU-GTP and LaGeo, in Santa Tecla, El Salvador, March 11-17, 2012. Cerca con Google

Baietto A., Pochettino M., Salvatici E., (2010), Progettazione di impianti geotermici: sonde verticali e pozzi d’acqua, ISBN 978 – 88- 579 – 0058 – 2, Dario Flaccovio Editore s.r.l. Cerca con Google

Banks D., 2009, Thermogeological assessment of open – loop well – doublet schemes: a review and synthesis of analytical approaches, Hydrogeology journal, 17, pp. 1149 – 1155. Cerca con Google

Boubiaux B., ATES Contribution to the Housing Energy Balance: a Simple Assessment Methodology, Oil & Gas Science and Tecnology – Rev. IFP Energies nouvelles, Vol.66 (2011), No. 1. Pp. 21-36 Cerca con Google

Bulter R.M. (1991) Convective heating within reservoirs, in thermal recovery of oil e bitumen, Prentice – Hall, Englewwod Cliffs. Cerca con Google

Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, 2nd ed. Clarendon Oxford, 1959, p. 396. Cerca con Google

Cheng A.-D., Ghassemi A., Detournay E., 2001. A two-dimensional solution for heat extraction from a fracture in hot dry rock, Int. J. Numer. Analy. Meth. Geomech., 25, 1327-1338. Cerca con Google

De Carli M., Roncato M., Zarrella A., Zecchin R., Energia dal terreno, (2007) Convegno AiCARR “Energie rinnovabili: tecniche e potenzialità”, 21 Giugno 2007, Padova. Cerca con Google

Deng Z., Modeling of standing column wells in ground source heat pump systems, Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December, 2004 Cerca con Google

Ghassemi A., Cheng A. H. D., Tarasovs S.. A Three-dimensional solution for heat extraction a fracture in hot dry rock using the boundary element method, Twenty-Seventh Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 28-30, 2002 SGP-TR-171 Cerca con Google

Ghassemi A., S. Tarasovs S., Three-dimensional modeling of injection induced thermal stresses with an example from Coso, Twenty-Ninth Workshop on Geothermal Rservoir Engineering, Stanford University, Stanford, California, January 26-28, 2004 Cerca con Google

Lauwerier H.A., The transport of heat in an oil layer caused by the injection of hot fluid, Appl. Sci. Res., Sect. A Vol. 5, 1955, pp. 145 – 150. Cerca con Google

Web site: Cerca con Google

www.iii.to.cnr.it/laghi/maggiore.html Vai! Cerca con Google

http://www.hvac.okstate.edu Vai! Cerca con Google

4. Reference Cerca con Google

Bodvarsson G., On the temperature of water flowing trough fractures, Journal of geophysical research, Vol. 74, No. 8, 1969, pp. 1987 – 1992. Cerca con Google

Bodvarsson G., An estimate of the natural heat resources in a thermal area in Iceland, Geothermics, Vol. 2, Part. 2, 1970, pp. 1289 – 1293. Cerca con Google

Bodvarsson G., -“Thermal Problems in the Siting of Reinjection Wells”- Vol.1, Nr. 2,Geothermics (1972) Cerca con Google

Bodvarsson G., Geothermal resource energetics, Geothermics, Vol. 3, No. 3, 1974, pp. 83 Cerca con Google

Carslaw H.S., Jaeger J.C., Conduction of Heat in Solids, 2nd ed. Clarendon Oxford, 1959, p. 396. Cerca con Google

Cheng, A.-D., Ghassemi, A., Detournay, E., 2001. A two-dimensional solution for heat extraction from a fracture in hot dry rock. Int. J. Numer. Analy. Meth. Geomech., 25, 1327-1338. Cerca con Google

Cheng, A.-D., Ghassemi, A., Detournay, E., 2001. Modeling heat extraction from a fracture in hot dry rock using an integral equation method. Cerca con Google

COMSOL Multiphysics, Heat Transfer Module User’s Guide COMSOL 4.1, 2010, pp. 222. Cerca con Google

Gaver Jr. G.P., Observing stochastic processes and approximate transform inversions, Operat. Res. 1966, pp. 444 – 459. Cerca con Google

Gringarten A.C., Witherspoon P.A., Ohnishi Y., Theory of heat extraction from fractured hot dry rock, Journal of geophysical research, vol. 80, no. 8, 1975, pp. 1120. Cerca con Google

Harlow F.H., Pracht W.E., A theoretical study of geothermal energy extraction, Journal of geophysical research, vol. 77, no. 35, 1972, pp. 7038 – 7048. Cerca con Google

Lauwerier H.A., The transport of heat in an oil layer caused by the injection of hot fluid, Appl. Sci. Res., Sect. A Vol. 5, 1955, pp. 145 – 150. Cerca con Google

Lowell R.P., 1976. Comments on .Theory of heat extraction from fracture hot dry rock. by A.C. Gringarten, P.A. Witherspoon, and Y. Ohnishi. J. Geophys. Res., 81, 359-360. Cerca con Google

Malate R.C.M., and O’Sullivan M.J. (1991): Modelling of chemical and thermal changes in well PN – 26 Palinpinon geothermal field, Philippines, Geothermics, 20, 291 - 318. Cerca con Google

Murphy H. D., 1987. Hot dry rock reservoir engineering. PROCEEDINGS of NATO Adv. Study Institute on Geothermal Reservoir Engineering. July 1 - 10, 1987, Antalya, Turkey. Cerca con Google

A. Papoulis, A new method of inversion of the Laplace transform, Quart, Applied Math., Vol. 14, 1957, pp. 405 – 414. Cerca con Google

Stehfest H., Numerical inversion of Laplace transforms algorithm 368, Commun. ACM 13 Vol. 1, 1979, pp. 44 – 49. Cerca con Google

Willis –Richards J., Wallroth T. 1995. Approaches to the modeling of HDR reservoirs: a review. Geothermics Vol. 24, No. 3, pp. 307-332, 1995 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record