Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Bonora, Stefano (2008) Adaptive Optics for industry and science. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

I report development in deformable mirror technology we made in my PhD course. Push Pull membrane mirror was realized for the first time. Application od membrane mirrors in Visual Optics, free space communication, ultrafast pulse compression and bimorph mirrors for high energy femtosecond laser were reported.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Villoresi, Paolo
Data di deposito della tesi:31 January 2008
Anno di Pubblicazione:31 January 2008
Key Words:Adaptive optics, deformable mirror, bimorph mirror, membrane mirror, aberration
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Area 02 - Scienze fisiche > FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:617
Depositato il:30 Sep 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. G. Vdovin and P. M. Sarro, “Flexible mirror micromachined in silicon”, App. Opt. 34(16), 2968- 972 (1995) Cerca con Google

2. E.J. Fernández and P.A. “Membrane deformable mirror for adaptive optics: performance limits in visual optics”, 11, Opt. Express, (2003) Cerca con Google

3. E. J. Fernández, I. Iglesias, and P. Artal “Closed-loop adaptive optics in the human eye”, Opt. Lett. 26, 746- 748 (2001) Cerca con Google

4. E. Dalimier and C. Dainty “Comparative analysis of deformable mirrors for ocular adaptive optics”, Opt. Express 13,4275-4285 (2005) Cerca con Google

5. P. Kurczynski, H.M. Dyson, B. Sadoulet, J. E. Bower, W. Y.-C. Lai, W. M. Mansfield, and J. A. Taylor “Fabrication and measurement of low-stress membrane mirrors for adaptive optics”, Appl. Opt. 43, 3573- 3580, (2004) Cerca con Google

6. P. Kurczynski, H. M. Dyson, B. Sadoulet, “Large amplitude wavefront generation and correction with membrane mirrors”, Opt. Express 14, 509, (2006) Cerca con Google

7. E. M. Vuelban, N. Bhattacharya J. J. M. Braat , “Liquid deformable mirror for high-order wavefront correction”, Opt. Lett. 31, 1717 (2006) Cerca con Google

8. S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino and P. Villoresi, “Wavefront active control by a DSP-Driven deformable membrane mirror”, to be publiched on Review of scientific instruments (Accepted 24th July 2006) Cerca con Google

9. E.S. Clafin, N. Bareket, “Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions”, J. Opt. Soc. Am. A, 3, 1833-1839, (1986) Cerca con Google

10. J.F. Castejon-Mochon, N.Lopez-Gil, A.Benito, P.Artal “Ocular wave-front aberration statistics in a normal young population”, Vision Research 42, 1611–1617, (2002) Cerca con Google

11. L.Zhu, P.-C.Sun, Y.Fainman, “Aberration free dynamic focusing with a multichannel micromachined membrane deformable mirror”, Appl. Opt. 38, 5350-5354, (1999) Cerca con Google

12. L.Zhu, P.-C.Sun, D.-U.Bratsch, W.R.Freeman, Y.Fainman, “Adaptive control of micromachined continuous membrane deformable mirror for aberration compensation”, Appl. Opt, 38, 168-176, (1999) Cerca con Google

13. L.Zhu, P.Sun, D.Bartsch, W.R.Freeman,and Y.Fainman, “Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror”, Appl. Opt., 38, 1510-1518, (1999) Cerca con Google

14. R.K. Tyson and B.W. Frazier, “Microelectromechanical system programmable aberration generator for adaptive optics”, Appl. Opt. 40, (2001) Cerca con Google

15. J. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, 1998). Cerca con Google

16. R. Irwan and R. Lane, Analysis of optimal centroid estimation applied to Shack-Hartmann sensing, Appl. Opt. 38(32), 6737{6743 (1999). Cerca con Google

17. R. Tyson, J. Tharp, and D. Canning, Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 1: tip-tilt configuration, diagnostics, and closed-loop results," Opt. Eng. 44(9), 096,002-1 096,002-6 (2005). Cerca con Google

18. R. Tyson, J. Tharp, and D. Canning, \Measurement of the bit-error rate of an adaptive optics, free-space laser communications system, part 2: multichannel configuration, aberration characterization, and closedloop results," Opt. Eng. 44(9), 096,003-1 096,003-6 (2005). Cerca con Google

19. O. Albert, L. Sherman, G. Mourou, and T. Norris, Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy," Opt. Lett. 25(1), 52{54 (2000). Cerca con Google

20. B. Potsaid, Y. Bellouard, and J. Wen, \Adaptive Scanning Optical Microscope (ASOM): A multidisciplinary optical microscope design for large field of view and high resolution imaging," Opt. Expr. 13(17), 6504{6518 (2005). Cerca con Google

