Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Pertile, Riccardo (2008) Aspetti critici negli studi clinici: problemi di metodo e applicazione. [Ph.D. thesis]

Full text disponibile come:

Documento PDF

Abstract (english)

A clinical study is useful to clarify some planned questions and it follows a well defined scheme (the study design). This PhD thesis has been divided in five main sections following a scheme guiding the reader in the analysis of critical aspects it's possible to find, first in data management, then in the study design and during the development and the final phases of a clinical study. Section A, Problems in database management, proposes a chapter about Record Linkage and a second chapter about Missing Values. Record Linkage consists in a series of statistical and data processing techniques for data integration and for the union of more datasets on the basis of patients' identifying variables. The problem of missing values is frequently present in a study: when a database contains missing values it's possible to turn to specific systems useful to calculate a suitable value for the unit without information, through statistical programs.
In section B, Study design, first clinical trials are analysed, then surveys are described and divided in cohort studies and case-control studies. In a cohort study (also called follow-up or prospective study) one or more groups of subjects are defined in accordance with the exposure to risk factors for one or more diseases, or not. Subjects are prospectively followed to study the disease(s) incidence and to observe if the disease(s) is(are) correlated with the etiological factors. A case-control study (or retrospective study) provides a research strategy to investigate possible factors preventing or causing a particular disease. The method implies a comparison between patients with the disease (cases) and a control group (healthy subjects). The comparison ends to find out factors which can be different in the two groups, explaining the presence of the disease in patients.
Section C concerns Variables treatment and Outcome variable classifications. In the first part, types of variables, their measurement scales, their reduction in indicators and their transformations are analysed. In the second part the classifications of the outcome variable is described. These classifications may regard a specific disease (ICD IX and X), the patient's symptoms (ICD) or a disease effect, i.e. an impairment, a disability or a handicap (ICIDH and ICF).
Sections D and E deal with choice of the multivariate analysis method. Section D aims to give a synthesis of the main analysis methods, dividing them in accordance with the variables symmetry. If there is a distinction between outcome variable and covariates, a multiple regression (stepwise or logistic) analysis method is suggested; discriminant analysis is useful if there are more outcome variables. If variables are all on the same level, factors analysis, principal components analysis, correspondences analysis and cluster analysis are proposed in conformity with the specific analysis aims. In section E logistic regression analysis is developed, pointing out the main aspects and considering the conditional logistic regression analysis for a Matched Case-Control Study design.
Every chapter is organized in two parts: in the first one a synthesis of theory and practical methods are given to explain how literature deals with the specific problem in a clinical study; in the second one a specific application is presented to show how the author solved the methodology problems in a particular clinical-genetic study carried out at the Children's Hospital of Oulu University - Finland. In this Institute a substantial work on a preterm infants database creation has been performed. The database collected all the clinical and genetic information about preterm infants born in one of the three main hospitals in Northern-central Finland, Oulu, Tampere and Seinäjoki. Through this final database containing all patients from the three hospitals, a clinical-genetic case-control study (match 1-1) on the association between Respiratory Distress Syndrome (RDS) and single nucleotide polymorphisms (SNPs) has been carried out using a conditional logistic regression analysis. The project was directed by Prof. M. Hallman.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Facchin, Paola
Data di deposito della tesi:January 2008
Anno di Pubblicazione:January 2008
Key Words:disegno studio clinico, record linkage, missing values, regressione logistica, RDS
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/01 Statistica medica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Pediatria
Codice ID:618
Depositato il:03 Oct 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Acock A.C., Working with missing values, Journal of Marriage and Family 67: 1012-1028; 2005. Cerca con Google

2. Adams T.D., Gress R.E., Smith S.C., Halverson R.C., Simper S.C., Rosamond W.D., Lamonte M.J., Stroup A.M., Hunt S.C., Long-term mortality after gastric bypass surgery, The New England Journal of Medicine 357(8): 753-761; 2006. Cerca con Google

3. Ake C.F., Rounding after multiple imputation with non-binary categorical covariates, SUGI 30 Proceedings 112 (30): 1-11; 2005. Cerca con Google

4. Agresti A. & Finlay B., Statistical Methods for the Social Sciences, Prentice Hall, Upper Saddle River, New Jersey, Third Edition; 1999. Cerca con Google

5. Allison P.D., Logistic Regression using the SAS System: Theory and Application, SAS Institute Inc., Cary, North Carolina, USA; 1999. Cerca con Google

6. Allison P.D., Missing Data, Sage University Papers Series on Quantitative Applications in the Social Sciences, series no. 07-136, Thousand Oaks, 2001. Cerca con Google

