Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Carraro, Matteo (2014) Innovative estimation and control techniques in electric drives for mechatronic applications. [Tesi di dottorato]

Full text disponibile come:

[img]Documento PDF
Tesi non accessible fino a 31 Gennaio 2020 per motivi correlati alla proprietà intellettuale.
Visibile a: nessuno

10Mb

Abstract (inglese)

The research presented in this thesis involves different aspects related to advanced control methodologies and self-commissioning identification algorithms in modern electrical drives. The theoretical study and the validation of the results obtained were performed in the three years of Ph.D. at the Electric Drives Laboratory in the Department of Management and Engineering of the University of Padova, (VI) Italy. The research topics were mainly three, all related to the implementation and development of advanced controls for electric drives, aimed at a more efficient use of the electric machines in the modern mechatronic applications.
The demand of electric drives capable of guarantee high-performance and flexible enough to update in real time the parameters involved in the control algorithm are the motivation of the present research, as well as the meshing or replacement of standard or obsolete control techniques with modern ones, able to fully exploit the new hardware resources. In order to contextualizes and motivate the choice of the present research in the world scenario, a comprehensive bibliographic framework can be found in the introduction of each chapter of the thesis.
The part one of the thesis presents two new control architectures for Permanent Magnet Synchronous Motors, that is a type of electric machine notoriously appreciated by both academia and industry for its flexibility of use and controllability. To this aim, in Chap.2 is proposed a non-linear control algorithm for the automatic search of the Maximum Torque Per Ampere (MTPA) operating condition for Permanent Magnet Synchronous Motors with anisotropic structure, to be integrated in a conventional Field Oriented Control scheme.
The exhaustive convergence and stability analysis performed in order to derive a new and original tuning method of the controller (proven by numerous experimental evidences) is definitely one of the distinguishing features in this research topic.
In parallel to the first topic, for the same type of motor has been investigated and developed (first analytically and then by simulation) a speed and current Direct Predictive Control with Hierarchical decisional structure. Unlike the traditional control techniques, the proposed Direct Predictive Control with modified hierarchical control structure has a faster dynamic and the capability to impose different operating conditions aimed at the energy efficiency optimisation. The on-line execution of the algorithm required for the experimental validation, has become possible thanks to the adoption of a control platform based on FPGA logic (Chap.3). In fact, the processing speed provided by these devices, released from the execution of sequential instructions (typical of the architecture of the microprocessors), ensures an execution time of the algorithm contained in a few us.
The part two of the thesis (i. e. Chap.5) presents an innovative technique of parameter identification for induction motors, capable of estimating the parameters of the equivalent inverse-Gamma electric circuit completely at standstill. As known, the saturations in the parameters of the magnetic circuit of the induction motor and the relative nonlinearities, deteriorate the performance of the standard sensored or sensorless vectorial controls.
The studied self-commissioning procedure addresses and solves many problems related to the estimate of the non-linearity of the parameters, and then it can be considered as an evolution of the classical identification techniques in the literature.
The practical feasibility, doubly validated by numerous experimental tests and by many finite element simulations on three different induction motors, concludes the chapter and proves definitely the method.

Abstract (italiano)

