Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Albiero, Giada (2008) Studio del gene bin1 nel rabdomiosarcoma. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

Rhabdomyosarcoma (RMS) is the most common pediatric soft-tissue sarcoma. Although the precise cell type from which the tumor originates is still a matter of debate, the evidence points towards the myogenic lineage.
RMS are divided in two main subgroups on the basis of histology: alveolar (ARMS) and embryonal (ERMS). ARMS, which is associated with a relatively high frequency of metastatic disease and needs an intensive therapeutic regimen, is the rhabdomyosarcoma subtype that carries the poorest prognosis. The most relevant feature of ARMS subtype is the presence of one of two possible chromosomal translocations, t(2;13)(q35;q14) and t(1;13)(p36;q14), which result in the expression of the chimeric PAX3/FKHR and PAX7/FKHR transcription factors, respectively. In contrast to ARMS, no specific genetic lesions have been identified in ERMS.
Several studies tried to identify novel candidate genes in carcinogenesis using array-based analysis and serial analysis of gene expression. Our previous meta-analysis on four microarray and two SAGE datasets of gene expression of RMS identified common regulatory pathways that could be responsible of tumor growth. In the list of common differential expressed genes, bin1 was under-expressed in all of the studies.
The bin1 (amphiphysin II) gene maps to the long arm of human chromosome 2 (2q14) and is characterized by 19 exons, six of which are alternately spliced. At least 10 different splice variants have been identified that differ widely in subcellular localization, tissue distribution, and ascribed functions. bin1 has properties of a soppressor or negative modifier in cancer: its expression is often attenuated or abolished in breast and prostate cancers, colon cancer, astrocytomas, neuroblastomas and malignant melanoma, where its ectopic expression can inhibit proliferation and/or promote apoptosis. These bin1 functions may depend on its interaction with the N-terminal region of Myc.
Many studies suggest that bin1 may restrain cellular proliferation and survival in a contextual manner that is dependent on some features of neoplastic pathophysiology.
While a simple and readily classifiable function has yet to emerge for BIN1 tumor soppressor proteins, current information argues that they interact with vesicular membranes and act as scaffolds to integrate celluler signalling and trafficking.
My research focused on the study of bin1 gene in RMS tumor.
bin1 expression level was evaluated in 8 biopsies of ARMS, which were analyzed in our previous study of expression profiling in RMS, by Sybr-Green based Real Time PCR, confirming its under-expression. Then we tested total transcripts levels in 7 RMS cell lines, 4 ARMS and 3 ERMS, and found that bin1 was significantly under-expressed respect to fetal skeletal muscle.
Because different isoforms derived from bin1 gene have been described, to examine patterns of bin1 splicing, RT-PCR, cloning and sequencing techniques were performed using RNAs isolated by RC2, RH30 and RD cell lines. They represent ARMS positive for t(1;13), ARMS positive for t(2;13) and ERMS, respectively. We identified several isoforms and subsequentaly we analized protein expression levels.
Previous work had indicated that bin1 mRNA and protein levels in murine skeletal muscle were higher than in most other tissues. Thus we examined BIN1 expression in 7 RMS cell lines and in C1C12 cells, a non transformed myoblast cell line derived from murine skeletal muscle, by western blot analysis. We revealed an intermediate level of BIN1 expression in RMS cell lines with respect to proliferating or differentiated C2C12. To identify the protein variants expressed in RMS cells, 293T were transiently transfected with vectors for 3 BIN1 splice isoforms and protein lysates were analysed, by immunoblotting, with 2 different BIN1 antibodies, 99D and 2F11. The second recognizes all the BIN1 isoforms while the first recognizes alternately spliced isoforms, characterized by exon 13. Only 2 variants were detected, the ubiquitous isoform BIN1-10 and the isoform associated to aberrant splicing BIN1+12A.
Because specific BIN1 proteins are associated to different localization in the cell we used sub-fraction analysis and immunofluorescence technique in 7 and 2 RMS cell lines respectively and showed a BIN1 expression in the nuclear soluble fraction.
Because RH30 cell line has high levels of NMYC and BIN1 interacts with c-MYC in a common portion of both proteins, we studied gene expression profiling of NMYC positive RH30 cells after infection with MSCVBIN-10 retrovirus. We identified a group 582 differentially expressed genes, 75% of them are down-regulated. The Database for Annotation, Visualization and Integrated Discovery (DAVID) visualized enriched functional-related gene groups correlated with inflammation, immunity response and cell migration. Thus BIN1-10 overexpression may have an anti-tumor role in RMS reducing inflammation and tumor invasivity and modulating immunity response by indo gene level. Other studies are warranted to confirm and integrate these data.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Rosolen, Angelo
Data di deposito della tesi:Gennaio 2008
Anno di Pubblicazione:Gennaio 2008
Parole chiave (italiano / inglese):bin1
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Pediatria
Codice ID:614
Depositato il:12 Nov 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Pizzo P., Poplack D. Frequency and enviromental epidemiology of childhood cancer. Princicples and practice of pediatric oncology. 1989:3-18. Cerca con Google