7. Anderson T.W., An introduction to multivariate statistical analysis, New York, Jon Wiley & Sons Inc., 1958. Cerca con Google

8. Armitage P. & Berry G., Statistica Medica - metodi statistici per la ricerca in medicina, Terza Edizione; McGraw-Hill Libri Italia; 1996. Cerca con Google

9. Armstrong J.B. & Mayda J.E., Estimation of record linkage models using dependent data, Proceedings of the Section on Survey Research Methodology. American Statistical Association 1992 pp. 853-858; 1992. Cerca con Google

10. Avery M.E. & Mead J., Surface properties in relation to atelectasis and hyaline membrane disease, American Journal of Diseases of Children 97: 517-523; 1959. Cerca con Google

11. Barzi F. & Woodward M., Imputations of Missing Values in Practice: Results from Imputations of Serum Cholesterol in 28 Cohort Studies, American Journal of Epidemiology 160 (1): 34; 2004. Cerca con Google

12. Bayley N., Bayley Scales of Infant Development, 2nd edition San Antonio, TX: The Psychological Corporation, 1993. Cerca con Google

13. Belsley D.A., Conditioning Diagnostics: Collinearity and Weak data in Regression, John Wiley & Sons, Inc, 1991. Cerca con Google

14. Bickenbach J.E., Chatterji S, Badley E.M., Üstün T.B. Models of disablement, universalism and the international classification of impairments, disabilities and handicaps. Social Science & Medicine 48: 1173-1187; 1999. Cerca con Google

15. Bohmer R.M., Newell J., Torchiana D.F., The effect of decreasing length of stay on discharge destination and readmission after coronary bypass operation, Surgery 132 (1): 10-15; 2002. Cerca con Google

16. Bosio C.A., Grazie no! : il fenomeno dei non rispondenti in Politica e Sondaggio, a cura di P. Ceri, Rosenberg & Sellier, Torino; 1997. Cerca con Google

17. Breslow N.E. & Day N.E., Statistical Methods in Cancer Research. Vol. 1: The Analysis of case-control studies. International Agency on Cancer, Lyon, France; 1980. Cerca con Google

18. Breslow N.E., Statistics in epidemiology: the case-control study, Journal of the American Statistical Association 91: 14-28; 1996. Cerca con Google

19. Bruyére S.M., Van Looy S.A., Peterson D.B. The International Classification of Functioning, Disability and Health: Contemporary Literature Overview. Rehabilitation Psychology 2005; 50 (2): 113-121; 2005. Cerca con Google

20. Brunet O. & Lezine I., Le Dévelopment Psychologique de la Première Enfance, Paris: Presses Universitaries de France, 1965. Cerca con Google

21. Chamberlayne R., Green B., Barer M.L., Hertzman C., Lawrence W.J., Sheps S.B., Creating a population-based linked health database: a new resource for health services research, Canadian Journal of Public Health 89 (4): 270-273; 1998. Cerca con Google

22. Chatfield C. & Collins A.J., Introduction to Multivariate Analysis, London: Chapman and Hall, 1980. Cerca con Google

23. Choi B.C & Pak A.W., Multidisciplinarity, interdisciplinarity and transdisciplinarity in health research, services, education and policy: 1. Definitions, objectives, and evidence of effectiveness, Clinical and investigative medicine, 29(6): 351-364 Review; 2006. Cerca con Google

24. Clements J.A., Functions of the alveolar lining, American Review of Respiratory Disease 115: 67-71; 1977. Cerca con Google

25. Cochrane A.L., Effectiveness and Efficiency: Random Reflections on Health Services, London: Nuffield Provincial Hospitals Trust, 1972. Cerca con Google

26. College M.J., Johnson J.H., Pare R., Sande I.J., Large scale imputation of survey data, Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 431-436; 1978 Cerca con Google

27. Crowley P. A., Antenatal corticosteroid therapy: a meta-analysis of the randomized trials, 1972 to 1994, American Journal of Obstetrics and Gynecology 173: 322-335; 1995. Cerca con Google

28. Dempster P., Laird N. M., Rubin D.B., Maximum Likelihood from Incomplete Data via The EM Algorithm, Journal of Royal Statistical Society, 39: 1-38; 1977. Cerca con Google

29. DiAngelo S., Lin Z., Wang G., Phillips S., Rämet M., Luo J., Floros J., Novel, non-radioactive, simple and multiplex PCR-cRFLP method for genotyping human SP-A and SP-D marker alleles, Disease Markers 15: 269-281; 1999. Cerca con Google

