Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Carli, Marta (2013) Meso- and nano-structured metal-dielectric interfaces for plasmonic nanofocusing. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (tesi di dottorato) - Versione sottomessa
Available under License Creative Commons Attribution.

25Mb

Abstract (inglese)

With increasing demand for nanoscale optical devices, the ability to confine the light on length scales smaller than those allowed by the diffraction limit of light has begun to attract enormous interest. A possible solution to this problem is offered by Plasmonics.
Under certain conditions, a metal-dielectric interface supports Surface Plasmons (SPs), i.e. electromagnetic excitations strongly coupled to oscillations of free electrons in the metal. Thanks to these excitations, electromagnetic energy can be confined in a sub-wavelength volume close to the metal surface. This opens up the way for a wide range of opportunities and applications, from photovoltaics to biosensing.
The focus of this thesis was to engineer metal-dielectric interfaces in order to excite plasmonic hotspots, i.e. nanometer-sized regions where the electromagnetic field is strongly enhanced. As hinted above, this can be achieved by conveniently meso- and/or nano-structuring the metal surface. The properties of metal-dielectric interfaces emerging from these studies are of particular interest in the field of molecular sensing, but are also of more fundamental interest.
Different classes of devices are proposed. We started from digital plasmonic gratings, studying their excitation modes thoroughly. We then moved to nanostructures supporting a Localized Surface Plasmon Resonance (LSPR), specifically plasmonic nanoantennae, which are of special interest for the enhancement of well-established sensing techniques such as SERS. Coming to nanofocusing, we studied plasmonic wedges – which provide adiabatic nanofocusing at their ridge – as well as bull’s eye/Archimedean spiral structures, which can generate and focus Surface Plasmons carrying orbital angular momentum (OAM). Finally, we proposed a non-trivial integration of the above-mentioned effects, in the form of an Archimedean spiral coupled to nanoantenna resonators.
In parallel, we collaborated with the company A.P.E. Research to develop a new characterization instrument, called EllipsSNOM. It consists in implementing a SNOM head on a J.A. Woollam Co. Inc. Variable Angle Spectroscopic Ellipsometer (VASE). This challenging task was pursued in order to get simultaneous control of the far field and the near field properties of the structures; ellipsometry and SNOM microscopy are indeed both essential techniques to achieve a full characterization of plasmonic nanodevices.

Abstract (italiano)

All’aumentare della richiesta di dispositivi ottici di scala nanometrica, la possibilità di confinare la luce su scale di lunghezza inferiori a quelle consentite dal limite di diffrazione della luce ha iniziato ad attrarre un enorme interesse. Una possibile soluzione a questo problema è offerta dalla Plasmonica.
In determinate condizioni, un'interfaccia metallo-dielettrico supporta Plasmoni di Superficie (SP), cioè eccitazioni elettromagnetiche fortemente accoppiate alle oscillazioni degli elettroni liberi nel metallo. Grazie a queste eccitazioni, l’energia elettromagnetica può essere confinata in un volume di dimensioni inferiori alla lunghezza d’onda della luce vicino alla superficie metallica. Questo apre la strada a una vasta gamma di opportunità e applicazioni, dal fotovoltaico alla biosensoristica.
L’obiettivo di questa tesi è stato progettare interfacce metallo-dielettrico al fine di eccitare hotspot plasmonici, cioè regioni di dimensioni nanometriche dove il campo elettromagnetico è fortemente potenziato. Come accennato sopra, questo può essere ottenuto meso- e/o nano-strutturando opportunamente la superficie del metallo. Le proprietà delle interfacce metallo-dielettrico che emergono da questi studi sono di particolare interesse nel campo della sensoristica, ma sono anche di interesse più fondamentale.
Sono proposte diverse classi di dispositivi. Siamo partiti da reticoli plasmonici digitali, studiando a fondo i loro modi di eccitazione. Ci siamo poi spostati su nanostrutture che supportano una Risonanza Plasmonica di Superficie Localizzata (LSPR), nello specifico nanoantenne plasmoniche, che sono di particolare interesse per il potenziamento di tecniche sensoristiche ben consolidate come il SERS. Venendo poi al nanofocusing, abbiamo studiato strutture plasmoniche tipo wedges (cunei) – che forniscono nanofocusing adiabatico sulla loro cresta – e strutture tipo bull’s eye/spirali di Archimede, in grado di generare e focalizzare Plasmoni Superficiali che trasportano momento angolare orbitale (OAM). Infine, abbiamo proposto un'integrazione non banale degli effetti sopra citati, in forma di una spirale di Archimede accoppiata a una nanoantenna.
In parallelo, abbiamo collaborato con la ditta A.P.E. Research per sviluppare un nuovo strumento di caratterizzazione, chiamato EllipsSNOM. Esso consiste nell’implementazione di una testa SNOM su un ellissometro spettroscopico J.A. Woollam Co. Inc. Variable Angle Spectroscopic Ellipsometer (VASE). Questo intrigante obiettivo è stato perseguito al fine di ottenere il controllo simultaneo delle proprietà di campo lontano e di campo vicino delle strutture; ellissometria e microscopia SNOM sono infatti entrambe tecniche essenziali per realizzare una completa caratterizzazione dei nanodispositivi plasmonici.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Romanato, Filippo
Dottorato (corsi e scuole):Ciclo 25 > Scuole 25 > SCIENZA ED INGEGNERIA DEI MATERIALI
Data di deposito della tesi:31 Luglio 2013
Anno di Pubblicazione:31 Luglio 2013
Parole chiave (italiano / inglese):plasmonics nanofocusing nanofabrication SNOM OAM
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/03 Fisica della materia
Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Area 02 - Scienze fisiche > FIS/07 Fisica applicata (a beni culturali, ambientali, biologia e medicina)
Area 03 - Scienze chimiche > CHIM/05 Scienza e tecnologia dei materiali polimerici
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:6173
Depositato il:28 Mar 2014 09:57
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett., vol. 93, p. 137404, 2004. Cerca con Google