La ricerca presentata in questa tesi coinvolge molteplici aspetti che si legano alle più recenti metodologie di controllo studiate per azionamenti elettrici di ultima generazione.
Lo studio teorico e la validazione in ambito sperimentale sono il frutto del lavoro svolto nel triennio di dottorato presso il laboratorio di azionamenti elettrici del Dipartimento di Tecnica e Gestione dei Sistemi Industriali dell’Università degli Studi di Padova.
I temi di ricerca trattati sono principalmente tre, tutti legati alla realizzazione e allo sviluppo di algoritmi di controllo innovativi, capaci di incrementare l’efficienza e le prestazioni delle macchine elettriche di ultima generazione per applicazioni meccatroniche.
Azionamenti elettrici in grado di garantire elevate prestazioni ma sufficientemente flessibili da aggiornare in tempo reale i diversi parametri coinvolti nel algoritmo di controllo sono il filo conduttore e la motivazione della presente ricerca, così come la sostituzione di logiche di controllo standard o obsolete con nuove architetture di controllo capaci di sfruttare le più recenti innovazioni hardware.
Al fine di contestualizzare e motivare la ricerca condotta nel panorama mondiale, nell’introduzione di ciascun capitolo è inserito un esaustivo inquadramento bibliograficoinerente inerente il problema affrontato.
La prima parte della tesi presenta due nuove architetture di controllo per motori sincroni a magnete permanente, tipologia di macchina elettrica notoriamente apprezzata dal mondo accademico e industriale sia per la sua flessibilità d’uso che per la sua facile controllabilità.
In tal senso, nel Capitolo2 è descritto e formalizzato un controllo non lineare per motori sincroni a magnete permanente anisotropi, inseribile in schemi di controllo convenzionali ad orientamento di campo per ottenere la condizione di funzionamento a massima coppia su corrente (MTPA).
L’esaustiva analisi di convergenza e stabilità condotta al fine di ottenere un nuovo ed originale metodo per la sintonizzazione del regolatore (comprovato da numerose evidenze sperimentali) è sicuramente una delle caratteristiche distintive per questo ramo della ricerca.
Per la stessa tipologia di motore è stato poi sviluppato un controllo predittivo a stati finiti con struttura decisionale gerarchica.
A differenza delle tecniche di controllo tradizionali, la soluzione studiata garantisce una dinamica veloce e la possibilità di imporre condizioni operative diverse, volte all’ottimizzazione e all’incremento dell’efficienza energetica.
L’esecuzione on-line di tale algoritmo per le verifiche sperimentali si è resa fattibile grazie all’adozione di una piattaforma di controllo basata su logica FPGA (Capitolo3), in quanto la velocità di calcolo offerta da tali dispositivi, svincolata dall’esecuzione sequenziale delle istruzioni tipica dei microprocessori, garantisce tempi di esecuzione dell’algoritmo contenuti a pochi us.
Nella seconda parte della tesi (Capitolo5) è presentata un innovativa tecnica di identificazione parametrica per motori asincroni, capace di stimare i parametri del circuito equivalente a Gamma-inverso del motore asincrono, a rotore fermo. Come noto, le saturazioni del circuito magnetico della macchina e le non linearità ad esso associate deteriorano le performances nei normali controlli vettoriali sensored e soprattutto sensorless.
Il metodo di identificazione parametrica studiato affronta e risolve molti problemi connessi alla stima delle non linearità dei parametri, configurandosi a tutti gli effetti come un evoluzione delle classiche tecniche di identificazione presenti in letteratura. La fattibilità pratica del metodo, validata con innumerevoli prove sperimentali e simulazioni agli elementi finiti su tre diversi motori ad induzione, conclude il capitolo e prova in modo definitivo la realizzabilità del metodo.

Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zigliotto, Mauro
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA MECCATRONICA E DELL'INNOVAZIONE DEL PRODOTTO
Data di deposito della tesi:21 Gennaio 2014
Anno di Pubblicazione:Gennaio 2014
Parole chiave (italiano / inglese):Electrical Drives, Permanent-Magnet Synchronous Motor (PMSM), Hierarchical Direct Predictive Control, Maximum-Torque-Per-Ampere (MTPA), Induction Motor, Self-commissioning, FPGA
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/32 Convertitori, macchine e azionamenti elettrici
Struttura di riferimento:Dipartimenti > Dipartimento di Tecnica e Gestione dei Sistemi Industriali
Codice ID:6211
Depositato il:05 Nov 2014 09:54
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] K. Rahman, N. Patel, T. Ward, J. Nagashima, F. Caricchi, and F. Crescimbini, “Application of direct-drive wheel motor for fuel cell electric and hybrid electric vehicle propulsion system,” IEEE Trans. Ind. Appl., vol. 42, no. 5, pp. 1185–1192, 2006. Cerca con Google