21. J. Liang and D. Williams, \Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14(11), 2873-2883 (1997). Cerca con Google

22. J. Liang, D. Williams, and D. Miller, Supernormal vision and high resolution retinal imaging through adaptive optics, J. Opt. Soc. Am. A 14(11), 2884-2892 (1997). Cerca con Google

23. L. Zhu, P. Sun, D. Bartsch, W. Freeman, and Y. Fainman, Adaptive control of a micromachined continuous-membrane deformable mirror for aberration compensation," Appl. Opt. 38(1), 168-176 (1999). Cerca con Google

24. J.-F. Le Gargasson, M. Glanc, and P. Lena, \Retinal imaging with adaptive optics, Comptes Rendus de l’Acadèmie des Sciences - Series IV - Physics 2, 1131{1138 (2001). Cerca con Google

25. A. Roorda, F. Romero-Borja, W. Donnelly, H. Queener, T. Hebert, and M. Campbell, Adaptive optics scanning laser ophthalmoscopy, Opt. Expr. 10(9), 405{412 (2002). Cerca con Google

26. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, Adaptiveoptics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging, Opt. Expr. 13(21), 8532-8546 (2005). Cerca con Google

27. D. Gray, W. Merigan, J.Wolfang, B. Gee, J. Porter, A. Dubra, T. Twietmeyer, K. Ahamd, R. Tumbar, F. Reinholz, and D. Williams, \In vivo fluorescence imaging of primate retinal ganglion cells and retinal pigment epithelial cells," Opt. Expr. 14(16), 7144-7158 (2006). Cerca con Google

28. S. Zommer, E. N. Ribak, S. G. Lipson, and J. Adler, Simulated annealing in ocular adaptive optics, Cerca con Google

29. Optics Letters 31(7), 1{3 (2006). Cerca con Google

30. E. J. Fernandez and L. Vabre, Adaptive optics with a magnetic deformable mirror: application in the Cerca con Google

31. human eye, Optics express 14(20), 8900-8917 (2006). Cerca con Google

32. T. Okada, K. Ebata, M. Shiozaki, T. Kyotani, A. Tsuboi, M. Sawada, and H. Fukushima, Development of adaptive mirror for CO2 laser, in High-Power Lasers in Manufacturing, X. Chen, T. Fujioka, and A. Matsunawa, eds., vol. 3888 of SPIE Proc., pp. 509-520 (2000). Cerca con Google

33. S. Jackel and I. Moshe, Adaptive compensation of lower order thermal aberrations in concave-convex power oscillators under variable pump conditions , Opt. Eng. 39(09), 2330-2337 (2000). Cerca con Google

34. P. Villoresi, S. Bonora, M. Pascolini, L. Poletto, G. Tondello, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, and S. D. Silvestri, Optimization of high-order harmonic generation by adaptive control of a sub-10- fs pulse wave front, Opt. Lett. 29(2), 207-209 (2004). Cerca con Google

35. R. Zacharias, N. Beer, E. Bliss, S. Burkhart, S. Cohen, S. Sutton, R. V. Atta, S. Winters, J. T. Salmon, M. L. C. Stolz, D. Pigg, and T. Arnold, Alignment and wavefront control systems of the National Ignition Facility, Opt. Eng. 43(12), 2873{2884 (2004). Cerca con Google

36. W. Shakespeare, R. Pearson, J. Grenestedt, P. Hutapea, and V. Gupta, \MEMS integrated submount Cerca con Google

37. alignment for optoelectronics," J. Lightwave Technol. 23, 504 (2005). Cerca con Google

38. F. Gonte and A. Courteville and R. DÄandliker, \Optimization of single-mode fiber coupling efficiency with an adaptive membrane mirror, Opt. Eng. 41(5), 10731076 (2002). Cerca con Google

39. E. Grisan, F. Frassetto, V. D. Deppo, G. Naletto, and A. Ruggeri, Aberration estimation from single point image in a simulated adaptive optics system, in Proceedings of the Engineering in Medicine and Biology Society IEEE-EMBS, 27th Annual International Conference, pp. 3173{3176 (New York, 2005). Cerca con Google

40. E. Grisan, F. Frassetto, V. D. Deppo, G. Naletto, and A. Ruggeri, \No wavefront sensor adaptive optics system for compensation of primary aberrations by software analysis of a point source image. Part I: methods." Appl. Opt. (2007). Cerca con Google

41. S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, Fast wavefront active Cerca con Google

42. control by a DSP-driven deformable membrane mirror," Rev. Sci. Instr. 77, 093,102 (2006). Cerca con Google

43. S. Bonora and L. Poletto, Push-pull membrane mirrors for adaptive optics, Opt. Expr. 14(25), 11,935{11,944 (2006). Cerca con Google