2. Paolucci G., Vecchi V. Sarcomi dei tessuti molli. Oncologia pediatrica. 2003:317-335. Cerca con Google

3. McDowell H.P. Update on childhood rhabdomyosarcoma. Archives of disease in childhood. 2003;88:354-357. Cerca con Google

4. Mazzoleni S., Bisogno G., Garaventa A., et al. Outcome and prognostic factors after recurrence in children and adolescents with nonmetastatic rhabdomyosarcoma. Cancer. 2005;104:183-190. Cerca con Google

5. Weber CO. Anatomische Untersuchung einer hypertrophischen Zunge nebst Bemerkungen uber die Neubildung guerguestreilier Muskelfasern. Virchows Arch 1854;7:115-125. Cerca con Google

6. Tsokos M. The diagnosis and classification of childhood rhabdomyosarcoma. Seminars in diagnostic pathology. 1994;11:26-38. Cerca con Google

7. Massi D., Beltramini G., Capanna R., Franchi A. Histopathological re-classification of extremity pleomorphic soft tissue sarcoma has clinical relevance. European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology. 2004;30:1131-1136. Cerca con Google

8. Tiffin N., Williams R.D., Shipley J., Pritchard-Jones K. PAX7 expression in embryonal rhabdomyosarcoma suggests an origin in muscle satellite cells. British journal of cancer. 2003;89:327-332. Cerca con Google

9. Ninfo V., Cavazzana A.O. Part 4. Tumors of muscle tissue and tumor like lesion of soft tissue. 1991:91-123. Cerca con Google

10. Merlino G., Helman L.J. Rhabdomyosarcoma-working out the pathways. Oncogene. 1999;18:5340-5348. Cerca con Google

11. Tallini G., Parham D.M., Dias P., Cordon-Cardo C., Houghton P.J., Rosai J. Myogenic regulatory protein expression in adult soft tissue sarcomas. American journal of pathology. 1994;144:693-701. Cerca con Google

12. Dias P., Chen B., Dilday B., et al. Strong immunostaining for myogenin in rhabdomyosarcoma is significantly associated with tumors of the alveolar subclass. American journal of pathology. 2000;156:399-406. Cerca con Google

13. Wang W., Slevin M., Kumar S., Kumar P. The cooperative transforming effects of PAX3-FKHR and IGF-II on mouse myoblasts. International journal of oncology. 2005;27:1087-1096. Cerca con Google

14. Anderson J., Gordon A., Pritchard-Jones K., Shipley J. Gene, chromosomes, and rhabdomyosarcoma. Gene, chromosomes and cancer. 1999;26:275-285. Cerca con Google

15. Du S., Lawrence E.J., Strzelecki D., et al. Co-expression of alternatively spliced forms of PAX3, PAX7, PAX3-FKHR and PAX7-FKHR with distinc DNA binding and transactivation properties in rhabdomyosarcoma. International journal of cancer. 2005;115:85-92. Cerca con Google