[2] M. Carraro, A. Costabeber, and M. Zigliotto, “Convergence analysis and tuning of ripple correlation based mppt: A sliding mode approach,” in Proc. of EPE’13, 2013, pp. 1–10. Cerca con Google

[3] V. Honsinger, “The fields and parameters of interior type AC permanent magnet machines,” IEEE Trans. Power App. Syst. (through 1985), vol. PAS-101, no. 4, pp. 867–876, 1982. Cerca con Google

[4] M. Zigliotto, Dispense del corso di Azionamenti Elettrici Industriali. A.A. 2010-2011. Vicenza, 2010. Cerca con Google

[5] D. Meeker. (2003) Finite element method magnetics. [Online]. Available: http://femm.berlios.de Vai! Cerca con Google

[6] N. Bianchi, S. Bolognani, and G. Comelato, “Finite element analysis of three-phase induction motors: comparison of two different approaches,” IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1523–1528, 1999. Cerca con Google

[7] N. Bianchi, Calcolo delle macchine elettriche col metodo degli elementi finiti. CLEUP, 2001. Cerca con Google

[8] R. Antonello, M. Carraro, F. Tinazzi, and M. Zigliotto, “Parametric identification of PM synchronous motors: a hammerstein-model approach,” in Proc. of ICM’13, Feb. 2013. Cerca con Google

[9] M. Carraro, F. Tinazzi, and M. Zigliotto, “A novel approach to torque estimation in IPM synchronous motor drives,” in Proc. of IECON’12, oct. 2012, pp. 4637 –4641. Cerca con Google

[10] R. Dutta and M. Rahman, “A comparative analysis of two test methods of measuring d - and q -axes inductances of interior permanent-magnet machine,” IEEE Trans. Magn., vol. 42, no. 11, pp. 3712 –3718, nov. 2006. Cerca con Google

[11] S. Yamamoto, T. Ara, S. Oda, and K. Matsuse, “Prediction of starting performance of PM motors by dc decay testing method,” IEEE Trans. Ind. Appl., vol. 36, no. 4, pp. 1053 –1060, jul/aug 2000. Cerca con Google

[12] M. Zigliotto, M. Carraro, and F. Tinazzi, “The influence of the squirrel cage rotor in the estimation of the IM flux linkage at standstill,” in Proc. of ICIT’13, 2013, pp. 410–415. Cerca con Google

[13] M. Barcaro, N. Bianchi, and F. Magnussen, “Permanent-magnet optimization in permanent-magnet-assisted synchronous reluctance motor for a wide constant-power speed range,” IEEE Trans. Ind. Electron., vol. 59, no. 6, pp. 2495–2502, 2012. Cerca con Google

[14] S. Kim, Y.-D. Yoon, S.-K. Sul, and K. Ide, “Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 488–497, 2013. Cerca con Google

[15] I. Boldea, M. Paicu, and G. Andreescu, “Active flux concept for motion-sensorless unified ac drives,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2612–2618, 2008. Cerca con Google

[16] M. Paicu, I. Boldea, G. Andreescu, and F. Blaabjerg, “Very low speed performance of active flux based sensorless control: interior permanent magnet synchronous motor vector control versus direct torque and flux control,” Electric Power Applications, IET, vol. 3, no. 6, pp. 551–561, 2009. Cerca con Google

[17] A. Kusko and D. Galler, “Control Means for Minimization of Losses in AC and DC Motor Drives,” IEEE Trans. Ind. Appl., vol. IA-19, no. 4, pp. 561–570, 1983. Cerca con Google

[18] S. Morimoto, Y. Tong, Y. Takeda, and T. Hirasa, “Loss minimization control of permanent magnet synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 41, no. 5, pp. 511–517, 1994. Cerca con Google

[19] R. Moncada, J. Tapia, and T. Jahns, “Analysis of negative-saliency permanent-magnet machines,” IEEE Trans. Ind. Electron., vol. 57, no. 1, pp. 122 –127, Jan. 2010. Cerca con Google

[20] P. Vas, Sensorless vector and direct torque control, ser. Monographs in electrical and electronic engineering. Oxford University Press, 1998. Cerca con Google