[2] Y. Gorodetski, N. Shitrit, I. Bretner, V. Kleiner and E. Hasman, "Observation of optical spin symmetry breaking in nanoapertures," Nano Lett., vol. 9, no. 8, pp. 3016-3019, 2009. Cerca con Google

[3] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin: Springer-Verlag, 1988. Cerca con Google

[4] S. A. Maier, Plasmonics: fundamentals and applications, Bath: Springer, 2007. Cerca con Google

[5] M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, Atlanta: Springer, 2007. Cerca con Google

[6] J. Zenneck, "Über die Fortpflanzung ebener elektromagnetischer Wellen längs einer ebenen Leiterfläche und ihre Beziehung zur drahtlosen Telegraphie," Ann. Phys., vol. 23, pp. 846-866, 1907. Cerca con Google

[7] G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen," Annalen der Physik, vol. 330, no. 3, pp. 377-445, 1908. Cerca con Google

[8] A. Sommerfeld, "Über die Ausbreitlung der Wellen in der drahtlosen Telegraphie," Annalen der Physik, vol. 28, pp. 665-736, 1909. Cerca con Google

[9] J. Homola, S. S. Yee and G. Gauglitz, "Surface Plasmon resonance sensors: review," Sensor. Actuat., vol. 54, pp. 3-15, 1999. Cerca con Google

[10] W. Barnes, A. Dereux and T. Ebbesen, "Surface plasmon subwavelength optics," Nature, vol. 424, no. 6950, pp. 824-830, 2003. Cerca con Google

[11] A. Sommerfeld, "Über die Fortpflanzung elektrodynamischer Wellen an längs eines Drahtes," Annalen der Physik, vol. 67, pp. 233-290, 1899. Cerca con Google

[12] R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Phil. Mag., vol. 4, p. 396, 1902. Cerca con Google

[13] L. Rayleigh, "On the Dynamical Theory of Gratings," P. Roy. Soc. Lond. A - Mat., vol. 79, no. 532, pp. 399-416, 1907. Cerca con Google

[14] U. Fano, "The Theory of Anomalous Diffraction Gratings and of Quasi-Stationary Waves on Metallic Surfaces," J. Opt. Soc. Am., vol. 31, p. 213, 1941. Cerca con Google

[15] R. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Phys. Rev., vol. 106, no. 5, p. 874, 1957. Cerca con Google

[16] C. J. Powell and J. B. Swan, "Origin of the Characteristic Electron Energy Losses in Magnesium," Phys. Rev., vol. 116, pp. 81-83, 1959. Cerca con Google

[17] C. a. S. J. Powell, "Effect of Oxidation on the Characteristic Loss Spectra of Aluminum and Magnesium," Physical Review, vol. 118, pp. 640-643, 1960. Cerca con Google

[18] E. A. Stern and R. Ferrell, "Surface Plasma Oscillations of a Degenerate Electron Gas," Phys. Rev., vol. 120, no. 1, pp. 130-136, 1960. Cerca con Google

[19] T. Turbadar, "Complete Absorption of Light by Thin Metal Films," P. Phyis. Soc., vol. 73, no. 1, p. 40, 1959. Cerca con Google

[20] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total internal reflection," Z. Phys., vol. 216, p. 398, 1968. Cerca con Google

[21] E. Kretschmann and H. Raether, "Radiative decay of non-radiative surface plasmons excited by light," Z. Naturf., vol. 23A, p. 2135, 1968. Cerca con Google

[22] Y.-Y. Teng and E. A. Stern, "Plasma Radiation from Metal Grating Surfaces," Phys. Rev. Lett., vol. 19, no. 9, pp. 511-514, 1967. Cerca con Google

[23] M. Fleischmann, P. J. Hendra and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chem. Phys. Lett., vol. 26, pp. 163-166, 1974. Cerca con Google

