Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Capraro, Ivan (2008) Advanced Techniques in Free Space Quantum Communication. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

The main argument of this thesis is the application of advanced techniques for the optimization of single photon communication and in general of single photon applications. The work is inserted in the contest of various projects that involve the departments of Information Engineering and Astronomy of the University of Padua.
In particular my contribution has been the development of a quantum cryptography setup that we called QuAKE. The system has been designed and implemented in our labs and include in the hardware some advanced temporal and spatial filtering techniques. These features has been realized respectively with an ad hoc electronics and with an adaptive optics system, the latter developed entirely in our department. The high level software for quantum cryptography has been also implemented and many optimizations have been realized both in the logical design and in the single algorithms.
The last part of this thesis describes an astronomical instrument, called
AquEYE, developed by our group and capable of time tagging single photons coming from celestial sources. In particular a description of the time and frequency distribution unit is given since this has been my contribution to the AquEYE instrument so far.
The thesis is organized as follows: after an introduction to quantum cryp-
tography (chapter 1), the QuAKE system is presented (chapter 2), the electronics and the optical setup are described (chapter 3) as well as the adaptive optics system (chapter 4), it follows a description of the results obtained testing the adaptive optics system outdoor and on the QuAKE system (chapter 5) and the description of the high level software and the related results (chapter 6), last a description on the timing and frequency unit of AquEYE is presented as well as some of the early results of the instrument (chapter 7).


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Villoresi, Paolo
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > INGEGNERIA DELL'INFORMAZIONE > INGEGNERIA ELETTRONICA E DELLE TELECOMUNICAZIONI
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):quantum cryptography, adaptive optics, quantum astronomy
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:615
Depositato il:30 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] Atmospheric propagation of Radiation. SPIE Optical Engineering Press, 1996. Cerca con Google

[2] The Utilization of the Galilieo Timing Signals for Advanced Astronomical Applications, 2007. accepted. Cerca con Google

[3] Antonio Acin and Nicolas Gisin. Quantum correlations and secret bits. Physical Review Letters, 94(02051), 2005. Cerca con Google

[4] C. Barbieri, G. Cariolaro, T. Occhipinti, C. Pernechele, F. Tamburini, and P. Villoresi. Qspace Project: Quantum Cryptography in Space, volume Optical Communication theory and techniques. Springer, 2004. Cerca con Google

[5] Wolfgang Becker and Axel Bergmann. Detectors for high-speed photon counting. Technical report, Becker Hickl GmbH, Berlin, becker@becker-hickl.com, 2006. Cerca con Google

[6] J.S. Bell. On the einstein podolsky rosen paradox. Physics 1, 3(195), 1964. Cerca con Google

[7] C. H. Bennet, G. Brassard, C. Crépeau, and U. M. Maurer. Generalized privacy amplification. IEEE Trans. Information Theory, 41, 1995. Cerca con Google

[8] C.H. Bennet and G. Brassard, 1984. in "Proc. IEEE Int. Conference on Computers, Sysytems and Signal Processing". Cerca con Google

[9] C.H. Bennett, F. Bessette, G. Brassard, L. Salvail, and J. Smolin. Experimental quantum cryptography. Journal of Cryptology, settembre 1991. Cerca con Google

[10] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public discussion. SIAM J. Comput., 17(2):210-229, 1988. Cerca con Google

[11] J.A. Bergou and L.B. Kish. An absolutely secure qkd scheme with no detection noise, entanglement and classical communication. e-print archive, http://www.arxiv.org/abs/quant-ph/0509097, 2005. Vai! Cerca con Google

[12] J. C. Bienfang, A. J. Gross, A. Mink, B. J. Hershman, A. Nakassis, X. Tang, R. Lu, D. H. Su, C. W. Clark, and C. J. Williams. Quantum key distribution with 1.25 gbps clock synchronization. Optics Express, 12:2011-2016, 2004. Cerca con Google

[13] S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi. Wave front active control by a digital-signal-processor-driven deformable membrane mirror. REVIEW OF SCIENTIFIC INSTRUMENTS, 77(093102-1), 2006. Cerca con Google

[14] Edoardo Bortolato. Realizzazione su fpga di un rivelatore di coppie di fotoni entangled. Tesi di Laurea, 2007. Cerca con Google

[15] G. Brassard and L. Salvail. Lecture notes in computer science. 1984. Cerca con Google

[16] H. J. Briegel, W. Dur, J. I. Cirac, and P. Zoller. Quantum repeaters for communication, 1998. Cerca con Google