[21] T. Jahns, G. Kliman, and T. W. Neumann, “Interior Permanent-Magnet Synchronous Motors for Adjustable-Speed Drives,” IEEE Trans. Ind. Appl., vol. IA-22, no. 4, pp. 738–747, 1986. Cerca con Google

[22] P. Niazi, H. Toliyat, and A. Goodarzi, “Robust maximum torque per ampere (MTPA) control of PM-assisted synrm for traction applications,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1538 –1545, Jul. 2007. Cerca con Google

[23] M. Chy and M. Uddin, “Development of a nonlinear speed controller of IPMSM drive incorporating MTPA with mechanical parameter estimation,” in Proc. of IEMDC’07, vol. 1, 2007, pp. 322–327. Cerca con Google

[24] G. Foo and M. Rahman, “Sensorless sliding-mode MTPA control of an IPM synchronous motor drive using a sliding-mode observer and hf signal injection,” IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1270–1278, 2010. Cerca con Google

[25] S. Fazeli, H. Ping, H. Zarchi, and J. Soltani, “Robust maximum torque per ampere (MTPA) control of interior permanent magnet synchronous motor drives using adaptive input-output feedback linearization approach,” in Proc. of TECHPOS’09, 2009, pp. 1–6. Cerca con Google

[26] Y. Mohamed and T. Lee, “Adaptive self-tuning MTPA vector controller for IPMSM drive system,” IEEE Trans. Energy Convers., vol. 21, no. 3, pp. 636–644, 2006. [27] Y. Tan, W. Moase, C. Manzie, D. Nesic, and I. M. Y. Mareels, “Extremum seeking from 1922 to 2010,” in Proc. of CCC’10, 2010, pp. 14–26. Cerca con Google

[28] S. Bolognani, L. Sgarbossa, and M. Zordan, “Self-tuning of MTPA current vector generation scheme in IPM synchronous motor drives,” in Proc. of EPE’07, 2007, pp. 1–10. Cerca con Google

[29] K.-W. Lee and S.-B. Lee, “MTPA operating point tracking control scheme for vector controlled PMSM drives,” in Proc. of SPEEDAM’10, 2010, pp. 24–28. Cerca con Google

[30] S. Kim, Y.-D. Yoon, S.-K. Sul, K. Ide, and K. Tomita, “Parameter independent maximum torque per ampere (MTPA) control of IPM machine based on signal injection,” in Proc. of APEC’10, Palm Springs, California, 2010, pp. 103–108. Cerca con Google

[31] S. Bolognani, L. Peretti, and M. Zigliotto, “Online MTPA control strategy for DTC synchronous-reluctance-motor drives,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 20–28, 2011. Cerca con Google

[32] A. Dianov, K. Young-Kwan, L. Sang-Joon, and L. Sang-Taek, “Robust self-tuning MTPA algorithm for IPMSM drives,” in Proc. of IECON’08, 2008, pp. 1355–1360. Cerca con Google

[33] S. Bolognani, R. Petrella, A. Prearo, and L. Sgarbossa, “On-line tracking of the MTPA trajectory in IPM motors via active power measurement,” in Proc. of ICEM’10, 2010, pp. 1–7. Cerca con Google

[34] S. Bolognani, R. Petrella, A. Prearo, and L. Sgarbossa, “Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection,” IEEE Trans. Ind. Appl., vol. 47, no. 1, pp. 105–114, 2011. Cerca con Google

[35] Y. Xia, K. Ahmed, and B. Williams, “A new maximum power point tracking technique for permanent magnet synchronous generator based wind energy conversion system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3609–3620, 2011. Cerca con Google

[36] M. Krstic and H.-H. Wang, “Stability of extremum seeking feedback for general nonlinear dynamic systems,” Automatica, vol. 36, no. 4, pp. 595 – 601, 2000. Cerca con Google

[37] K. B. Ariyur and M. Krstic, Real-Time Optimization by Extremum-Seeking Control. Wiley Interscience, 2003. Cerca con Google