16. Hollway G., Currie P. Vertebrate myotome development. Birth defects research. 2005;75:172-179. Cerca con Google

17. Cossu G., Kelly R., Di Donna S., Vivarelli E., Buckingham M. Myoblast differentiation during mammalian somitogenesis is dependent upon a community effect. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:2254-2258. Cerca con Google

18. Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Current opinion in genetics & development. 2006;16:525-532. Cerca con Google

19. Sabourin L.A., Rudnicki M.A. Developmental biology: frontiers for clinical genetics. Clinical genetics. 2000;57:16-25. Cerca con Google

20. Berkes C.A., Tapscott S J. MyoD and the transcriptional control of myogenesis. Seminars in cell & developmental biology. 2005;16:585-595. Cerca con Google

21. Bailey P., Holowacz T., Lassar A.B. The origin of skeletal muscle stem cells in the embryo and the adult. Current opinion in cell biology. 2001;13:679-689. Cerca con Google

22. Lang D., Powell S.K., Plummer R.S., Young K.P., Ruggeri B.A. PAX genes: roles in development, pathophysiology, and cancer. Biochemical pharmacolgy. 2007;73:1-14. Cerca con Google

23. Bois P.R.J., Grosveld G.C. FKHR (FOXO1a) isrequired for myotube fusion of primary mouse myoblast. The EMBO journal. 2003;22:1147-1157. Cerca con Google

24. Epstein J.A., Shapiro D.N., Cheng J., Lam P.Y.P., Maas R.L. PAX3 modelates expression of the c-Met receptor during limb muscle development. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:4213-4218. Cerca con Google

25. Parker M.H., Seale P., Rudnicki M.A. Looking back to the embryo: defining transcriptional networks in adult myogenesis. Nature reviews genetics. 2003;4:497-507. Cerca con Google

26. Anderson J. E. The satellite cells as a companion in skeletal muscle plasticity: currency, convejance, clue, connector and colander. The journal of experimental biology. 2006;209:2276-2292. Cerca con Google

27. Seale P., Sabourin L.A., Girgis-Gabardo A., Mansouri A., Gruss P., Rudnicki M.A. Pax7 is required for the specification of myogenic satellite cells. Cell. 2000;102:777-786. Cerca con Google

28. Dhawan J., Rando T.A. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends in cell biology. 2005;15:666-673. Cerca con Google

29. De Pittà C., Tombolan L., Albiero G., et al. Gene expression profiling identifies potential relevant genes in alveolar rhabdomyosarcoma pathogenesis and discriminates PAX3-FKHR positive and negative tumors. International journal of cancer. 2006;1:2772-2781. Cerca con Google

30. Ebauer M., Wachtel M., Niggli F.K., Schäfer B.W. Comparative expression profiling identifies an in vivo target gene signature with TFAP2B as a mediator of the survival function of PAX3/FKHR. Oncogene. 2007 Oncogenimics:1-15. Cerca con Google

31. Wachtel M., Dettling M., Koscielniak E., et al. Gene expression signatures identify rhabdomyosarcoma subtypes and detect a novel t(2;2)(q35;p23) translocation fusing PAX3 to NCOA1. Cancer research. 2004;64:5539-5545. Cerca con Google

32. Graf Finckenstein F., Shahbazian V., Davicioni E., Ren Y.X., Anderson M.J. PAX-FKHR function as pangenes by simultaneously inducing and inhibiting myogenesis. Oncogene. 2007:1-11. Cerca con Google

33. Ragazzini P., Gamberi G., Pazzaglia L., et al. Amplification of CDK4, MDM2, SAS and GLI genes in leiomyosarcoma, alveolar and embryonal rhabdomyosarcoma. Histology and histopathology. 2004;19:401-411. Cerca con Google

34. Casola S., Pedone P.V., Cavazzana A.O., et al. Expression and parental imprinting of the H19 gene in human rhabdomyosarcoma. Oncogene. 1997;14:1503-1510. Cerca con Google