30. Duckworth D. The need for a standard terminology and classification of disablement. In: C. V. Granger & G. E. Gresham (Eds.). Functional assessment in rehabilitation medicine. Baltimore: Williams & Wilkins, pp 1-13; 1984. Cerca con Google

31. Durrant G.B., Imputation Methods for Handling Item-Nonresponse in the Social Sciences : A Methodological Review, ESRC National Centre for Research Methods and Southampton Statistical Sciences Research Institute (S3RI), University of Southampton, 2005. Cerca con Google

32. Emrie P.A., Jones C., Hofmann T., Fisher J.H., The coding sequence for the human 18,000-dalton hydrophobic pulmonary surfactant protein is located on chromosome 2 and identifies a restriction fragment length polymorphism, Somatic Cell and Molecular Genetics 14: 105-110; 1988. Cerca con Google

33. Fabbris L., Statistica Multivariata, analisi esplorativa dei dati, McGraw-Hill, Milano, 1997; Cerca con Google

34. Fabbris L., L'indagine campionaria. Metodi, disegni e tecniche di campionamento, La Nuova Italia Scientifica, Roma; 1996. Cerca con Google

35. Facchin P., Boccuzzo G., Visonà Dalla Pozza L., Salmaso L., Il complesso percorso che dalla menomazione porta all'handicap: analisi delle correlazioni e dei nessi causali, Modelli e metodi per l'analisi di rischi sociali e sanitari pp. 185-206, CLEUP Editrice, Padova; 2002. Cerca con Google

36. Farrell P.M. & Wood R.E., Epidemiology of hyaline membrane disease in the United States: analysis of national mortality statistics, Pediatrics 58: 167-176; 1976. Cerca con Google

37. Fay R.E., Alternative Paradigms for the Analysis of Imputed Survey Data, Journal of the American Statistical Association, 91, 434, 490-498; 1996. Cerca con Google

38. Fellegi I.P. & Sunter A.B., A Theory for record linkage, Journal of the American Statistical Association 1969, 64: 1183-1210; 1969. Cerca con Google

39. Fisher R.A., The use of multiple measurements in taxonomic problems, Annals of eugenics 7: 179-188; 1936. Cerca con Google

40. Floros J., Veletza S.V., Kotikalapudi P., Krizkova L., Karinch A.M., Friedman C., Buchter S., Marks K., Dinucleotide repeats in the human surfactant protein-B gene and respiratory distress syndrome, Biochemical Journal 305: 583-590; 1995. Cerca con Google

41. Floros J., DiAngelo S., Koptides M., Karinch A.M., Rogan P.K., Nielsen H., Spragg R.G., Human SP-A locus: allele frequencies and linkage disequilibrium between the two surfactant protein A genes, America Journal of Respiratory Cell and Molecular Biology 15: 489-498; 1996. Cerca con Google

42. Friedman G.D., Epidemiologia per Discipline Bio-mediche, Edizione italiana a. cura di L. Sebastiano Annichiarico Petruzzelli, McGraw-Hill Libri Italia, Milano; 1995. Cerca con Google

43. Garside M.J., The best sub-set in multiple regression analysis, Applied Statistics 14: 196-200; 1965. Cerca con Google

44. Giacobini C., L'Handicap cambia nome, Mobilità 19:1- 4; 2002. Cerca con Google

45. Glantz S.A., Statistica per discipline bio-mediche, McGraw-HillLibri Italia, Milano, 1997. Cerca con Google

46. Glantz L.H., Researchers' ethical duties are not to be outsourced, Nature 449 (7159):139; 2007. Cerca con Google

47. Granger C.V., Dewis L.S., Peters N.C., Sherwood C.C., Barrett, J.E., Stroke rehabilitation: analysis of repeated Barthel Index measures, Archives of Physical Medicine and Rehabilitation 60(1): 14-17; 1979. Cerca con Google

48. Greenland S., Response and follow-up bias in cohort studies, American Journal of Epidemiology 106: 184-187; 1977. Cerca con Google

49. Goldenberg R.L. & Rouse D.J., Prevention of premature birth, New England Journal of Medicine 339: 313-320; 1998. Cerca con Google

50. Gomatam S., Carter R., Ariet M., Mitchell G., An empirical comparison of record linkage procedures, Statistics in Medicine, 21:1485-1496; 2002. Cerca con Google

51. Gomez R., Ghezzi F., Romero R., Munoz H., Tolosa J.E., Rojas I., Premature labor and intra-amniotic infection. Clinical aspects and role of the cytokines in diagnosis and pathophysiology, Clinics in Perinatology 22: 281-342; 1995. Cerca con Google