[24] D. L. Jeanmarie and R. P. Van Duyne, "Surface Raman electrochemistry. Part 1. Heterocyclic, aromatic and aliphatic amines adsorbed on the anodised silver electrode," J. Electroanal. Chem., vol. 84, pp. 1-20, 1977. Cerca con Google

[25] M. Moskovits, "Surface roughness and the enhanced intensity of Raman scattering by molecules adsorbed on metals," J. Chem. Phys., vol. 69, no. 9, p. 4159, 1978. Cerca con Google

[26] M. Kerker, D.-S. Wand and H. Chew, "Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles," Appl. Optics, vol. 19, no. 19, pp. 3373-3388, 1980. Cerca con Google

[27] N. W. Ashcroft and N. D. Mermin, Solid State Physics, International Thomson Publishing, 1976. Cerca con Google

[28] J. D. Jackson, Classical electrodynamics, 3rd ed, John Wiley & Sons, 1999. Cerca con Google

[29] P. Drude, "Zur Elektronentheorie der metalle," Ann. Phys., vol. 306, p. 566, 1900. Cerca con Google

[30] L. Novotny and B. Hecht, Principles of Nano-Optics, Cambridge: Cambridge University Press, 2006. Cerca con Google

[31] P. B. Johnson and R. W. Christy, "Optical Constants of the Noble Metals," Phys. Rev. B, vol. 6, pp. 4370-4379, 1972. Cerca con Google

[32] W. L. Barnes, "Surface plasmon polariton length scales: a route to sub-wavelength optics," J. of Opt. A: Pure Appl. Opt., vol. 8, p. S87, 2006. Cerca con Google

[33] E. D. Palik, Handbook of Optical Constants of Solids, Orlando: Academic, 1985. Cerca con Google

[34] W. L. Barnes, T. W. Priest, S. C. Kitson and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B, vol. 54, p. 6227, 1996. Cerca con Google

[35] J. C. M. Garnett, "Colours in Metal Glasses and Metallic Films," Phil. Trans. Roy. Soc. Lond. A, vol. 203, pp. 385-420, 1904. Cerca con Google

[36] U. Leonhardt, "Optical metamaterials: Invisibility cup," Nat. Phot., vol. 1, pp. 207-208, 2007. Cerca con Google

[37] C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles, New York: John Wiley and Sons, 1983. Cerca con Google

[38] M. W. Knight, Y. Wu, J. B. Lassiter, P. Nordlander and N. J. Halas, "Substrates Matter: Influence of an Adjacent Dielectric on an Individual Plasmonic Nanoparticle," Nano Lett., vol. 9, no. 5, pp. 2188-2192, 2009. Cerca con Google

[39] T. Hutter, S. R. Elliott and S. Mahajan, "Interaction of metallic nanoparticles with dielectric substrates: effect of optical constants," Nanotechnology, vol. 24, p. 035201, 2013. Cerca con Google

[40] G. Leveque and O. J. .. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express, vol. 14, no. 21, pp. 9971-9981, 2006. Cerca con Google

[41] P. Nordlander and E. Prodan, "Plasmon Hybridization in Nanoparticles near Metallic Surfaces," Nano Lett., vol. 4, no. 11, pp. 2209-2213, 2004. Cerca con Google

[42] T. Okamoto and I. Yamaguchi, "Optical Absorption Study of the Surface Plasmon Resonance in Gold Nanoparticles Immobilized onto a Gold Substrate by Self-Assembly Technique," J. Phys. Chem. B, vol. 107, no. 38, pp. 10321-10324, 2003. Cerca con Google

[43] W. R. Holland and D. G. Hall, "Frequency Shifts of an Electric-Dipole Resonance near a Conducting Surface," Phys. Rev. Lett., vol. 52, no. 12, pp. 1041-1044, 1984. Cerca con Google

[44] J. R. Krenn, A. Dereux, J. C. Weeber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gotschy, A. Leitner, F. R. Aussenegg and C. Girard, "Squeezing the Optical Near-Field Zone by Plasmon Coupling of Metallic Nanoparticles," Phys. Rev. Lett., vol. 82, no. 12, pp. 2590-2593, 1999. Cerca con Google

[45] M. Quinten and U. Kreibig, "Absorption and elastic scattering of light by particle aggregates," Appl. Optics, vol. 32, no. 30, pp. 6173-6182, 1993. Cerca con Google

[46] J. Homola, Surface Plasmon Resonance Based Sensors, Berlin: Springer-Verlag, 2006. Cerca con Google

[47] H. Heinzelmann and D. W. Pohl, "Scanning near-field optical microscopy," Appl. Phys. A, vol. 59, pp. 89-101, 1994. Cerca con Google

[48] B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin and D. Pohl, "Scanning near-field optical microscopy with aperture probes: fundamentals and applications," J. Chem. Phys., vol. 112, no. 18, 2000. Cerca con Google