44. R. Noll, Zernike polinomials and atmospheric turbulence, J. Opt. Soc. Am. 66(3), 207{211 (1976). Cerca con Google

45. J. Wang and D. Silva, Wave-front interpretation with Zernike polynomials, Appl. Opt. 19(9), 1510{1518 (1980). Cerca con Google

46. E. Claflin and N. Bareket, Configuring an electrostatic membrane mirror by least-squares fitting with Cerca con Google

47. analytically derived influence functions, J. Opt. Soc. Am. 3(11), 1833-1839 (1986). Cerca con Google

48. G. Vdovin, Spatial light modulator based on the control of the wavefront curvature, Opt. Comm. 115(1- 2), 170-178 (1995). Cerca con Google

49. L. Zhu, P. Sun, D. Bartsch, W. Freeman, and Y. Fainman, Wave-front generation of Zernike polynomial modes with a micromachined membrane deformable mirror, Appl.Opt. 38(28), 6019{6026 (1999). Cerca con Google

50. M. Yu. Loktev, V. N. Belopukhov, F. L. Vladimirov, G. V. Vdovin, G. D. Cerca con Google

51. Love, and A. F. Naumovb, Rev. Sci. Instrum. 71, 3290 2000. Cerca con Google

52. B. Schenkel et al., Opt. Lett. 28, 1987 2003. Cerca con Google

53. T. G. Bifano, J. Perreault, R. K. Mali, and M. N. Horenstein, IEEE J. Sel. Cerca con Google

54. Top. Quantum Electron. 5, 83 1999. Cerca con Google

55. G. Vdovin and P. M. Sarro, Appl. Opt. 34, 2968 1995. Cerca con Google

56. E. Fernandez and P. Artal, Opt. Express 11, 105 2003. Cerca con Google

57. N. Doble et al., Opt. Lett. 27, 1537 2002. Cerca con Google

58. P. Villoresi et al., Opt. Lett. 29, 207 2004. Cerca con Google

59. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Cerca con Google

60. Vdovin, Opt. Lett. 25, 587 2000. Cerca con Google

61. R. K. Tyson Principles of Adaptive Optics Academic, New York, 1998. Cerca con Google

62. R. S. Judson and H. Rabitz, Phys. Rev. Lett. 68, 1500 1992. Cerca con Google

63. E. Clafin and N. Bareket, J. Opt. Soc. Am. A 3, 1833 1986. Cerca con Google

64. E. Dennis and H. Rabitz, Phys. Rev. A 67, 033401 2003. Cerca con Google

65. C. Kurtsiefer et al., Proc. SPIE 4917, 2002. Cerca con Google

66. P. Kurczynski et al., Appl. Opt. 43, 3573 2004. Cerca con Google

67. S. Bonora et al., Proc. SPIE 5333, 2004. Cerca con Google

68. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, “Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics”, Science 286, 1507-1512 (1999). Cerca con Google

69. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, T. Tschudi, M. J. Lederer, A. Boiko, and B. Luther-Davies, "Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser," Opt. Lett. 26, 373-375 (2001). Cerca con Google

70. A. Baltuška, Z. Wei, M. S. Pshenichnikov, and D. A. Wiersma, "Optical pulse compression to 5 fs at a 1- MHz repetition rate," Opt. Lett. 22, 102-104 (1997) Cerca con Google

71. M. Nisoli, S. De Silvestri, O. Svelto, R. Szipöcs, K. Ferencz, C. Spielmann, S. Sartania, and F. Krausz, "Compression of high-energy laser pulses below 5 fs," Opt. Lett. 22, 522-524 (1997). Cerca con Google

72. G. Cerullo, M. Nisoli, S. Stagira, and S. De Silvestri, “Sub-8-fs pulses from an ultrabroadband optical parametric amplifier in the visible,” Opt. Lett. 23, 1283-1285 (1998). Cerca con Google

73. A. Shirakawa, I. Sakane, M. Takasaka, and T. Kobayashi, “Sub-5-fs visible pulse generation by pulse-frontmatched noncollinear optical parametric amplification”, Appl. Phys. Lett. 74, 2268-2270 (1999). Cerca con Google

74. Baltuška, T. Fuji, and T. Kobayashi, “Visible pulse compression to 4 fs by optical parametric Cerca con Google

75. amplification and programmable dispersion control,” Opt. Lett. 27, 306-308 (2002). Cerca con Google

76. G. Cerullo, and S. De Silvestri, “Ultrafast optical parametric amplifiers,” Rev. Sci. Inst. 74, 1-18 (2003). Cerca con Google

77. S. Witte, R. T. Zinkstok, A. L. Wolf, W. Hogervorst, W. Ubachs, and K. S. E. Eikema, "A source of 2 terawatt, 2.7 cycle laser pulses based on noncollinear optical parametric chirped pulse amplification," Opt. Express 14, 8168-8177 (2006) Cerca con Google