52. Graham J.W. & Donaldson S.I., Evaluating interventions with differential attrition: the importance of nonresponse mechanisms and the use of follow-up data, Journal of Applied Psychology, 78, pp. 119-128; 1993. Cerca con Google

53. Grande E. & Luzi O., Metodologie per l'imputazione delle mancate risposte parziali: analisi critica e soluzioni disponibili in ISTAT, ISTAT, Servizio delle Metodologie di Base per la produzione statistica; 2002. Cerca con Google

54. Grannis S.J., Overhage J.M., McDonald C.J., Analysis of identifier performance using a deterministic linkage algorithm, Proc AMIA Symp. (2002) 305-309; 2002. Cerca con Google

55. Graven S.N. & Misenheimer H.R., Respiratory Distress Syndrome and the high risk mother, American Journal of Diseases of Children 109: 489-494; 1965. Cerca con Google

56. Greci L.S., Gilson G.J., Nevils B., Izquierdo L.A., Qualls C.R., Curet L.B., Is amniotic fluid analysis the key to preterm labor? A model using interleukin-6 for predicting rapid delivery, American Journal of Obstetrics and Gynecology 179: 172-178; 1998. Cerca con Google

57. Grower J.C., Some distance properties of latent root and vector methods used in multivariate analysis, Biometrika 53: 325-338, 1966. Cerca con Google

58. Gurel O., Ikegami M., Chroneos Z.C., Jobe A.H., Macrophage and type II cell catabolism of SP-A and saturated phosphatidylcholine in mouse lungs, American Journal of Physiology. Lung Cellular and Molecular Physiology 280: L1266-L1272; 2001. Cerca con Google

59. Guseo R., Istruzioni di Statistica. Lezioni, Cedam - Padova, 1997. Cerca con Google

60. Haagsman H.P & Golde L.M., Synthesis and assembly of lung surfactant, Annual Review of Physiology 53: 441-464; 1991. Cerca con Google

61. Hafez M., el-Sallab S., Khashaba M., Risk M.S., el-Morsy Z., Bassiony M.R., el-Kenawy F., Zaghloul W., Evidence of HLA-linked susceptibility gene(s) in respiratory distress syndrome, Disease Markers 7: 201-208; 1989. Cerca con Google

62. Hallman M., Arjomaa P., Mizumoto M., Akino T., Surfactant proteins in the diagnosis of fetal lung maturity. I. Predictive accuracy of the 35 kD protein, the lecithin/sphingomyelin ratio, and phosphatidylglycerol, American Journal of Obstetrics and Gynecology 158: 531-535; 1988. Cerca con Google

63. Hallman M., Merritt T.A., Akino T., Bry K., Surfactant protein A, phosphatidylcholine, and surfactant inhibitors in epithelial lining fluid. Correlation with surface activity, severity of respiratory distress syndrome, and outcome in small premature infants, The American Review of Respiratory Disease 144: 1376-1384; 1991. Cerca con Google

64. Hallman M., Cytokines, pulmonary surfactant and consequences of intrauterine infection, Biology of the Neonate 76 Suppl 1: 2-9; 1999. Cerca con Google

65. Hallman M., Marttila R., Pertile R., Ojaniemi M., Haataja R., Genes and environment in common neonatal lung disease, Neonatology 91: 298-302; 2007. Cerca con Google

66. Hatzis D., Deiter G., deMello D.E., Floros J., Human surfactant protein-C: genetic homogeneity and expression in RDS; comparison with other species, Experimental Lung Research 20: 57-72; 1994. Cerca con Google

67. Hauck W.W. & Donner A., Wald's test as applied to hypotheses in logit analysis, Journal of the American Statistical Association, 72, 851-853; 1977. Cerca con Google

68. Hawgood S. & Clements J.A., Pulmonary surfactant and its apoproteins, The Journal of Clinical Investigation 86: 66-70; 1990. Cerca con Google

69. Heitjan D.F. & Rubin D.B., Inference from Coarse Data via Multiple Imputation with Application to Age Heaping, Journal of the American Statistical Association, 85, 410, 304-314; 1990. Cerca con Google

70. Hennekens C.H. & Buring J.E., Epidemiology in Medicine, Little, Brown & co. Boston/Toronto, 1987. Cerca con Google

71. Hill A. Bradford & Hill I.D., Bradford Hill's Principles of Medical Statistics, 12th edn, London: Arnold, 1991. Cerca con Google

72. Horton N.J. & Lipsitz S.R., Multiple Imputation in Practice: Comparison of Software Packages for Regression Models With Missing Variables, The American Statistician, 55, 3, 244-254; 2001. Cerca con Google