[49] P. Dawson, F. de Fornel and J.-P. Goudonnet, "Imaging of surface plasmon propagation and edge interaction using a photon scanning tunneling microscope," Phys. Rev. Lett., vol. 72, no. 18, pp. 2927-2930, 1994. Cerca con Google

[50] O. Marti, H. Bielefeldt, B. Hecht, S. Herminghaus, P. Leiderer and J. Mlynek, "Near-field optical measurement of the surface plasmon field," Opt. Commun., vol. 96, no. 4, pp. 225-228, 1993. Cerca con Google

[51] P. M. Adam, L. Salomon, F. de Fornel and J.-P. Goudonnet, "Determination of the spatial extension of the surface-plasmon evanescent field of a silver film with a photon scanning tunnelling microscope," Phys. Rev. B, vol. 48, pp. 2680-2683, 1993. Cerca con Google

[52] H. Ditlbacher, J. R. Krenn, N. Felidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett., vol. 80, no. 3, pp. 404-406, 2002. Cerca con Google

[53] T. Reilly, S. Chang, J. Corbam, G. Schatz and K. Rowlen, "Quantitative Evaluation of Plasmon Enhanced Raman Scattering from Nanoaperture Arrays," J. Phys. Chem. C, vol. 111, no. 4, pp. 1689-1694, 2007. Cerca con Google

[54] F. J. Garcia-Vidal, T. W. Ebbesen and L. Kuipers, "Light passing through subwavelength apertures," Revs. Mod. Phys., vol. 82, 2010. Cerca con Google

[55] Q. Cao and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett., vol. 88, no. 5, p. 057403, 2002. Cerca con Google

[56] Y. Xie, A. Zakharian, J. V. Moloney and M. Mansuripur, "Transmission of light through periodic arrays of sub-wavelength slits in metallic hosts," Opt. Express, vol. 13, pp. 4485-91, 2005. Cerca con Google

[57] Y. Takakura, "Optical resonance in a narrow slit in a metallic screen," Phys. Rev. Lett., vol. 86, p. 5601, 2001. Cerca con Google

[58] F. Marquier, J. J. Greffet, F. Pardo and J. L. Pelouard, "Resonant transmission through a metallic film due to coupled modes," Opt. Express, vol. 13, p. 70, 2005. Cerca con Google

[59] H. Hartnagel, A. Dawar, A. Jain and C. Jagadish, Semiconducting Transparent Thin Films, Philadelphia: Institute of Physics, 1995. Cerca con Google

[60] C. G. Granqvist and A. Hultaker, "Transparent and conducting ITO films: new developments and applications," Thin Solid Films, vol. 411, pp. 1-5, 2002. Cerca con Google

[61] C. W. Tang and S. A. Van Sylke, "Organic electroluminescent diodes," Appl. Phys. Lett., vol. 51, p. 913, 1987. Cerca con Google

[62] H. Kim, C. Gilmore, A. Piqué, J. Horwitz, M. H., H. Murata, Z. Kafafi and D. Chrisey, "Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices," J. Appl. Phys., vol. 86, no. 11, pp. 6451-6461, 1999. Cerca con Google

[63] G. Sberveglieri, P. Benussi, G. Coccoli, S. Groppelli and P. Nelli, "1990," Thin Solid Films, vol. 186, pp. 349-360, 1988. Cerca con Google

[64] Y. S. Cho, J. J. Hong, S. M. Yang and C. J. Choi, "Nanostructured antistatic and antireflective thin films made of indium tin oxide and silica over-coat layer," in Proceedings of SPIE - Nanostructured Thin Films III, San Diego, California (USA), 2010. Cerca con Google

[65] R. Tueta and M. Braguier, "Fabrication and Characterization of Indium Tin Oxide Thin Films for Electroluminescent Applications," Thin Solid Films, vol. 80, pp. 143-148, 1981. Cerca con Google

[66] E. C. Le Ru and P. Etchegoin, Principles of SERS, Oxford: Elsevier, 2009. Cerca con Google

[67] K. B. Biggs, J. P. Camden, J. N. Anker and R. P. Van Duyne, "Surface-Enhanced Raman Spectroscopy of Benzenethiol Adsorbed from the Gas Phase onto Silver Film over Nanosphere Surfaces: Determination of the Sticking Probability and Detection Limit Time," J. Phys. Chem. A, vol. 113, no. 16, pp. 4581-4586, 2009. Cerca con Google

[68] R. Favors, Y. Jiang, Y. Loethen and D. Ben-Amotz, "External Raman standard for absolute intensity and concentration measurements," Rev. Sci. Instrum., vol. 76, p. 033108, 2005. Cerca con Google

[69] C. L. Haynes and R. P. Van Duyne, "Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy," J. Phys. Chem. B, vol. 107, no. 30, p. 7426–7433, 2003. Cerca con Google

[70] E. Hutter and J. H. Fendler, "Exploitation of Localized Surface Plasmon Resonance," Adv. Mater., vol. 16, no. 19, pp. 1685-1706, 2004. Cerca con Google