[17] W.T. Buttler, R.J. Hughes, S.K. Lamoreaux, G.L. Morgan, J.E. Nordholt, and C.G. Peterson. Daylight quantum key distribution over 1.6 km. Physical Review Letters, 84(24):5652-5655, June 2000. Cerca con Google

[18] Barbieri C, Dravins D, Occhipinti T, Tamburini F, Naletto G, Da Deppo V, Fornasier S, D'Onofrio M, Fosbury RAE, Nilsson R, and Uthas H. Astronomical applications of quantum optics for extremely large telescopes. Journal of Modern Optics, special issue of on Single-Photon: Sources, Detectors, Applications and Measurement Methods., In press. Cerca con Google

[19] Barbieri C, Da Deppo V, D'Onofrio M, Dravins D, Fornasier S, Fosbury RAE, Naletto G, Nilsson R, Occhipinti T, Tamburini F, Uthas H, and Zampieri L. Quanteye, the quantum optics instrument for owl., 2006. Cerca con Google

[20] Ivan CAPRARO, STEFANO BONORA, and PAOLO VILLORESI. Fast correction of atmospheric turbulence using a membrane deformable mirror. In 6th International Workshop on Adaptive Optics for Industry and Medicine, 2007. Cerca con Google

[21] Ivan CAPRARO and TOMMASO OCCHIPINTI. Implementation of a real time high level protocol software for quantum key distribution. IEEE International Conference on Signal Processing and Communication, 2007. Cerca con Google

[22] Ivan Capraro, Tommaso Occhipinti, Paolo Zoccarato, Cristian Bonato, Fabrizio Tamburini, Cesare Barbieri, and Paolo Villoresi. The utilization of the galileo timing signals for quantum communications. In 1st Colloquium Scientific and Fundamental Aspects of the Galileo Programme, 2007. Cerca con Google

[23] N.J. Cerf, M. Lévy, and G. Van Assche. Quantum distribution of gaussian keys with squeezed states. arXiv e-print archive, http://www.arxiv.org/abs/quant-ph/0008058, 2000. Vai! Cerca con Google

[24] S. Chiangga, P. Zarda, T. Jennewein, and H. Weinfurter. Towards practical quantum cryptography. Applied Physics B: Lasers and Optics, 69:389-393, 1999. Cerca con Google

[25] S. Cova, M. Ghioni, A. Lotito, I. Rech, and F. Zappa. Evolution and prospects for single-photon avalanche diodes and quenching circuits. Journal of Modern Optics, 51:1267-1288, September 2004. Cerca con Google

[26] Sergio Cova. Single-photon photon avalanche diodes: Retrospect and prospect. Presentation, 2005. Cerca con Google

[27] M. Curty, M. Lewenstein, and Norbert Lutkenhaus. Entanglement as a precondition for secure key distribution. Physical Review Letters, 92(21), 2004. Cerca con Google

[28] Dravins D, Barbieri C, Da Deppo V, Faria D, Fornasier S, Fosbury RAE, Lindegren L, Naletto G, Nilsson R, Occhipinti T, Tamburini F, Uthas H, and Zampieri L. Quanteye. quantum optics instrumentation for astronomy. In: OWL Instrument Concept Study, ESO document OWL-CSR- ESO-00000-0162. In: OWL Instrument Concept Study, ESO document OWL-CSR-ESO-00000-0162., 2005. Cerca con Google

[29] D. Dehlinger and M.W. Mitchell. Entangled photons, nonlocality and bell inequalities in the undergraduate laboratory. Technical Report quantph/0205171 v1, Oxford University press, Oxford, Physics Dep.,Reed College 3203 SE Woodstock Blvd. Portland, May 2002. Cerca con Google

[30] P.A.M. Dirac. The Principles Of Quantum Mechanics. Oxford University Press, 1958. Cerca con Google

[31] F. D'Onofrio. Algoritimi di error correction e privacy amplification per la crittografia quantistica. Tesi di Laurea, Padova, 2005. Cerca con Google

[32] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller. Quantum repeaters based on entanglement purification. Phys. Rev. A, 59(1):169-181, Jan 1999. Cerca con Google

[33] Frank D. Eaton, Patrick R. Kelly, Demos T. Kyrazis, and Jennifer C. Ricklin. Impact of realistic turbulence conditions on laser beam propagation. volume 5550, pages 267-274. SPIE, 2004. Cerca con Google

[34] C. Elliott, D. PEarson, and G. Troxel. Quantum cryptography in practice. SIGCOMM 2003, 2003. Cerca con Google