78. F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevi?ius, and F. Krausz, "Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier," Opt. Lett. 32, 2227-2229 (2007). Cerca con Google

79. M. Nisoli, S. Stagira, S. De Silvestri, O. Svelto, G. Valiulis, and A. Varavinicius, “Parametric generation of high-energy 14.5-fs light pulses at 1.5 ?m,” Opt. Lett. 23, 630-632 (1998). Cerca con Google

80. Vozzi, G. Cirmi, C. Manzoni, E. Benedetti, F. Calegari, G. Sansone, S. Stagira, O. Svelto, S. De Silvestri, M. Nisoli, and G. Cerullo, “High-energy, few-optical-cycle pulses at 1.5 µm with passive carrier-envelope phase stabilization,” Opt. Express 14, 10109-10116 (2006). Cerca con Google

81. G. Cirmi, D. Brida, C. Manzoni, M. Marangoni, S. De Silvestri, and G. Cerullo, “Few-optical- cycle pulses in the near-infrared from a noncollinear optical parametric amplifier,” Opt. Lett. 32, 2396-2398 (2007). Cerca con Google

82. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. De Silvestri, and S. Stagira, “Millijoule-level phase-stabilized few-optical-cycle infrared parametric source”, Opt. Lett. 32, 2957- 2959 (2007). Cerca con Google

83. J. Tate, T. Auguste, H. G. Muller, P. Salieres, P. Agostini and L. F. DiMauro, “The Scaling of WavePacket Dynamics in an Intense Mid-Infrared Field”, Phys. Rev. Lett. 98, 013901 (2007). Cerca con Google

84. Nikolov, A. Gaydardzhiev, I. Buchvarov, P. Tzankov, F. Noack, and V. Petrov, "Ultrabroadband continuum amplification in the near infrared using BiB3O6 nonlinear crystals pumped at 800 nm," Opt. Lett. 32, 3342-3344 (2007). Cerca con Google

85. J. Kane and R. Trebino, “Characterization of arbitrary femtosecond pulses using frequency resolved optical gating,” IEEE J. Quantum Electron., 29, 571–579 (1993). Cerca con Google

86. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, "Pulse compression by use of deformable mirrors," Opt. Lett. 24, 493-495 (1999). Cerca con Google

87. S. Bonora, I. Capraro, L. Poletto, M. Romanin, C. Trestino, and P. Villoresi, "Wave front active control by a digital-signal-processor-driven deformable membrane mirror ," Rev. Sci. Instrum. 77, 093102 (2006) Cerca con Google

88. J. Garduño-Mejía, A. H. Greenaway, and D. T. Reid, “Programmable spectral phase control of femtosecond pulses by use of adaptive optics and real-time pulse measurement,” J. Opt. Soc. Am. B 21, 833-843 (2004). Cerca con Google

89. C. Manzoni, D. Polli, and G. Cerullo, “Two-colour pump-probe system broadly tunable over the visible and the near infrared with sub-30-fs temporal resolution”, Rev. Sci. Instrum. 77, 023103 (2006). Cerca con Google

90. T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuška, N. Forget, D. Kaplan, A. Galvanauskas, and F. Krausz, “Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1 ?m,” Opt. Lett. 31, 1103-1105 (2006). Cerca con Google

91. C. Manzoni, D. Polli, G. Cirmi, D. Brida, S. De Silvestri, and G. Cerullo, “Tunable few-optical-cycle pulses with passive carrier-envelope phase stabilization from an optical parametric amplifier”, Appl. Phys. Lett. 90, 171111 (2007). Cerca con Google

92. S.W. Bahk, Characterization of focal field formed by a large numerical aperture paraboloidal mirror and generation of ultra-high intensity (1022 W/cm2). Appl. Phys. B 80, 823–832 (2005) Cerca con Google

93. P.Villoresi, S.Bonora, M.Pascolini, L.Poletto, and G.Tondello; C.Vozzi M.Nisoli, G.Sansone, S.Stagira, and S.De Silvestri Optimization of high-order-harmonic generation by adaptive control of sub-10 fs pulse wavefront, Optics Letter 2004, Jan 15, Vol. 29, No.2 Cerca con Google

94. P.Villoresi, S.Bonora, M.Pascolini, L.Poletto, C.Vozzi, G.Sansone, S.Stagira, M.Nisoli Wavefront Control in High Harmonics Generation with few- and many-optical-cycle laser pulses 14th International Conference on Ultrafast Phenomena (Niigata, Japan, July 25-30, 2004) Ultrafast Phenomena XIV, Springer Verlag 2004 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record