[71] M. L. Brongersma, "Plasmonics: Engineering optical nanoantennas," Nat. Phot., vol. 2, pp. 270-272, 2008. Cerca con Google

[72] K. A. Willets and R. P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy and Sensing," Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, 2007. Cerca con Google

[73] D. K. Gramotnev and S. I. Bozhevolnyi, "Plasmonics beyond the diffraction limit," Nat. Photon., vol. 4, p. 83, 2010. Cerca con Google

[74] A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen and W. E. Moerner, "Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna," Nat. Phot. Lett., vol. 3, pp. 654-657, 2009. Cerca con Google

[75] M. Agio, "Optical antennas as nanoscale resonators," Nanoscale, vol. 4, pp. 692-706, 2012. Cerca con Google

[76] I. S. Maksymov and A. E. Miroshnichenko, "Active control over nanofocusing with nanorod plasmonic antennas," Opt. Express, vol. 19, no. 7, pp. 5888-5894, 2011. Cerca con Google

[77] J. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz and S. Schultz, "Shape effects in plasmon resonance of individual colloidal silver nanoparticles," J. Chem. Phys., vol. 116, no. 15, p. 6755, 2002. Cerca con Google

[78] K. L. Kelly, C. E., Z. L. L. and G. C. Schatz, "The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment," J. Phys. Chem. B, vol. 107, no. 3, p. 668–677, 2003. Cerca con Google

[79] C. a. H. J. Nehl, "Shape-dependent plasmon resonances of gold nanoparticles," J. Mater. Chem., vol. 18, pp. 2415-2419, 2008. Cerca con Google

[80] E. Tatartschuk, E. Shamonina and L. Solymar, "Plasmonic excitations in metallic nanoparticles: Resonances, dispersion characteristics and near-field patterns," Opt. Express, vol. 17, no. 10, pp. 8447-8460, 2009. Cerca con Google

[81] W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun., vol. 220, p. 137–141, 2003. Cerca con Google

[82] L. J. Sherry, P. Chang, P. S. Schatz, R. P. Van Duyne, B. J. Wiley and Y. Xia, "Localized surface plasmon resonance spectroscopy of single silver nanocubes," Nano Lett., vol. 10, no. 2034-2038, p. 5, 2005. Cerca con Google

[83] C. L. Nehl, H. Hongwei Liao and J. H. Hafner, "Optical Properties of Star-Shaped Gold Nanoparticles," Nano Lett., vol. 6, no. 4, p. 683–688, 2006. Cerca con Google

[84] J. P. Kottmann and O. J. F. Martin, "Plasmon resonant coupling in metallic nanowires," Opt. Express, vol. 8, no. 12, pp. 655-663, 2001. Cerca con Google

[85] J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B, no. 71, p. 235420, 2005. Cerca con Google

[86] J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett., vol. 82, no. 257, 2003. Cerca con Google

[87] J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Kall, G. W. Bryant and F. J. Garcìa de Abajo, "Optical Properties of Gold Nanorings," Phys. Rev. Lett., vol. 90, no. 5, p. 057401, 2003. Cerca con Google

[88] P. Bharadwaj, B. Deutsch and L. Novotny, "Optical Antennas," Adv. Opt. Photon., vol. 1, pp. 438-483, 2009. Cerca con Google

[89] E. J. Smythe, E. Cubukcu and F. Capasso, "Optical properties of surface plasmon resonances of coupled metallic nanorods," Opt. Express, vol. 15, no. 12, pp. 7439-7447, 2007. Cerca con Google

[90] P. Mühlschlegel, H. J. Eisler, O. J. .. Martin, B. Hecht and D. W. Pohl, "Resonant optical antennas," Science, vol. 308, no. 5728, pp. 1607-1609, 2005. Cerca con Google

[91] B. Willingham, D. W. Brandl and P. Nordlander, "Plasmon hybridization in nanorod dimers," Appl. Phys. B, vol. 93, pp. 209-216, 2008. Cerca con Google

[92] J. Britt Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander and N. J. Halas, "Close Encounters between Two Nanoshells," Nano Lett., vol. 8, no. 4, pp. 1212-1218, 2008. Cerca con Google

[93] S. Enoch, R. Quidant and G. Badenes, "Optical sensing based on plasmon coupling in nanoparticle arrays," Opt. Express, vol. 12, no. 15, pp. 3422-3427, 2004. Cerca con Google

[94] K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. Dasari and M. S. Feld, "Single molecule detection using surface-enhanced Raman scattering (SERS)," Phys. Rev. Lett., vol. 78, pp. 1667-1670, 1997. Cerca con Google

[95] S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science, vol. 275, no. 5303, pp. 1102-1106, 1997. Cerca con Google

[96] H. Xu, E. J. Bjerneld, M. Käll and L. Börjesson, "Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering," Phys. Rev. Lett., vol. 83, no. 21, 1999. Cerca con Google