[35] Motti Gabay and Sholomi Arnor. Effect of turbulence on a quantum-key distribution scheme based on transformation from the polarization to the time domain: laboratory experiment. Optical Engineering, 44(4), 2005. Cerca con Google

[36] G. Gilbert and M. Hamrick. Practical quantum cryptography: A comprehensive analysis (part one). Technical report, Mitre Technical Report and quant-ph/0009027, September 2000. Cerca con Google

[37] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden. Quantum cryptography. Rev. of Modern Physics, 74:145-195, January 2002. Cerca con Google

[38] C. Gobby, Z. L. Yuan, and A. J. Shields. Quantum key distribution over 122 km of standard telecom fiber. 03.67.dd quantum cryptography, Toshiba Research Europe Ltd. Cerca con Google

[39] F. Grosshans and P. Grangier. Continuous variable quantum cryptogra- phy using coherent states. arXiv e-print archive, Cerca con Google

http://www.arxiv.org/abs/quant-ph/0109084, 2001. Vai! Cerca con Google

[40] H.Inamori, N. Lutkenhaus, and D. Mayers. Uncoditional security of practical quantum key distribution. arXiv e-print archive, 2001. Cerca con Google

[41] R. J. Hughes, J. E. Nordholt, D. Derkacs, and C. G. Peterson. Practical free-space quantum key distribution over 10 km in daylight and at night. Physics Division Los Alamos National Laboratory. Cerca con Google

[42] Richard J. Hughes, George L. Morgan, and C. Glen Peterson. Practical quantum key distribution over a 48-km optical fiber network, 1999. Cerca con Google

[43] R.C. Jaeger and T.N. Blalock. Microelettronica Circuiti Integrati Analogici. McGraw-Hill, 1998. Cerca con Google

[44] S. Karpov, G. Beskin, A. Biryukov, V. Debur, V. Plokhotnichenko, M. Redfern, and A. Shearer. Short time scale pulse stability of the Crab pulsar in the optical band. Astrophysics and Space Science, 308:595-599, April 2007. Cerca con Google

[45] Isaac I. Kim, Bruce McArthur, and Eric Korevaar. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. Technical report, Optical Access Incorporated, 10343 Roselle Street San Diego, CA 92121, 2004. Cerca con Google

[46] A. Kolmogorov. Dissipation of energy in locally isotropic turbulence. Doklady Akad. Nauk SSSR, 32(16), 1941. German translation in "Sammelband zur Statistichen Theorie der Turbulenz", Akademie-Verlag Berlin (1958), p. 77. Cerca con Google

[47] A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large reynolds' numbers. Cerca con Google

Doklady Akad. Nauk SSSR, 30:301, 1941. German translation in "Sammelband zur Statistichen Theorie der Turbulenz", Akademie-Verlag Berlin (1958), p. 71. Cerca con Google

[48] A. Kolmogorov. Turbulence, Classic Papers on Statistical Theory. S.K. FriedLander and L. Topper, 1961. New York. Cerca con Google

[49] C. Kurtsiefer, P. Zarda, M. Halder, P.M. Gorman, P.R. Tapster, J.G. Rarity, and H. Weinfurter. Long distance free space quantum cryptography. Cerca con Google

[50] Y. Li, S. Hua, Y. Liu, J. Ye, and Q. Zhou. Quantum repeaters: fundamental and future. In Quantum Information and Computation V. Edited by Donkor, Eric J.; Pirich, Andrew R.; Brandt, Howard E.. Proceedings of the SPIE, Volume 6573, pp. 65730X (2007)., volume 6573 of Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, May 2007. Cerca con Google

[51] M. Lucamarini, A. Cere', G. Di Giuseppe, S. Mancini, D. Vitali, and P. Tombesi. Two-way protocol for quantum cryptography with imperfect devices, 2006. Cerca con Google

[52] A. G. Lyne, R. S. Pritchard, and F. G. Smith. Crab pulsar timing 1982-87. Royal Astronomical Society, Monthly Notices, 233:667-676, August 1988. Cerca con Google

[53] V. Makarov, A. Anisimov, and J. Skaar. Effects of detector efficiency mismatch on security of quantum cryptosystems. Phys. Rev. A, 74(2):022313- +, August 2006. Cerca con Google

[54] D. Mayers. Unconditional security in quantum cryptography. Acm Journal, 48:351-406, 2001. Cerca con Google

[55] Kim-Chi Nguyen, Gilles Van Assche, and NicolasJ. Cerf. Side-information coding with turbo codes and its application to quantum key distribution. arXiv:cs/0406001v1, jun 2004. Cerca con Google