35. Williamson D., Lu Y.J., Gordon T., et al. Relationship between MYCN copy number and expression in rhabdomyosarcomas and correlation with adverse prognosis in the alveolar subtype. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2005;23:880-888. Cerca con Google

36. Toffolatti L., Frascella E., Ninfo V., et al. MYCN expression in human rhabdomyosarcoma cell lines and tumour samples. The Journal of pathology. 2002;196:450-458. Cerca con Google

37. Malkin D., Friend S.H., Li F.P., Strong L.C. Germ-line mutations of the p53 tumor-suppressor gene in children and young adults with second malignant neoplasms. The New England journal of medicine;. 1997;326:1350-1352. Cerca con Google

38. Wexler L.H., Helman L.J. Pediatric softy tissue sarcomas. CA: a cancer journal for clinicians. 1994;44:211-247. Cerca con Google

39. Chen Y., Takita J., Mizuguchi M., et al. Mutation and expression analyses of the MET and CDKN2A genes in rhabdomyosarcoma with emphasis on MET overexpression. Genes Chromosomes Cancer. 2007;46:348-358. Cerca con Google

40. Taulli R., Scuoppo C., Bersani F., et al. Validation of met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer research. 2006;66:4742-4749. Cerca con Google

41. Scherf U., Ross D.T., Waltham M., et al. A gene expression database for the molecular pharmacology of cancer. Nature genetics. 2000;24:236-244. Cerca con Google

42. Spellman P.T., Sherlock G., Zhang M.Q., et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular biology of the cell. 1998;9:65-73. Cerca con Google

43. Wooster R. Cancer classification with DNA microarrays is less more? Trends in genetics : TIG. 2000;16:327-329. Cerca con Google

44. De Pittà C., Tombolan L., Campo Dell'Orto M., et al. A leukemia-enriched cDNA microarray platform identifies new transcripts with relevance to the biology of pediatric acute lymphoblastic leukemia. Haematologica. 2005;90:890-898. Cerca con Google

45. Armstrong S.A., Staunton J.E., Silverman L.B., et al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nature genetics. 2002;30:41-47. Cerca con Google

46. Schaaf GJ, Ruijter JM, van Ruissen F, et al. Full transcriptome analysis of rhabdomyosarcoma, normal, and fetal skeletal muscle: statistical comparison of multiple SAGE libraries. Faseb J. 2005;19:404-406. Cerca con Google

47. Sakamuro D., Elliott K.J., Wechsler-Reya R., Prendergast G.C. BIN1 is a novel MYC-interacting protein with features of a tumor suppressor. Nature genetics. 1996;14:69-77. Cerca con Google

48. Negorev D., Riethman H., Wechsler-Reya R., Sakamuro D., Prendergast G.C., Simon D. The Bin1 gene localizes to human chromosome 2q14 by PCR analysis of somatic cell hybrids and fluorescence in situ hybridization. Genomics. 1996;33:329-331. Cerca con Google

49. Butler M.H., David C., Ochoa G.C., et al. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. The Journal of cell biology. 1997;137:1355-1367. Cerca con Google

50. Wechsler-Reya R., Elliott K., Herlyn M., Prendergast G.C. The putative tumor suppressor BIN1 is a short-lived nuclear phosphoprotein, the localization of which is altered in malignant cells. Cancer research. 1997;57:3258-3263. Cerca con Google

51. Wechsler-Reya R., Sakamuro D., Zhang J., Duhadaway J., Prendergast G.C. Structural analysis of the human BIN1 gene. Evidence for tissue-specific transcriptional regulation and alternate RNA splicing. The Journal of biological chemistry. 1997;272:31453-31458. Cerca con Google

52. Kuznetsova E.B., Kekeeva T.V., Larin S.S., et al. Methylation of the BIN1 gene promoter CpG island associated with breast and prostate cancer. Journal of carcinogenesis. 2007;6:1-6. Cerca con Google