[97] J. Beermann, S. M. Novikov, K. Leosson and S. I. Bozhevolnyi, "Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles," Opt. Express, vol. 17, no. 15, pp. 12698-12705, 2009. Cerca con Google

[98] B. Auguié and W. L. Barnes, "Collective Resonances in Gold Nanoparticle Arrays," Phys. Rev. Lett., vol. 101, p. 143902, 2008. Cerca con Google

[99] C. Steuwe, C. F. Kaminski, J. J. Baumberg and S. Mahajan, "Surface Enhanced Coherent Anti-Stokes Raman Scattering on Nanostructures Gold Surfaces," Nano Lett., vol. 11, p. 5339–5343, 2011. Cerca con Google

[100] H. Harutyunyan, G. Volpe, R. Quidant and L. Novotny, "Enhancing the Nonlinear Optical Response Using Multifrequency Gold-Nanowire Antennas," Phys. Rev. Lett., vol. 108, no. 21, p. 217403, 2012. Cerca con Google

[101] M. A. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro and F. Capasso, "Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy," Proc. Natl. Acad. Sci., vol. 109, no. 31, p. 12364–12368, 2012. Cerca con Google

[102] M. W. Vogel and D. K. Gramotnev, "Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons," J. Appl. Phys., vol. 107, p. 044303, 2010. Cerca con Google

[103] J. A. Kong, Electromagnetic wave theory, New York: Wiley, 1990. Cerca con Google

[104] L. Novotny and S. J. Stranick, "Near-Field Optical Microscopy and Spectroscopy with Pointed Probes," Annu. Rev. Phys. Chem., vol. 57, pp. 303-331, 200657. Cerca con Google

[105] D. O'Connor, M. McCurry, B. Lafferty and A. V. Zayats, "Plasmonic waveguide as an efficient transducer for high-density data storage," Appl. Phys. Lett., vol. 95, p. 171112, 2009. Cerca con Google

[106] D. K. Gramotnev and K. C. Vernon, "Adiabatic nano-focusing of plasmons by sharp metallic wedges," Appl. Phys. B, vol. 86, p. 7, 2007. Cerca con Google

[107] P. Nagpal, N. Lindquist, S. Oh and D. Norris, "Ultrasmooth patterned metals for plasmonics and metamaterials," Science, vol. 325, p. 594, 2009. Cerca con Google

[108] A. Boltasseva, V. Volkov, R. Nielsen, E. Moreno, S. Rodrigo and S. Bozhevolnyi, "Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths," Opt. Express, vol. 16, p. 5252, 2008. Cerca con Google

[109] I. S. Bozhevolnyi, "Plasmonic nanoguides and circuits," Singapore, Pan Stanford, 2009, p. 353. Cerca con Google

[110] D. K. Gramotnev, M. W. Vogel and M. I. Stockman, "Optimized nonadiabatic nanofocusing of plasmons by tapered metal rods," J. Appl. Phys., vol. 104, p. 034311, 2008. Cerca con Google

[111] D. F. P. Pile and D. K. Gramotnev, "Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides," Appl. Phys. Lett., vol. 89, p. 041111, 2006. Cerca con Google

[112] K. C. Vernon, D. K. Gramotnev and D. F. P. Pile, "Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate," J. Appl. Phys., vol. 101, p. 104312, 2007. Cerca con Google

[113] E. Verhagen, L. K. Kuipers and A. Polman, "Plasmonic nanofocusing in a dielectric wedge.," Nano Lett., vol. 10, no. 9, p. 3665, 2010. Cerca con Google

[114] M. Ohtsu, K. Kobayashi, T. Kawazoe, S. Sangu and T. Yatsui, "Nanophotonics: design, fabrication, and operation of nanometric devices using optical near fields," IEEE, J. Sel. Top. Quantum Electron., vol. 8, p. 839, 2002. Cerca con Google

[115] K. Kato, A. Ono, W. Inami and Y. Kawata, "Plasmonic nanofocusing using a metal-coated axicon prism," Opt. Express, vol. 18, p. 13580, 2010. Cerca con Google

[116] E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Marin-Moreno and F. Garcia-Vidal, "Guiding and focusing of electromagnetic fields with wedge plasmon polaritons," Phys. Rev. Lett., vol. 100, no. 2, p. 023901, 2008. Cerca con Google

[117] A. V. Zayats and D. Richards, Nano-Optics and Near-Field Optical Microscopy, London: Artech House, 2009. Cerca con Google

[118] W. Chen, D. Abeysinghe, R. Nelson and Q. Zhan, "Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer," Nano Lett., vol. 10, no. 6, p. 2075, 2010. Cerca con Google

[119] S. Yamamoto and H. Watarai, "Surface-Enhanced Raman Spectroscopy of Dodecanethiol-Bound Silver Nanoparticles at the Liquid/Liquid Interface," Langmuir, vol. 22, p. 6562, 2006. Cerca con Google