[56] Thi Mai Trang Nguyen, Mohamed Ali Sfaxi, and Solange Ghernaouti-Helie. Integration of quantum cryptography in 802.11 networks. In ARES '06: Proceedings of the First International Conference on Availability, Reliability and Security Cerca con Google

(ARES '06), pages 116-123, Washington, DC, USA, 2006. IEEE Computer Society. Cerca con Google

[57] M.A. Nielsen and I.L. Chuang. Quantum Computation and Quantum Information. Cambridge: University Press, 2000. Cerca con Google

[58] R. J. Noll. Zernike polynomials and atmospheric turbulence. Journal of the Optical Society of America (1917-1983), 66:207-211, March 1976. Cerca con Google

[59] A. M. Obukhov. Structure of the temperature field in a turbulent flow. Izv.Akad.Nauk SSSR, Ser.Geograf.Geofiz., 13(58), 1949. German translation in "Sammelband zur Statistichen Theorie der Turbulenz", Akademie-Verlag Berlin (1958), p.127. Cerca con Google

[60] Tommaso Occhipinti. Quantum Key Distribution: a Telecommunication Model and a Practical Implementation. PhD thesis, Scuola di Dottorato in Ingegneria Dell'Informazione, 2006. Cerca con Google

[61] Tommaso Occhipinti, Paolo Zoccarato, Ivan Capraro, Pietro Bolli, Filippo Messina, Giampiero Naletto, Paolo Villoresi, and Cesare Barbieri. The importance of time and frequency reference in quantum astronomy and quantum communications. In Thirty-Ninth Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2007. Cerca con Google

[62] J.-W. Pan and A. Zeilinger. Greenberger-Horne-Zeilinger-state analyzer. PhysRevA., 57:2208-2211, March 1998. Cerca con Google

[63] D. Pearson and C. Elliott. On the Optimal Mean Photon Number for Quantum Cryptography. ArXiv Quantum Physics e-prints, March 2004. Cerca con Google

[64] J. W. Percival, J. D. Biggs, J. F. Dolan, E. L. Robinson, M. J. Taylor, R. C. Bless, J. L. Elliot, M. J. Nelson, T. F. Ramseyer, G. W. van Citters, and E. Zhang. The Crab pulsar in the visible and ultraviolet with 20 microsecond effective time resolution. Astrophysical Journal, 407:276-283, April 1993. Cerca con Google

[65] A. Poppe, A. Fedrizzi, T. Loruenser, O. Maurhardt, R. Ursin, H. R. Boehm, M. Peev, M. Suda, C. Kurtsiefer, H. Weinfurter, T. Jennewein, and A. Zeilinger. Practical quantum key distribution with polarization-entangled photons. Optics Express, 12:3865, 2004. Cerca con Google

[66] R. Renner, N. Gisin, and B. Kraus. An information-theoric security proof for qkd protocols. arXiv e-print archive, 2005. Cerca con Google

[67] K.J. Resch, M. Lindenthal, B. Blauensteiner, H.R. Böhm, A. Fedrizzi, C. Kurtsiefer, A. Poppe, T. Schmitt-Manderbach, M. Taraba, R. Ursin, P. Walther, H. Weier, H. Weinfurter, and A. Zeilinger. Distributing entanglement and single photons through an intra-city, free-space quantum channel. Optics Express, 13(1):202-209, 2005. Cerca con Google

[68] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications ACM, 28:120- 134, 1978. Cerca con Google

[69] F. Roddier. The effects of atmospheric turbulence in optical astronomy. Progress in Optics XIX. E. Wolf, New York: North Holland, 1981. Cerca con Google

[70] Phillip Rogaway. Bucket hashing and its application to fast message authentication. Journal of Cryptology: the journal of the International Association for Cryptologic Research, 12(2):91-115, 1999. Cerca con Google

[71] T. Schmitt-Manderbach, H. Weier, M. Fürst, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger, and H. Weinfurter. Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144km. Physical Review Letters, 98(1):010504- +, January 2007. Cerca con Google

[72] Bruce Schneier. Applied Cryptography. John Wiley and sons, Inc., 1996. Cerca con Google

[73] S.Cova, A.Longoni, and G.Ripamonti. Active-quenching and gating circuits for single-photon avalanche diodes (spads). IEEE Transactions on Nuclear Science, 29:599-601, 1982. Cerca con Google

[74] C. Shannon. Communication theory of secrecy systems. Bel l System Technical Journal, 28(4):656-715, 1949. Cerca con Google