53. Mao N.C., Steingrimsson E., DuHadaway J., et al. The murine Bin1 gene functions early in myogenesis and defines a new region of synteny between mouse chromosome 18 and human chromosome 2. Genomics. 1999;56:51-58. Cerca con Google

54. Habermann B. The BAR-domain family of proteins: a case of bending and binding? EMBO reports. 2004;5:250-255. Cerca con Google

55. Peter B.J., Kent H.M., Mills I.G., et al. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science. 2004;303:495-459. Cerca con Google

56. Ramjaun A.R., Philie J., de Heuvel E., McPherson P.S. The N terminus of amphiphysin II mediates dimerization and plasma membrane targeting. The Journal of biological chemistry. 1999;274:19785-19791. Cerca con Google

57. Lee E., Marcucci M., Daniell L., et al. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science. 2002;297:1193-1196. Cerca con Google

58. Kojima C., Hashimoto A., Yabuta I., et al. Regulation of Bin1 SH3 domain binding by phosphoinositides. EMBO journal. 2004;23:4413-4422. Cerca con Google

59. DuHadaway J.B., Lynch F.J., Brisbay S., et al. Immunohistochemical analysis of Bin1/Amphiphysin II in human tissues: diverse sites of nuclear expression and losses in prostate cancer. Journal of cellular biochemistry. 2003;88:635-642. Cerca con Google

60. Wechsler-Reya R.J., Elliott K.J., Prendergast G.C. A role for the putative tumor suppressor Bin1 in muscle cell differentiation. Molecular and cellular biology. 1998;18:566-575. Cerca con Google

61. Razzaq A., Robinson IM., McMahon H.T., et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes & development. 2001;15:2967-2979. Cerca con Google

62. Muller A.J., Baker J.F., DuHadaway J.B., et al. Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Molecular and cellular biology. 2003;23:4295-4306. Cerca con Google

63. Nicot A.S., Toussaint A., Tosch V., et al. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nature genetics. 2007;39:1134-1139. Cerca con Google

64. Pineda-Lucena A., Ho C.S., Mao D.Y., et al. A structure-based model of the c-Myc/Bin1 protein interaction shows alternative splicing of Bin1 and c-Myc phosphorylation are key binding determinants. Journal of molecular biology. 2005;351:182-194. Cerca con Google

65. Ramjaun A.R., Micheva K.D., Bouchelet I., McPherson P.S. Identification and characterization of a nerve terminal-enriched amphiphysin isoform. Journal of cellular biochemistry. 1997;272:16700-16706. Cerca con Google

66. Ramjaun A.R., McPherson P.S. Multiple amphiphysin II splice variants display differential clathrin binding: identification of two distinct clathrin-binding sites. Journal of neurochemistry. 1998;70:2369-2376. Cerca con Google

67. Leprince C., Le Scolan E., Meunier B., et al. Sorting nexin 4 and amphiphysin 2, a new partnership between endocytosis and intracellular trafficking. Journal of cell science. 2003;116:1937-1948. Cerca con Google

68. Wigge P., Köhler K., Vallis Y., et al. Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Molecular biology of the cell. 1997;8:2003-2015. Cerca con Google

69. Ghaneie A., Zemba-Palko V., Itoh H., et al. Bin1 attenuation in breast cancer is correlated to nodal metastasis and reduced survival. Cancer biology & therapy. 2007;6:192-194. Cerca con Google

70. Ge K., DuHadaway J., Du W., Herlyn M., Rodeck U., Prendergast G.C. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proceedings of the National Academy of Sciences of the United States of America. 1999;96:9689-9694. Cerca con Google

71. Elliott K., Sakamuro D., Basu A., et al. Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene. 1999;18:3564-3573. Cerca con Google

72. Ge K., Duhadaway J., Sakamuro D., Wechsler-Reya R., Reynolds C., Prendergast G.C. Losses of the tumor suppressor BIN1 in breast carcinoma are frequent and reflect deficits in programmed cell death capacity. International journal of cancer. 2000;85:376-383. Cerca con Google