[120] L. Allen, M. J. Beijersbergen, R. J. C. Spreeuw and J. P. Woerdman, "Orbital angular-momentum of light and the transformation of Laguerre–Gaussian laser modes," Phys. Rev. A, vol. 45, p. 8185, 1992. Cerca con Google

[121] A. M. Yao and M. J. Padgett, "Orbital angular momentum: origins behavior and applications," Adv. Opt. Photon., vol. 3, p. 161, 2011. Cerca con Google

[122] M. Massari, F. Romanato, M. Carli, T. Ongarello, M. Prasciolu, F. Tamburini, E. Mari, A. Bianchini and C. Baribieri, "Design, fabrication and characterization of phase masks for astronomical applications," Microelectron. Eng., vol. 88, pp. 2675-2678, 2011. Cerca con Google

[123] L. Vuong, A. Adam, J. Brok, P. Planken and H. Urbach, "Electromagnetic spin-orbit interactions via scattering of subwavelength apertures.," Phys. Rev. Lett., vol. 104, p. 083903, 2010. Cerca con Google

[124] M. Kang, J. Chen, B. Gu, Y. Li, L. Vuong and H. T. Wang, "Spatial splitting of spin states in subwavelength metallic microstructures via partial conversion of spin-to-orbital angular momentum," Phys. Rev. A, vol. 85, p. 035801, 2012. Cerca con Google

[125] N. Shitrit, I. Bretner, Y. Gorodetski, V. Kleiner and E. Hasman, "Optical spin Hall effects in plasmonic chains.," Nano Lett., vol. 11, p. 2038, 2011. Cerca con Google

[126] Y. Gorodetski, A. Niv, V. Kleiner and E. Hasman, "Observation of the spin-based plasmonic effect in nanoscale structures," Phys. Rev. Lett., vol. 101, no. 4, 2008. Cerca con Google

[127] H. Kim, J. Park, S.-W. Cho, S.-Y. Lee, M. Kang and B. Lee, "Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens.," Nano Lett., vol. 10, no. 2, pp. 529-536, 2010. Cerca con Google

[128] K. T. Gahagan and G. A. Swartzlander, "Simultaneous trapping of low-index and high-index microparticles observed with an optical-vortex trap," J. Opt. Soc. Am. B., vol. 16, p. 533, 1999. Cerca con Google

[129] Y. S. Kivshar and B. Luther-Davies, "Dark optical solitons: physics and applications," Phys. Rev., vol. 298, p. 81, 1998. Cerca con Google

[130] J. Scheuer and M. Orenstein, "Optical vortices crystals: Spontaneous generation in nonlinear semiconductor microcavities," Science, vol. 285, p. 230, 1999. Cerca con Google

[131] S. Pancharatnam, "Generalized theory of interference, and its applications," Proc. Indian Acad. Sci., vol. A44, p. 247, 1956. Cerca con Google

[132] M. V. Berry, "Quantum phase factors accompanying adiabatic changes," P. Roy. Soc. Lond., vol. A392, p. 45, 1984. Cerca con Google

[133] S. Yang, W. Chen, R. L. Nelson and Q. Zhan, "Miniature circular polarization analyzer with spiral plasmonic lens," Opt. Lett., vol. 34, p. 3047, 2009. Cerca con Google

[134] S. W. Cho, J. Park, S. Y. Lee, H. Kim and B. Lee, "Coupling of spin and angular momentum of light in plasmonic vortex," Opt. Express, vol. 20, p. 10083, 2012. Cerca con Google

[135] P. Zilio, E. Mari, G. Parisi, F. Tamburini and F. Romanato, "Angular momentum properties of electromagnetic field transmitted through holey plasmonic vortex lenses," Opt. Lett., vol. 37, no. 15, pp. 3234-3236, 2012. Cerca con Google

[136] E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung," Archiv für Mikroskopische Anatomie, vol. 9, no. 1, pp. 413-418, 1873. Cerca con Google

[137] G. S. Kino and G. Xiao, "Scanning Confocal Optical Microscope". USA Patent 5.022.743, 11 June 1991. Cerca con Google

[138] E. Synge, "A suggested method for extending the microscopic resolution into the ultramicroscopic region," Phil. Mag., Vols. 6, 356, p. 356, 1928. Cerca con Google

[139] D. W. Pohl, W. Denk and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Appl. Phys. Lett., Vols. 44, 651, p. 651, 1984. Cerca con Google

[140] G. Binnig and H. Rohrer, "Scanning Tunneling Microscopy," Helv. Phys. Acta, vol. 55, no. 6, pp. 726-735, 1982. Cerca con Google

[141] E. Betzig, P. L. Finn and J. S. Weiner, "Combined shear force and near‐field scanning optical microscopy," Appl. Phys. Lett., vol. 60, p. 2484, 1992. Cerca con Google

[142] E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner and R. L. Kostelak, "Breaking the Diffraction Barrier: Optical Microscopy on a Nanometric Scale," Science, vol. 251, no. 5000, pp. 1468-1470, 1991. Cerca con Google