73. Hosmer D.W. & Lemeshow S., Applied Logistic Regression, Second Edition. Wiley Series in Probability and Statistics, Wiley, Inc., New York, 2000. Cerca con Google

74. Howe G.R., Use of computerized record linkage in cohort studies. Epidemiologic Reviews 1998; 20:112-21; 1998. Cerca con Google

75. Hulsey T.C., Alexander G.R., Robillard P.Y., Annibale D.J., Keenan A., Hyaline membrane disease: the role of ethnicity and maternal risk characteristics, American Journal of Obstetrics and Gynecology 168: 572-576; 1993. Cerca con Google

76. Johansson J. & Curstedt T., Molecular structures and interactions of pulmonary surfactant components, European Journal of Biochemistry 244: 675-693; 1997. Cerca con Google

77. Johnson S.C., Hierarchical clustering schemes, Psychometrika 32: 241-254, 1967. Cerca con Google

78. Johnston M & Pollard B. Consequences of disease: testing the WHO International Classification of Impairments, Disabilities and Handicaps (ICIDH) model. Social Science & Medicine 2001; 53: 1261-1273; 2001. Cerca con Google

79. Juster F.T. & Smith J.P., Improving the quality of economic data: Lessons from the HRS and AHEAD, Journal of the American Statistical Association 92, 27; 1998. Cerca con Google

80. Kala P., Koptides M., DiAngelo S., Hoover R.R., Lin Z., Veletza V., Kouretas D., Floros J., Characterization of markers flanking the human SP-B locus, Disease Markers 13: 153-167; 1997. Cerca con Google

81. Kala P., Ten Have T., Nielsen H., Dunn M., Floros J., Association of pulmonary surfactant protein A (SP-A) gene and respiratory distress syndrome: interaction with SP-B, Pediatric Research 43: 169-177; 1998. Cerca con Google

82. Kalton G., Compensating for Missing Survey Data. Michigan,1983. Cerca con Google

83. Kalton G. & Kasprzyk D., Imputing for Missing Survey Responses. Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 22-31; 1982 Cerca con Google

84. Kalton G. & Kasprzyk D., The Treatment of Missing Survey Data. Survey Methodology, Vol. 12, n. 1, pp. 1-16; 1986 Cerca con Google

85. Kazanjian A., Understanding women's health through data development and data linkage: implications for research and policy, CMAJ 159 (4) (1998) 342-345; 1998. Cerca con Google

86. Kelsey J.L., Thompson W.D., Evans A.S., Methods in Observational Epidemiology, Oxford University Press, New York; 1986. Cerca con Google

87. Kendall M.G., Multivariate Analysis, 2nd edition. London: Griffin, 1980. Cerca con Google

88. Khattree R. & Naik D.N., Multivariate Data Reduction and Discrimination with SAS Software, SAS Institute Inc., 2000. Cerca con Google

89. Khoury M.J., Marks J.S., McCarthy B.J., Zaro S.M., Factors affecting the sex differential in neonatal mortality: the role of respiratory distress syndrome, American Journal of Obstetrics and Gynecology 151: 777-782; 1985. Cerca con Google

90. Kim H., Golub G.H., Park H, Missing value estimation for DNA microarray gene expression data: local least squares imputation, Bioinformatics, 22(11):1410-1411; 2006. Cerca con Google

91. King R.J., Pulmonary surfactant, Journal of Applied Physiology 53: 1-8; 1982. Cerca con Google

92. Knuth D., The art of computer programming: sorting and searching, Reading Massachusetts: Addison-Wesley; 1973. Cerca con Google

93. Koskinen R., Meriläinen J., Gissler M., Virtanen M., Finnish Perinatal Statistics 1997-1998. Statistical report 41/1999, 1-128. Helsinki, Finland, National Research and Development Centre for Welfare and Health; 1999. Cerca con Google

94. Krzanowski W.J., Principles of Multivariate Analysis: A User's Perspective, Oxford: Clarendon Press, 1988. Cerca con Google

95. Lachenbruch P.A., Discriminant analysis, Hafner Press, A Division of Macmillan Publishing Co., Inc, 1975. Cerca con Google

96. Larsen M.D. & Rubin D.B., Iterative automated record linkage using mixture models, Journal of the American Statistical Association 2001; 96:32-41; 2001. Cerca con Google

97. Lee K., Khoshnood B., Wall S.N., Chang Y., Hsieh H.L., Singh J.K., Trend in mortality from respiratory distress syndrome in the United States, 1970-1995, Journal of Pediatric 134: 434-440; 1999. Cerca con Google