[75] J. H. Shapiro. Near-field turbulence effects on quantum-key distribution. Phys. Rev. A, 67(2):022309- +, February 2003. Cerca con Google

[76] P.W. Shor and J. Preskill. Simple proof of security of the bb84 quantum key distribution protocol. Physical Review Letters, 85:441-444, 2000. Cerca con Google

[77] Nabeel A. Siddiqui. Quantum-grid infinitesimal bit cryptosystem. IEEE International Conference on Signal Processing and Communications (IC- SPC 2007), 2007. Cerca con Google

[78] C. Silberhorn, N. Korolkova, and G. Leuchs. Quantum key distribution with bright entangled beams. arXiv e-print archive, http://www.arxiv.org/abs/quant-ph/0109009, 2001. Vai! Cerca con Google

[79] Bonora Stefano, Capraro Ivan, Poletto Luca, Matteo Romanin, Trestino Cosmo, and Villoresi Paolo. A dsp control system of membranedeformable mirror using tms320 c5502. 2005. Cerca con Google

[80] Bruce Edward Stribling. Laser Beam Propagation in non-Kolmogorov Atmospheric Turbulence. Afit/geo/eng/94d-04, School of Engineering of the Air Force Institute of Technology, Air University, 1994. Cerca con Google

[81] K. Tamaki, M. Koashi, , and N. Imoto. Security of the bennett 1992 quantum-key distribution against individual attack over a realistic channel. arXiv quant-ph 0212161, 1, Dec 2002. Cerca con Google

[82] A. S. Tanenbaum. Computer Networks. Prantice Hall PTR, 1996. Cerca con Google

[83] X. Tang, L. Ma, A. Mink, A. Nakassis, B. Hershman, J. Bienfang, R. F. Boisvert, C. Clark, and C. Williams. High speed fiber-based quantum key distribution using polarization encoding. In Optics and Photonics Conference, editors, Proceedings of SPIE, volume 5893, 2005. Cerca con Google

[84] V. I. Tatarski. Wave Propagation in a Turbulent Medium. McGraw-Hill, New York, 1961. Cerca con Google

[85] T.C.Ralph. Quantum key distribution with continuous variable in optics. Technical Report quant-ph/0109096 v2, University of Queensland, Dep. of Physics, St Lucia, QLD 4072 Australia, 2001. Cerca con Google

[86] Alexei Trifonov, Darius Subacius, Audrius Berzanskis, and Anton Zavriyev. Single photon counting at telecom wavelength and quantum key distribution. journal of modern optics, 51(9-10):1399 - 1415, 2004. Cerca con Google

[87] G. A. Tyler. Bandwidth considerations for tracking through turbulence. Journal of the Optical Society of America A, 11:358-367, January 1994. Cerca con Google

[88] Robert K. Tyson. Principles of Adaptive Optics. Academic Press, 525 B Street, Suite 1900, San Diego, California, Usa, 1997. Cerca con Google

[89] T. von Karman. Progress in the statistical theory of turbulence. Classic Paper on Statistical Theory. S.K. FriedLander, L. Topper, 1961. Cerca con Google

[90] M.N. Wegman and J.L. Carter. New hash function and their use in authentication and set equality. Journal of computer and system sciences, 22, 1981. Cerca con Google

[91] Henning Weier, Tobias Schmitt-Manderbach, Nadja Regner, Christian Kurtsiefer, and Harald Weinfurter. Free space quantum key distribution: Towards a real life application. Fortschr. Phys., 54(8):840-845, 2006. Cerca con Google

[92] Otakar Wilfert and Zdenek Kolka. Statistical model of free-space optical data link. volume 5550, pages 203-213. SPIE, 2004. Cerca con Google

[93] W.K. Wootters and W.H. Zurek. A single quantum cannot be cloned. Nature, 299:802 - 803, October 1982. Cerca con Google

[94] A.M. Yaglom. On the local structure of the temperature field in a turbulent flow. Doklady Akad. Nauk SSSR, 69(743), 1949. German translation in "Sammelband zur Statistichen Theorie der Turbulenz", Akademie-Verlag Berlin (1958), p.127. Cerca con Google

[95] H.P. Yuen. Anonymous key quantum cryptography and unconditionally secure quantum bit commitment. arXiv e-print archive, http://www.arxiv.org/abs/quant-ph/0009113, 2000. Vai! Cerca con Google

[96] P. Zoccarato. Decrittazione intrusiva di chiavi quantistiche e contromisure. Tesi di Laurea, Padova, 2005. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record