[143] G. A. Valaskovic, M. Holton and G. H. Morrison, "Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes," Appl. Optics, vol. 34, no. 7, pp. 1215-1228, 1995. Cerca con Google

[144] S. Munster, S. Werner, C. Mihalcea, W. Scholz and E. Oesterschulze, "Novel micromachined cantilever sensors for scanning near-field optical microscopy," J. Microsc., vol. 186, no. 1, pp. 17-22, 1997. Cerca con Google

[145] D. Turner, "US Patent". USA Patent 4.469.554, 1984. Cerca con Google

[146] A. Bouhelier, T. Huser, H. Tamaru, H. J. Guntherodt, D. W. Pohl, F. I. Baida and D. Van Labeke, "Plasmon optics of structured silver films," Phys. Rev. B, vol. 63, no. 5, p. 155404, 2001. Cerca con Google

[147] A. Passian, R. H. Ritchie, A. L. Lereu, T. Thundat and T. L. Ferrell, "Curvature effects in surface plasmon dispersion and coupling," Phys. Rev. B, vol. 71, no. 11, p. 115425, 2005. Cerca con Google

[148] R. Esteban Llorente, Apertureless SNOM: realistic modeling of the imaging process and measurements of resonant plasmonic nanostructures, EPFL, 2007. Cerca con Google

[149] Y. Inouye and S. Kawata, "A scanning near-field optical microscope having scanning electron tunnelling microscope capability using a single metallic probe tip," J. Microsc., vol. 178, no. 1, pp. 14-19, 1995. Cerca con Google

[150] B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature, vol. 399, pp. 134-137, 1999. Cerca con Google

[151] F. Romanato, R. Piilot, M. Massari, T. Ongarello, G. Pirruccio, P. Zilio, G. Ruffato, M. Carli, D. Sammito, V. Giorgis, D. Garoli, R. Signorini, P. Schiavuta and R. Bozio, "Design, fabrication and characterization of plasmonic gratings for SERS," Microelectron. Eng., vol. 88, p. 2717–2720, 2011. Cerca con Google

[152] G. Zacco, F. Romanato, A. Sonato, D. Sammito, G. Ruffato, M. Morpurgo, D. Silvestri, M. Carli, P. Schiavuta and G. Brusatin, "Sinusoidal plasmonic crystals for bio-detection sensors," Microelectron. Eng., vol. 88, pp. 1898-1901, 2011. Cerca con Google

[153] A. Sonato, G. Ruffato, G. Zacco, D. Silvestri, M. Natali, M. Carli, G. Giallongo, G. Granozzi, M. Morpurgo and F. Romanato, "Calibration of Surface Plasmon Resonance Output Through the Enhanced Sensitivity Azimuthally-Controlled Grating-Coupled System," Sensor. Actuat. B – Chem., vol. 181, pp. 559-566, 2013. Cerca con Google

[154] W. Barnes, A. Dereux and T. Ebbesen, "Surface Plasmon subwavelength optics," Nature, vol. 424, pp. 824-830, 2003. Cerca con Google

[155] A. Broers, "Resolution Limits of PMMA Resist for Exposure with 50 kV Electrons," J. Electrochem. Soc.: Solid State Sci. & Technol., vol. 128, no. 1, pp. 166-170, 1981. Cerca con Google

[156] K. Murata, T. Matsukaw and R. Shimizu, "Monte Carlo Calculations on Electron Scattering in a Solid Target," Jap. J. Appl. Phys., vol. 10, no. 6, p. 678, 1971. Cerca con Google

[157] M. Parikh, "Corrections to proximity effects in electron beam lithography," J. Appl. Phys, vol. 50, p. 1104, 1979. Cerca con Google

[158] N. Unal, M. Charlton, Y. Wang, U. Waizmann, T. Reindl and U. Hofmann, "Easy to adapt electron beam proximity effect correction parameter calibration based on visual inspection of a ‘‘Best Dose Sensor’’," Microelectron. Eng., vol. 88, p. 2158–2162, 2011. Cerca con Google

[159] J. Pavkovich, "Proximity Effect Correction Calculations by the Integral-Equation Approximate Solution Method," J. Vac. Sci. Technol. B, vol. 4, no. 1, 1986. Cerca con Google

[160] S. Yasin, Nanotechnology using Electron Beam Lithography and Ultrasonically Assisted Development in Organic Resists, Ph.D. Thesis, University of Cambridge, 2001., University of Cambridge, 2001. Cerca con Google

[161] S. Yasin, D. Hasko and H. Ahmed, "Comparison of MIBK/ IPA and water / IPA as PMMA developers for electron beam nanolithography," Microelectron. Eng., vol. 61–62, p. 745–753, 2002. Cerca con Google

[162] S. Yasin, D. G. Hasko, M. N. Khalid, D. J. Weaver and H. Ahmed, "Influence of polymer phase separation on roughness of resist features," J. Vac. Sci. Technol. B, vol. 22, no. 2, pp. 574-578, 2004. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record