[38] Y. Tan, D. Neši´ c, and I. Mareels, “On Non-local Stability Properties of Extremum Seeking Control,” Automatica, vol. 42, no. 6, pp. 889–903, 2006. Cerca con Google

[39] H. Khalil, Nonlinear systems. Prentice Hall PTR, 2002. Cerca con Google

[40] I. Boldea, V. Coroban-Schramel, G. Andreescu, S. Scridon, and F. Blaabjerg, “Bega starter/alternator - vector control implementation and performance for wide speed range at unity power factor operation,” in Proc. of IAS ’08, 2008, pp. 1–8. Cerca con Google

[41] I. Boldea, M. Paicu, G.-D. Andreescu, and F. Blaabjerg, “Active flux orientation vector sensorless control of ipmsm,” in Proc. of OPTIM ’08, 2008, pp. 161–168. Cerca con Google

[42] J. Rodriguez, J. Pontt, C. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann, “Predictive current control of a voltage source inverter,” IEEE Trans. Ind. Electron.,vol. 54, no. 1, pp. 495–503, 2007. Cerca con Google

[43] P. Cortes, M. Kazmierkowski, R. Kennel, D. Quevedo, and J. Rodriguez, “Predictive control in power electronics and drives,” IEEE Trans. Ind. Electron., vol. 55, pp. 4312–4324, 2008. Cerca con Google

[44] M. Kazmierkowski and L. Malesani, “Current control techniques for three-phase voltage-source PWM converters: A survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691–703, Oct. 1998. Cerca con Google

[45] J. Holtz and S. Stadtfeld, “A predictive controller for the stator current vector of AC machines fed from a switched voltage source,” in Proc. of IPEC’83, 1983, pp. 1665–1675. Cerca con Google

[46] I. Takahashi and T. Noguchi, “A new quick response and high efficiency control strategy of an IM,” in Conf. Rec. of IAS annual meeting, 1985, pp. 1665–1675. Cerca con Google

[47] P. Mercorelli, “A switching model predictive control for overcoming a hysteresis effect in a hybrid actuator for camless internal combustion engines,” in Proc. of PRECEDE, 2011, pp. 10–16. Cerca con Google

[48] S. Qin and T. A. Badgwell, “A survey of industrial model predictive control technology,” Control Engineering Practice, vol. 11, no. 7, pp. 733 – 764, 2003. Cerca con Google

[49] H. Le-Huy, K. Slimani, and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” IEEE Trans. Ind. Electron., vol. 41, no. 1, pp. 110–117, 1994. Cerca con Google

[50] F. Morel, X. Lin-Shi, J.-M. Retif, B. Allard, and C. Buttay, “A comparative study of predictive current control schemes for a permanent-magnet synchronous machine drive,” IEEE Trans. Ind. Electron., vol. 56(7), pp. 2715–2728, 2009. Cerca con Google

[51] J. Rodriguez, M. Kazmierkowski, J. Espinoza, P. Zanchetta, H. Abu-Rub, H. Young, and C. Rojas, “State of the art of finite control set model predictive control in power electronics,” IEEE Trans. Ind. Informat., vol. 9, no. 2, pp. 1003–1016, 2013. Cerca con Google

[52] R. Errouissi, M. Ouhrouche, W.-H. Chen, and A. Trzynadlowski, “Robust non-linear predictive controller for permanent-magnet synchronous motors with an optimized cost function,” IEEE Trans. Ind. Electron., vol. 59, no. 7, pp. 2849 –2858, july 2012. Cerca con Google

[53] M. Kvasnica, P. Grieder, and M. Baoti´ c, “Multi-parametric toolbox MPT,” 2004. [Online]. Available: http://control.ee.ethz.ch/~mpt/ Vai! Cerca con Google

[54] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit solution of model predictive control via multiparametric quadratic programming,” in Proc. of American Control Conference (ACC), 2000. Cerca con Google

