Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Zanella, Andrea - Biral, Andrea (2013) Introducing purely hydrodynamic networking mechanisms in microfluidic systems. [Rapporto tecnico] (Inedito)

Questa è la versione più aggiornata di questo documento.

Full text disponibile come:

[img]
Anteprima
Documento PDF (Microfluidic ) - Versione pubblicata
292Kb

Abstract (inglese)

Microfluidic is a multidisciplinary field with prac- tical applications to the design of systems, called Lab-on-a- Chip (LoC), where tiny volumes of fluids are circulated through channels with millimeter size and driven into structures where precise chemical/physical processes take place. One subcategory of microfluidic is droplet-based microfluidic, which disperse discrete volumes of fluids into a continuous stream of another immiscible fluid, which act as droplet carrier. Droplets can then be moved, merged, split, or processed in many other ways by suitably managing the hydrodynamic parameters of the LoC. A very interesting research challenge consists in developing basic microfluidic structures able to interconnect specialized LoCs by means of a flexible and modular microfluidic network. The aim of this paper is to exploit the properties of droplet- based microfluidics to realize purely hydrodynamic microfluidic elements that provide basic networking functionalities, such as addressing and switching. We define some simple mathematical models that capture the macroscopic behavior of droplets in microfluidic networks and use such models to design and analyze a simple microfluidic network system with bus topology.

Abstract (italiano)

Microfluidic is a multidisciplinary field with prac- tical applications to the design of systems, called Lab-on-a- Chip (LoC), where tiny volumes of fluids are circulated through channels with millimeter size and driven into structures where precise chemical/physical processes take place. One subcategory of microfluidic is droplet-based microfluidic, which disperse discrete volumes of fluids into a continuous stream of another immiscible fluid, which act as droplet carrier. Droplets can then be moved, merged, split, or processed in many other ways by suitably managing the hydrodynamic parameters of the LoC. A very interesting research challenge consists in developing basic microfluidic structures able to interconnect specialized LoCs by means of a flexible and modular microfluidic network. The aim of this paper is to exploit the properties of droplet- based microfluidics to realize purely hydrodynamic microfluidic elements that provide basic networking functionalities, such as addressing and switching. We define some simple mathematical models that capture the macroscopic behavior of droplets in microfluidic networks and use such models to design and analyze a simple microfluidic network system with bus topology.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Rapporto tecnico
Anno di Pubblicazione:25 Gennaio 2013
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/06 Bioingegneria elettronica e informatica
Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Area 02 - Scienze fisiche > FIS/02 Fisica teorica, modelli e metodi matematici
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:6110
Depositato il:11 Lug 2013 12:37
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] P. Tabeling, “Introduction to Microfluidics”. Oxford Univ. Press, 2005. [2] S. Y. Teh et al., “Droplet microfluidics”, Lab Chip, 8(2), pp.198-220, 2008. Cerca con Google

[3] E. De Leo et al., “On the feasibility of using microfluidic technologies for communications in Labs-on-a-Chip”, Proc. of IEEE ICC 2012. Cerca con Google

[4] D. R. Link et al., “Electric control of droplets in microfluidic devices”, Angewandte Chemie Int. Ed., 45(16), pp. 2556-2560, 2006. Cerca con Google

[5] D. A. Sessoms et al., “Droplet motion in microfluidic networks: Hydro- dynamic interactions and pressure-drop measurements”, Phys. Rev. E., 80, 2009. Cerca con Google

[6] M. J. Fuerstman, P. Garstecki, G. M. Whitesides, “Coding/decoding and reversibility of droplet trains in microuidic networks”, Science, 315(5813), pp.828-831, 2007. Cerca con Google

[7] M. Prakash, N. Gershenfeld, “Microuidic bubble logic”, Science, 315(5813), pp.832-835, 2007. Cerca con Google

[8] E. De Leo et al., “Networked Labs-on-a-Chip (NLoC): Introducing networking technologies in microfluidic systems”, Nano. Com. Net., 3, pp.217-228, 2012. Cerca con Google

[9] C. N. Baroud, F. Gallaire, R. Dangla, “Dynamics of microfluidic Cerca con Google

droplets”, Lab Chip, 10, pp.2032-2045, 2010. Cerca con Google

[10] T. Thorsen et al., “Dynamic pattern formation in a vesicle-generating microfluidic device”, Phys. Rev. Lett., 86, pp.4163-4166, 2001. Cerca con Google

[11] P. Garstecki et al., “Formation of droplets and bubbles in a microfluidic T-junction - scaling and mechanism of break-up”, Lab Chip, 6, pp.437- Cerca con Google

446, 2006. Cerca con Google

[12] A. Carlson, M. Do-Quang and G. Amberg, “Droplet dynamics in a bifurcating channel”, Int. J. Multiphase Flow, 36, pp.397-405, 2010. Cerca con Google

[13] D.R.Linketal.,“Geometrically mediated breakup of drops in microfluidic devices”, Phys. Rev. Lett., 92, 2004. Cerca con Google

[14] A. M. Leshansky and L. M. Pismen, “Breakup of drops in a microfluidic T junction”, Phys. Fluids, 21, 2009. Cerca con Google

[15] G. F. Christopher et al., “Coalescence and splitting of confined droplets at microfluidic junctions”, Lab Chip, 9(8), pp.1102-1109, 2009. Cerca con Google

[16] M. C. Jullien et al., “Droplet breakup in microfluidic T-junctions at small capillary numbers”, Phys. Fluids, 21, 2009. Cerca con Google

[17] S. Afkhami, A. M. Leshansky, Y. Renardy, “Numerical investigation of elongated drops in a microfluidic T-junction”, Phys. Fluids, 23, 2011. Cerca con Google

[18] W. O. Kwang et al., “Design of pressure-driven microfluidic networks using electric circuit analogy”, Lab Chip, 12, pp.515-545, 2012. Cerca con Google

[19] A. Ajdari, “Steady flows in networks of microfluidic channels: building on the analogy with electrical circuits,” Comptes Rendus Phys., 5(5), pp.539-546, 2004. Cerca con Google

Versioni disponibili di questo documento

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record