73. Ge K., Minhas F., Duhadaway J., et al. Loss of heterozygosity and tumor suppressor activity of Bin1 in prostate carcinoma. International journal of cancer. 2000;86:155-161. Cerca con Google

74. Elliott K., Ge K., Du W., Prendergast G.C. The c-Myc-interacting adaptor protein Bin1 activates a caspase-independent cell death program. oncogene. 2000;19:4669-4684. Cerca con Google

75. Hogarty M.D., Liu X., Thompson P.M., et al. BIN1 inhibits colony formation and induces apoptosis in neuroblastoma cell lines with MYCN amplification. Medical and pediatric oncology. 2000;35:559-562. Cerca con Google

76. Gurumurthy S., Vasudevan K.M., Rangnekar V.M. Regulation of apoptosis in prostate cancer. Cancer metastasis reviews. 2001;20:225-243. Cerca con Google

77. Tajiri T., Liu X., Thompson P.M., et al. Expression of a MYCN-interacting isoform of the tumor suppressor BIN1 is reduced in neuroblastomas with unfavorable biological features. Clinical cancer research. 2003;9:3345-3355. Cerca con Google

78. DuHadaway J.B., Sakamuro D., Ewert D.L., Prendergast G.C. Bin1 mediates apoptosis by c-Myc in transformed primary cells. Cancer research. 2001;61:3151-3156. Cerca con Google

79. DuHadaway J.B., Du W., Donover S., et al. Transformation-selective apoptotic program triggered by farnesyltransferase inhibitors requires Bin1. Oncogene. 2003;22:3578-3588. Cerca con Google

80. Muller A.J., DuHadaway J.B., Donover P.S., Sutanto-Ward E., Prendergast G.C. Targeted deletion of the suppressor gene bin1/amphiphysin2 accentuates the neoplastic character of transformed mouse fibroblasts. Cancer biology & therapy. 2004;3:1236-1242. Cerca con Google

81. Muller A.J., DuHadaway J.B., Donover P.S., Sutanto-Ward E., Prendergast G.C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nature medicine. 2005;11:312-319. Cerca con Google

82. Routhier E.L., Donover P.S., Prendergast G.C. hob1+, the fission yeast homolog of Bin1, is dispensable for endocytosis or actin organization, but required for the response to starvation or genotoxic stress. Oncogene. 2003;22:637-648. Cerca con Google

83. Ramalingam A., Prendergast G.C. Bin1 homolog hob1 supports a Rad6-Set1 pathway of transcriptional repression in fission yeast. Cell Cycle. 2007;6:1655-1662. Cerca con Google

84. Ramalingam A., Farmer G.E., Stamato T.D., Prendergast G.C. Bin1 interacts with and restrains the DNA end-binding protein complex Ku. Cell Cycle. 2007;6:1914-1918. Cerca con Google

85. Spitzner M, Ousingsawat J, Scheidt K, Kunzelmann K, Schreiber R. Voltage-gated K+ channels support proliferation of colonic carcinoma cells. Faseb J. 2007;21:35-44. Cerca con Google

86. Malo ME, Fliegel L. Physiological role and regulation of the Na+/H+ exchanger. Can J Physiol Pharmacol. 2006;84:1081-1095. Cerca con Google

87. Hartel M, di Mola FF, Selvaggi F, et al. Vanilloids in pancreatic cancer: potential for chemotherapy and pain management. Gut. 2006;55:519-528. Cerca con Google

88. Hauer J, Puschner S, Ramakrishnan P, et al. TNF receptor (TNFR)-associated factor (TRAF) 3 serves as an inhibitor of TRAF2/5-mediated activation of the noncanonical NF-kappaB pathway by TRAF-binding TNFRs. Proc Natl Acad Sci U S A. 2005;102:2874-2879. Cerca con Google