[55] S. Mariethoz, A. Domahidi, and M. Morari, “Sensorless explicit model predictive control of permanent magnet synchronous motors,” in Proc. of IEMDC ’09, 2009, pp. 1250–1257. Cerca con Google

[56] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Combined speed and current model predictive control with inherent field-weakening features for PMSM drives,” in Proc. of MELECON 2008, 2008, pp. 472–478. Cerca con Google

[57] A. Linder and R. Kennel, “Model predictive control for electrical drives,” in Proc. of PESC’05, 2005, pp. 1793–1799. Cerca con Google

[58] S. Bolognani, S. Bolognani, L. Peretti, and M. Zigliotto, “Design and implementation of model predictive control for electrical motor drives,” IEEE Trans. Ind. Electron., vol. 36, pp. 1925–1936, 2009. Cerca con Google

[59] X. Lin-Shi, F. Morel, A. Llor, B. Allard, and J.-M. Retif, “Implementation of hybrid control for motor drives,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1946–1952, 2007. Cerca con Google

[60] Y. Inoue, Y. Kawaguchi, S. Morimoto, and M. Sanada, “Performance improvement of sensorless IPMSM drives in low-speed region using online parameter identification,” in Proc. of ECCE’09, 2009, pp. 1933–1938. Cerca con Google

[61] A. Akrad, M. Hilairet, and D. Diallo, “Performance enhancement of a sensorless PMSM drive with load torque estimation,” in Proc. of IECON’10, 2010, pp. 945-950. Cerca con Google

[62] M. Carraro, F. Tinazzi, and M. Zigliotto, “Estimation of the direct-axis inductance in PM synchronous motor drives at standstill,” in Proc. of ICIT’13, 2013, pp. 313–318. Cerca con Google

[63] P. Wipasuramonton, Z. Zhu, and D. Howe, “Predictive current control with current-error correction for PM brushless AC drives,” IEEE Trans. Ind. Appl., vol. 42, no. 4, pp. 1071–1079, 2006. Cerca con Google

[64] E. Schrijver and J. D. van, “Disturbance observers for rigid mechanical systems: equivalence, stability, and design,” Journal of Dynamic Systems, Measurement, and Control, vol. 124, no. 4, pp. 539–548, 2002. Cerca con Google

[65] P. Cortes, S. Kouro, B. La Rocca, R. Vargas, J. Rodriguez, J. Leon, S. Vazquez, and L. Franquelo, “Guidelines for weighting factors design in model predictive control of power converters and drives,” in Proc. of ICIT’09, 2009, pp. 1–7. Cerca con Google

[66] F. Morel, J.-M. Retif, X. Lin-Shi, and C. Valentin, “Permanent magnet synchronous machine hybrid torque control,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 501–511, 2008. Cerca con Google

[67] S. Vazquez, J. Leon, L. Franquelo, J. Carrasco, O. Martinez, J. Rodriguez, P. Cortes, and S. Kouro, “Model predictive control with constant switching frequency using a discrete space vector modulation with virtual state vectors,” in Proc. of ICIT’09, 2009, pp. 1–6. Cerca con Google

[68] S. Chai and L. Wang, “Finite control set model predictive control of 2LVSI-PMSM using interpolated switching states,” in Proc. of IECON 2012, 2012, pp. 1799–1804. Cerca con Google

[69] M. Carraro and M. Zigliotto, “Hierarchical direct predictive control of PMSM drives,” in Proc. of PRECEDE’11, oct. 2011, pp. 3 –9. Cerca con Google

[70] A. Munoz and T. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683 –689, jul 1999. Cerca con Google

[71] J. Jeong and L. Jun-Young, “Parameter identification of an induction motor drive with magnetic saturation for electric vehicle,” Journal of Power Electronics, vol. 11, pp. 418–423, 2011. Cerca con Google

[72] K. B. Nordin, D. W. Novotny, and D. S. Zinger, “The influence of motor parameter deviations in feedforward field orientation drive systems,” IEEE Trans. Ind. Appl., vol. IA-21, no. 4, pp. 1009 –1015, july 1985. Cerca con Google