98. Leonardi M. ICF: la Classificazione Internazionale del Funzionamento, della Disabilità e della Salute dell'Organizzazione Mondiale della Sanità . Proposte di lavoro e di discussione per l'Italia. MR, Giornale Italiano di Medicina Riabilitativa 17 (1): 53-59; 2003. Cerca con Google

99. Lessler J.T. & Kalsbeek W.D., Nonsampling Error in Surveys, New York, Chichester, 1992. Cerca con Google

100. Li B., Quan H., Fong A., Lu M., Assessing record linkage between health care and Vital Statistics databases using deterministic methods. BMC Health Services Research 6: 48; 2006. Cerca con Google

101. Likert R., A Technique for the Measurement of Attitudes, Archives of Psychology 140: 1-55; 1932. Cerca con Google

102. Lipsitz S.R., Zhao L.P., Molenberghs G., A Semiparametric Method of Multiple Imputation, Journal of the Royal Statistical Society, Series B, Statistical Methodology, 60, 1, 127-144; 1998. Cerca con Google

103. Little R.J.A., Survey nonresponse adjustments. Proceedings of the Section on Survey Research Methods, American Statistical Association, pp. 1-10; 1984 Cerca con Google

104. Little R.J.A. & Rubin D.B., Statistical analysis with missing data, Wiley & Sons, New York, 1987. Cerca con Google

105. Little R.J.A. & Rubin D.B., Statistical Analysis with Missing Data, Second Edition, New York, 2002. Cerca con Google

106. Liu S. & Wen S.W., Development of record linkage of hospital discharge data for the study of neonatal readmission, Chronic Diseases in Canada 20 (2): 77-81; 1999. Cerca con Google

107. MacMahon B. & Pugh T.F., Epidemiology: Principles and Methods, Boston, Mass.: Little Brown, 1970. Cerca con Google

108. MacNaughton-Smith P., Some statistical and other numerical techniques for classifying individuals, Home Office Research Unit Report No 6, HMSO London, 1965. Cerca con Google

109. Magagnoli U., Elementi di statistica descrittiva, CLUEB, Bologna; 1993. Cerca con Google

110. Mardia K.V., Kent J.T., Bibby J.M., Multivariate Analysis, London: Academic Press, 1979. Cerca con Google

111. Mason R.J., Greene K., Voelker D.R., Surfactant protein A and surfactant protein D in health and disease, American Journal of Physiology 275: 1-13; 1998. Cerca con Google

112. McCormick S.M., Boggaram V., Mendelson C.R., Characterization of mRNA transcripts and organization of human SP-A1 and SP-A2 genes. American Journal of Physiology, 266: 354-366; 1994. Cerca con Google

113. McCullagh P. & Nelder J.A., Generalized Linear Models, Second Edition, Chapman & Hall, London, 1989. Cerca con Google

114. Mazzetti A., Reti Neurali Artificiali. Introduzione ai principali modelli e simulazione su Personal Computer, Rai/Apogeo, 1991. Cerca con Google

115. Mc Cusker J., Epidemiology in community health, Nairobi; AMREF, 1978. Cerca con Google

116. Miettinen O.S., Estimability and estimation in case-referent studies, American Journal of Epidemiology 103: 226-235, 1976. Cerca con Google

117. Microsoft Office, Manuale dell'utente, Sistema di gestione di database relazionali per Windows. Microsoft Corporation, Ireland, 1992. Cerca con Google

118. Newcombe H.B., Kennedy J.M., Axford S.J., James A.P., Automatic linkage of vital and health records. Science (1959), 130: 954-959; 1959. Cerca con Google

119. Newcombe H.B., Handbook of record linkage: methods for health and statistical studies, administration and business. Oxford, England: Oxford University Press, 1988. Cerca con Google

120. Nogee L.M., Genetics of the hydrophobic surfactant proteins, Biochimica et Biophysica Acta 1408: 323-333; 1998. Cerca con Google

121. Oosterlaken-Dijksterhuis M.A., Haagsman H.P., van Golde L.M., Demel R.A., Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C, Biochemistry 30: 10965-10971; 1991. Cerca con Google

122. Pates R.D., Scully K.W., Einbinder J.S., Merkel R.L., Stukenborg G.J., Spraggins T.A., Reynolds C., Hyman R., Dembling B.P., Adding value to clinical data by linkage to a public death registry, Medinfo. 10 (Pt 2) (2001) 1384-1388; 2001. Cerca con Google