89. Meyer W.H., Spunt S.L. Soft tissue sarcomas of childhood. Cancer treatment reviews. 2004;30:269-280. Cerca con Google

90. Spunt S.L., Smith L.M., Ruymann F.B., et al. Cyclophosphamide dose intensification during induction therapy for intermediate-risk pediatric rhabdomyosarcoma is feasible but does not improve outcome: a report from the soft tissue sarcoma committee of the children's oncology group. Clinical cancer research. 2004;10:6072-6079. Cerca con Google

91. Crist W.M., Anderson J.R., Meza J.L., et al. Intergroup rhabdomyosarcoma study-IV: results for patients with nonmetastatic disease. Journal of clinical oncology. 2001;19:3091-3102. Cerca con Google

92. Sorensen P.H., Lynch J.C., Qualman S.J., et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. Journal of clinical oncology. 2002;20:2672-2679. Cerca con Google

93. Epstein JA, Lam P, Jepeal L, Maas RL, Shapiro DN. Pax3 inhibits myogenic differentiation of cultured myoblast cells. J Biol Chem. 1995;270:11719-11722. Cerca con Google

94. Scheidler S, Fredericks WJ, Rauscher FJ, 3rd, Barr FG, Vogt PK. The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci U S A. 1996;93:9805-9809. Cerca con Google

95. Kikuchi K, Tsuchiya K, Otabe O, et al. Effects of PAX3-FKHR on malignant phenotypes in alveolar rhabdomyosarcoma. Biochem Biophys Res Commun. 2008;365:568-574. Cerca con Google

96. Linardic CM, Naini S, Herndon JE, 2nd, Kesserwan C, Qualman SJ, Counter CM. The PAX3-FKHR fusion gene of rhabdomyosarcoma cooperates with loss of p16INK4A to promote bypass of cellular senescence. Cancer Res. 2007;67:6691-6699. Cerca con Google

97. Chen Y, Takita J, Mizuguchi M, et al. Mutation and expression analyses of the MET and CDKN2A genes in rhabdomyosarcoma with emphasis on MET overexpression. Genes Chromosomes Cancer. 2007;46:348-358. Cerca con Google

98. Marampon F, Ciccarelli C, Zani BM. Down-regulation of c-Myc following MEK/ERK inhibition halts the expression of malignant phenotype in rhabdomyosarcoma and in non muscle-derived human tumors. Mol Cancer. 2006;5:31. Cerca con Google

99. Frost P, Shi Y, Hoang B, Lichtenstein A. AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells. Oncogene. 2007;26:2255-2262. Cerca con Google

100. Petricoin EF, 3rd, Espina V, Araujo RP, et al. Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res. 2007;67:3431-3440. Cerca con Google

101. Romualdi C, De Pitta C, Tombolan L, et al. Defining the gene expression signature of rhabdomyosarcoma by meta-analysis. BMC Genomics. 2006;7:287. Cerca con Google

102. Sakamuro D, Prendergast GC. New Myc-interacting proteins: a second Myc network emerges. Oncogene. 1999;18:2942-2954. Cerca con Google

103. Tajiri T, Higashi M, Souzaki R, Tatsuta K, Kinoshita Y, Taguchi T. Classification of neuroblastomas based on an analysis of the expression of genes related to prognosis. J Pediatr Surg. 2007;42:2046-2049. Cerca con Google

104. Tajiri T, Tanaka S, Higashi M, et al. Biological diagnosis for neuroblastoma using the combination of highly sensitive analysis of prognostic factors. J Pediatr Surg. 2006;41:560-566. Cerca con Google

105. Nanni P, Schiaffino S, De Giovanni C, et al. RMZ: a new cell line from a human alveolar rhabdomyosarcoma. In vitro expression of embryonic myosin. Br J Cancer. 1986;54:1009-1014. Cerca con Google

106. Lollini PL, De Giovanni C, Del Re B, et al. Myogenic differentiation of human rhabdomyosarcoma cells induced in vitro by antineoplastic drugs. Cancer Res. 1989;49:3631-3636. Cerca con Google