[73] A. Khambadkone and J. Holtz, “Vector-controlled induction motor drive with a self-commissioning scheme,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 322 –327, oct 1991. Cerca con Google

[74] J.-K. Seok, S.-I. Moon, and S.-K. Sul, “Induction machine parameter identification using PWM inverter at standstill,” IEEE Trans. Ind. Electron., vol. 12(2), pp. 127– 132, 1997. Cerca con Google

[75] M. Ranta, M. Hinkkanen, and J. Luomi, “Inductance identification of an induc- tion machine taking load-dependent saturation into account,” in Proc. of ICEM’08, 2008, pp. 1–6. Cerca con Google

[76] J. Guzinski and H. Abu-Rub, “Speed sensorless induction motor drive with predictive current controller,” IEEE Trans. Ind. Electron., vol. 60, no. 2, pp. 699–709, 2013. Cerca con Google

[77] M. Sonnaillon, G. Bisheimer, C. De Angelo, and G. Garcia, “Automatic induction machine parameters measurement using standstill frequency-domain tests,” Electric Power Applications, IET, vol. 1, no. 5, pp. 833 –838, sept. 2007. Cerca con Google

[78] J. Maes and J. Melkebeek, “Speed sensorless direct torque control of induction motors using an adaptive flux observer,” in Conf. Rec. of IAS Annual Meeting, vol. 4, 1999, pp. 2305 –2312 vol.4. Cerca con Google

[79] K. Akatsu and A. Kawamura, “Sensorless very low-speed and zero-speed estimations with online rotor resistance estimation of induction motor without signal injection,” IEEE Trans. Ind. Appl., vol. 36, no. 3, pp. 764 –771, may/jun 2000. Cerca con Google

[80] J. Holtz and J. Quan, “Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification,” IEEE Trans. Ind. Appl., vol. 38, no. 4, pp. 1087 – 1095, jul/aug 2002. Cerca con Google

[81] K. Wang, J. Chiasson, M. Bodson, and L. Tolbert, “A nonlinear least-squares approach for identification of the induction motor parameters,” IEEE Trans. Autom. Control, vol. 50, no. 10, pp. 1622–1628, 2005. Cerca con Google

[82] J. Stephan, M. Bodson, and J. Chiasson, “Real-time estimation of the parameters and fluxes of induction motors,” IEEE Trans. Ind. Appl., vol. 30, no. 3, pp. 746–759, 1994. Cerca con Google

[83] R. Babau, I. Boldea, T. Miller, and N. Muntean, “Complete parameter identification of large induction machines from no load acceleration deceleration tests,” IEEE Trans. Ind. Electron., no. 4, pp. 1962–1972, 2007. Cerca con Google

[84] M. Bertoluzzo, G. Buja, and R. Menis, “Self-commissioning of RFO IM drives: one-test identification of the magnetization characteristic of the motor,” IEEE Trans. Ind. Appl., vol. 37, no. 6, pp. 1801 –1806, nov/dec 2001. Cerca con Google

[85] A. Proca and A. Keyhani, “Identification of variable frequency induction motor models from operating data,” IEEE Trans. Energy Convers., vol. 17, no. 1, pp. 24–31, mar 2002. Cerca con Google

[86] A. Boglietti, A. Cavagnino, and M. Lazzari, “Computational algorithms for induction-motor equivalent circuit parameter determination - part I: Resistances and leakage reactances,” IEEE Trans. Ind. Electron., vol. 58, 9, pp. 3723–3733, 2011. Cerca con Google

[87] A. Boglietti, A. Cavagnino, and M. Lazzari, “Computational algorithms for induction motor equivalent circuit parameter determination - part II: Skin effect and magnetizing characteristics,” IEEE Trans. Ind. Electron., vol. 58, 9, pp. 3734–3740, 2011. Cerca con Google

[88] L. Peretti and M. Zigliotto, “Automatic procedure for induction motor parameter estimation at standstill,” Electric Power Applications, IET, vol. 6, no. 4, pp. 214 –224, april 2012. Cerca con Google