123. Pocock S.J., Clinical Trials. A Practical Approach, John Wiley & Sons Ltd, 1989. Cerca con Google

124. Raghunathan T.E., What do we do with missing data? Some options for analysis of incomplete data, Annual Review of Public Health, 25, 99-117; 2004. Cerca con Google

125. Rämet M., Haataja R., Marttila R., Floros J., Hallman M., Association between the Surfactant Protein A (SP-A) Gene Locus and Respiratory-Distress Syndrome in the Finnish Population, American Journal of Human Genetics 66: 1569-1579; 2000. Cerca con Google

126. Rao C.R., Linear Statistical Inference and Its Application, Second Edition. Wiley, Inc., New York, 1973. Cerca con Google

127. Rooney S.A., Young S.L., Mendelson C.R., Molecular and cellular processing of lung surfactant, FASEB Journal 8: 957-967; 1994. Cerca con Google

128. Rothman K.J., Modern Epidemiology, Little, Brown and company edition, Boston/Toronto; 1986. Cerca con Google

129. Rothman K.J. & Greenland S., Modern Epidemiology, Third Edition, Lippincott-Raven, Philadelphia; 1998. Cerca con Google

130. Rubin D.B., Formalizing Subjective Notions About the Effect of Nonrespondents in Sample Surveys. Journal of the American Statistical Association. 72, 538-543; 1977. Cerca con Google

131. Rubin D.B., Multiple Imputation for Nonresponse in Surveys, New York, Chichester, 1987. Cerca con Google

132. Rubin D.B., Multiple Imputation after 18+ Years, Journal of the American Statistical Association, 91, 434, 473-489; 1996. Cerca con Google

133. Rubin D.B. & Schenker N., Multiple Imputation for Interval Estimation from Simple Random Samples With Ignorable Nonresponse, Journal of the American Statistical Association, 81, 394, 366-374; 1986. Cerca con Google

134. SAS Institute Inc, SAS Procedures Guide, Version 8, Cary, NC: SAS Institute Inc, 1999. Cerca con Google

135. Scavalli E., Edit and Imputation Using MLP Neural Networks in SARs Data. EUREDIT internal report, 2002 Cerca con Google

136. Schafer J. L., Analysis of incomplete multivariate data. London: Chapman & Hall, 1997. Cerca con Google

137. Schafer J. L. & Olsen M. K., Multiple Imputation for Multivariate Missing-Data Problems: A Data Analyst's Perspective, Multivariate Behavioral Research, 33, 545-571; 1998. Cerca con Google

138. Schafer J.L. & Graham J.W., Missing Data: Our View of the State of the Art, Psychological Methods, 7, 2, 147-177; 2002. Cerca con Google

139. Schlesselman J.J., Case-Control Studies. Design, Conduct, Analysis. Oxford University Press, New York; 1982. Cerca con Google

140. Shannon C.E. & Weaver W., The mathematical theory of communication, Urbana, Uiv. Of Illinois Press, 1949. Cerca con Google

141. Shill W., Jöckel K. H., Drescher K., Timm J., Logistic analysis in case-control studies under validation sampling, Biometrika 1993 80(2):339-352; 1993. Cerca con Google

142. Schulte Nordholt E., Imputation: Methods, Simulation, Experiments and Practical Examples. International Statistical Review, Vol. 66, n. 2, pp. 159-180; 1998. Cerca con Google

143. Sheehe P.R., Dynamic risk analysis in retrospective matched pair studies of disease, Biometrics 18: 323-341, 1962. Cerca con Google

144. Simeonsson R. J., Lollar D., Hollowell J., Adams M., Revision of the International Classification of Impairments, Disabilities and Handicaps. Developmental Issues. Journal of Clinical Epidemiology; 53: 113-124; 2000. Cerca con Google

145. Sinharay S., Stern H.S., Russell D. The Use of Multiple Imputation for the Analysis of Missing Data, Psychological Methods, 6, 317-329; 2001. Cerca con Google

146. Sokal R.R. & Michener C.D., A statistical method for evaluating systematic relationships, Kansas University Science Bulletin, 38: 1409-1438, 1958. Cerca con Google

147. Soliani A., Statistica applicata alla ricerca e alle professioni scientifiche, Dispense 2005 dal sito http://www.dsa.unipr.it/soliani. Vai! Cerca con Google

148. Stokes M.E., Davis C.S., Koch G.G., Categorical Data Analysis using the SAS System, SAS Institute Inc., SAS Campus Drive, Cary, North Carolina, USA, 1995. Cerca con Google