107. Lee NK, Lee SY. Modulation of life and death by the tumor necrosis factor receptor-associated factors (TRAFs). J Biochem Mol Biol. 2002;35:61-66. Cerca con Google

108. Bradley JR, Pober JS. Tumor necrosis factor receptor-associated factors (TRAFs). Oncogene. 2001;20:6482-6491. Cerca con Google

109. Lagadec P, Griessinger E, Nawrot MP, et al. Pharmacological targeting of NF-kappaB potentiates the effect of the topoisomerase inhibitor CPT-11 on colon cancer cells. Br J Cancer. 2008. Cerca con Google

110. Bianchini M, Martinelli G, Renzulli M, Gonzalez Cid M, Larripa I. cDNA microarray study to identify expression changes relevant for apoptosis in K562 cells co-treated with amifostine and imatinib. Cancer Chemother Pharmacol. 2007;59:349-360. Cerca con Google

111. Liu H, Lu ZG, Miki Y, Yoshida K. Protein kinase C delta induces transcription of the TP53 tumor suppressor gene by controlling death-promoting factor Btf in the apoptotic response to DNA damage. Mol Cell Biol. 2007;27:8480-8491. Cerca con Google

112. Murray MF. The human indoleamine 2,3-dioxygenase gene and related human genes. Curr Drug Metab. 2007;8:197-200. Cerca con Google

113. Munn DH. Indoleamine 2,3-dioxygenase, tumor-induced tolerance and counter-regulation. Curr Opin Immunol. 2006;18:220-225. Cerca con Google

114. Mazzolini G, Murillo O, Atorrasagasti C, et al. Immunotherapy and immunoescape in colorectal cancer. World J Gastroenterol. 2007;13:5822-5831. Cerca con Google

115. Banerjee T, Duhadaway JB, Gaspari P, et al. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene. 2007. Cerca con Google

116. Koizumi K, Hojo S, Akashi T, Yasumoto K, Saiki I. Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response. Cancer Sci. 2007;98:1652-1658. Cerca con Google

117. Ben-Baruch A. The multifaceted roles of chemokines in malignancy. Cancer Metastasis Rev. 2006;25:357-371. Cerca con Google

118. Nam JS, Kang MJ, Suchar AM, et al. Chemokine (C-C motif) ligand 2 mediates the prometastatic effect of dysadherin in human breast cancer cells. Cancer Res. 2006;66:7176-7184. Cerca con Google

119. Voronov E, Shouval DS, Krelin Y, et al. IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A. 2003;100:2645-2650. Cerca con Google

120. Apte RN, Dotan S, Elkabets M, et al. The involvement of IL-1 in tumorigenesis, tumor invasiveness, metastasis and tumor-host interactions. Cancer Metastasis Rev. 2006;25:387-408. Cerca con Google

121. Chen R, Alvero AB, Silasi DA, Steffensen KD, Mor G. Cancers take their Toll--the function and regulation of Toll-like receptors in cancer cells. Oncogene. 2008;27:225-233. Cerca con Google

122. Fukata M, Abreu MT. Role of Toll-like receptors in gastrointestinal malignancies. Oncogene. 2008;27:234-243. Cerca con Google

123. Kerkela E, Bohling T, Herva R, Uria JA, Saarialho-Kere U. Human macrophage metalloelastase (MMP-12) expression is induced in chondrocytes during fetal development and malignant transformation. Bone. 2001;29:487-493. Cerca con Google

124. De Bortoli M, Castellino RC, Skapura DG, et al. Patched haploinsufficient mouse rhabdomyosarcoma overexpress secreted phosphoprotein 1 and matrix metalloproteinases. Eur J Cancer. 2007;43:1308-1317. Cerca con Google

125. Miyoshi K, Wakioka T, Nishinakamura H, et al. The Sprouty-related protein, Spred, inhibits cell motility, metastasis, and Rho-mediated actin reorganization. Oncogene. 2004;23:5567-5576. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record