[89] M. Ruff, A. Bunte, and H. Grotstollen, “A new self-commissioning scheme for an asynchronous motor drive system,” in Conf. Rec. of IAS annual meeting, oct 1994, pp. 616 –623 vol.1. Cerca con Google

[90] J. Godbersen, “Stand-still method for estimating the rotor resistance of induction motors,” in Conf. Rec. of IAS Annual Meeting), vol. 2, 1999, pp. 900–905. Cerca con Google

[91] J. Beraldin and W. Steenaart, “Overflow analysis of a fixed-point implementation of the goertzel algorithm,” IEEE Trans. Circuits Syst., vol. 36, no. 2, pp. 322 –324, feb 1989. Cerca con Google

[92] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Upper Saddle River, NJ: Prentice-Hall, Inc., 2009. Cerca con Google

[93] P. L. Alger and R. Arnold, “The history of induction motors in america,” in Proc. of the IEEE, vol. 64, no. 9, pp. 1380–1383, 1976. Cerca con Google

[94] W. Theodore, Electrical Machines , Drives And Power Systems, 5/E. Pearson Education, 2002. Cerca con Google

[95] A. Fitzgerald, C. Kingsley, and S. Umans, Electric Machinery, ser. McGraw-Hill Series in Electrical Engineering. McGraw-Hill, 2003. Cerca con Google

[96] S. Bolognani and M. Zigliotto, “Essentials of IM parameters measurement for FOC drives tuning,” in Proc. of ICEM’02, Mar. 2002. Cerca con Google

[97] M. Sumner and G. Asher, “Autocommissioning for voltage-referenced voltage-fed vector-controlled induction motor drives,” Electric Power Applications, IEE Proceedings B, vol. 140, no. 3, pp. 187–200, 1993. Cerca con Google

[98] S. Williamson and M. Begg, “Calculation of the bar resistance and leakage reactance of cage rotors with closed slots,” Electric Power Applications, IEE Proceedings B, vol. 132, no. 3, pp. 125 –132, 1985. Cerca con Google

[99] S. Bittanti, Teoria della predizione e del filtraggio. Pitagora, 2000. Cerca con Google

[100] K. Nassiri-Toussi and W. Ren, “On the convergence of least-squares estimates,” in Proc. of Decision and Control, 1992, pp. 2233–2238 vol.2. Cerca con Google

[101] M. Arkan, D. Kostic-Perovic, and P. Unsworth, “Closed rotor slot effect on negative sequence impedance in induction motors,” in Proc. of IEEE IAS Conf., vol. 2, 2001, pp. 751–753. Cerca con Google

[102] J. Hu and B. Wu, “New integration algorithms for estimating motor flux over a wide speed range,” in Proc. of PESC’97, vol. 2, jun 1997, pp. 1075 –1081 vol.2. Cerca con Google

[103] R. Bojoi, P. Guglielmi, and G.-M. Pellegrino, “Sensorless direct field-oriented control of three-phase induction motor drives for low-cost applications,” IEEE Trans. Ind. Appl., vol. 44, no. 2, pp. 475 –481, march-april 2008. Cerca con Google

[104] L. Alberti, N. Bianchi, and S. Bolognani, “Variable-speed induction machine performance computed using finite-element,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 789 –797, march-april 2011. Cerca con Google

[105] D. Dolinar, R. De Weerdt, R. Belmans, and E. Freeman, “Calculation of two-axis induction motor model parameters using finite elements,” IEEE Trans. Energy Convers., vol. 12, no. 2, pp. 133 –142, jun 1997. Cerca con Google

[106] L. Peretti and M. Zigliotto, “Fpga-based voltage measurements in AC drives,” in Proc. of ICEM’10, sept. 2010, pp. 1 –6. Cerca con Google

[107] K. Wang, J. Chiasson, M. Bodson, and L. Tolbert, “An online rotor time constant estimator for induction machine,” in Proc. of IEMDC’05, 2005, pp. 608–614. Cerca con Google

Solo per lo Staff dell Archivio: Modifica questo record