149. Sutherland H.J., Meslin E.M., Till J.E., What's missing from current clinical trial guidelines? A framework for integrating science, ethics, and the community context, The Journal of clinical ethics 5(4): 297-303; 1994. Cerca con Google

150. Thuriaux M.C. Les conséquences de la maladie et leur mesure: introduction. World Health Statistics Quaterly; 42 (3): 110-114; 1989. Cerca con Google

151. Tanner M.A. & Wong W.H., The Calculation of Posterior Distributions by Data Augmentation, Journal of the American Statistical Association, 82, 528-550; 1987. Cerca con Google

152. Timm N. H. & Mieczkowski T. A., Univariate & Multivariate General Linear Model: theory and applications using SAS software. SAS Institute Inc., Cary, NC, USA, 1997. Cerca con Google

153. Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., Botstein D., Altman R.B., Missing value estimation methods for DNA microarrays, Bioinformatics, 17(6):520-525; 2001. Cerca con Google

154. Vajani L., Statistica Descrittiva, EtasLibri Editore, 1997. Cerca con Google

155. Vamvakopoulos N.C., Modi W.S., Floros J., Mapping the human pulmonary surfactant-associated protein B gene (SFTP3) to chromosome 2p12-->p11.2, Cytogenetics and Cell Genetics 68: 8-10; 1995. Cerca con Google

156. Van Den Brandt P.A., Schouten L.J., Goldbohm R.A., Dorant E., Hunen P.M.H., Development of a record linkage protocol for use in the Dutch Cancer Registry for epidemiological research. International Journal of Epidemiology 1990; 19: 553-8; 1990. Cerca con Google

157. Veletza S.V., Rogan P.K., Ten Have T., Olowe S.A., Floros J., Racial differences in allelic distribution at the human pulmonary surfactant protein B gene locus (SP-B), Experimental Lung Research 22: 489-494; 1996. Cerca con Google

158. Von Mises R., On the classification of observation data into distinct groups, Annual of Mathematic and Statistics 16: 68-73; 1945. Cerca con Google

159. Waien S.A., Linking large administrative databases: a method for conducting emergency medical services cohort studies using existing data. Academic Emergency Medicine (official journal of the Society for Academic Emergency Medicine) 4: 1087-95; 1997. Cerca con Google

160. Warr R.G., Hawgood S., Buckley D.I., Crisp T.M., Schilling J., Benson B.J., Ballard P.L., Clements J.A., White R.T., Low molecular weight human pulmonary surfactant protein (SP5): isolation, characterization, and cDNA and amino acid sequences, Proceedings of the National Academy of Sciences U S A 84: 7915-7919; 1987. Cerca con Google

161. Weiner M., Stump T.E., Callahan C.M., Lewis J.N., McDonald C.J., A practical method of linking data from Medicare claims and a comprehensive electronic medical records system, International Journal of Medical Informatics 71 (1): 57-69; 2003. Cerca con Google

162. Welch B.L., Note on discriminant functions, Biometrika 31: 218-220; 1939. Cerca con Google

163. Williams M.C., Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs, The Journal of Cell Biology 72: 260-277; 1977. Cerca con Google

164. Winkler W.E., Using the EM algorithm for weight computation in the Fellegi-Sunter model of record linkage, Proceedings of the Section on Survey Research Methodology. American Statistical Association: 1988; 667-671; 1988. Cerca con Google

165. World Health Organization, International Classification of Diseases 9th Revision - Clinical Modification (ICD9-CM), Geneva, Switzerland: WHO, 1975. Cerca con Google

166. World Health Organization. The International Classification of Impairments, Disability and Handicap: a manual of classification relating to consequences of diseases. Geneva, Switzerland: WHO, 1980. Cerca con Google

167. World Health Organization. ICF Classificazione Internazionale del Funzionamento, della Disabilità e della Salute. Ginevra-Milano: WHO, 2002. Cerca con Google

168. World Health Organization. The International Classification of Functioning, Disability and Health. Geneva, Switzerland: WHO, 2001. Cerca con Google

169. Wright J.R. & Clements J.A., Metabolism and turnover of lung surfactant, The American Review of Respiratory Disease 136: 426-444; 1987. Cerca con Google

170. Xian W., Ao L., Zhaohui J., Huanqing F., Missing value estimation for DNA microarray gene expression data by Support Vector Regression imputation and orthogonal coding scheme, Bioinformatics, 22;7:32; 2006. Cerca con Google

171. Yaruss J. S. & Quesal R. W. Stuttering and the International Classification of Functioning, Disability and Health (ICF): An update. Journal of Communication Disorders 2004; 37(1): 35-52; 2004. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record