Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Ronco, Paolo (2008) Sediment Budget of Unsurveyed Rivers at Watershed Scale: the Case of Lower Zambezi. [Ph.D. thesis]

Full text disponibile come:

[img]
Preview
Documento PDF
2645Kb

Abstract (english)

The issue of sustainable management of natural resources, such as water and land, is rising to the attention of the technical and scientific community as a crucial theme of global relevance that asks for a global response both in terms of improved knowledge, better means and specific actions. Earth's erosion and sedimentation processes are of particular interest because they are directly related to human activities, in a bilateral way.

The main constraint is often represented, especially in Developing Countries, by the lack of data and of economic means to collect them. The objective of the present study is trying to integrate the few available data with appropriate and innovative models of sediment transport for simulating the long-term profile evolution of a river and assess at the same time the necessary terms of a sediment balance at watershed scale. The method has been applied to the lower Zambezi river.

In Chapter 1, an overview of recent developments in sediment management and research is presented, underlining the differences in regional approaches, depending upon the respective social and geographical settings. The three basic forms of sediment motion (surface, mass and linear movement, mainly responsible for river processes) and the time- and space-scales of sedimentary systems are considered, underlying the ample variety of features encountered moving along the river from the divide to the coast. A number of morphological models (one, two- and three-dimensional) developed at different time- and space scales and with various degrees of detail and approximation consent to describes these processes.

Soil and water conservation is one of the most critical environmental issues facing many countries, especially in Developing Countries (DC) where the strong impact of climate change, urbanization, deforestation, land degradation, droughts and desertification is increasing conflicts for the use of natural resources. In the various Sections of Chapter 1 a review is made about the present state of research in the field of soil erosion, sedimentation and morphodynamics. The solution of all the related problems, however, require the monitoring of several natural and human induced phenomena. Unfortunately, the capability to collect and manage water and sediment resources-related information remains inadequate in many parts of the world: the African case is particularly dramatic due to the chronic lack of available data, not only on solid transport but also on the bathymetric and topographic river configuration.

An innovative methodology to better integrate the scanty and sometimes unreliable bathymetric data is presented in Chapter 2. The waterflow and sediment transport equations have been linearized and analytically solved under the hypothesis of quasi-equilibrium conditions. This simplification permits to reconstruct the river bathymetry from planimetric data, the only ones available from satellite images for most of the large rivers of the world, and from averaged altimetric data, usually provided by the available DEM's. The linearized quasi-equilibrium solution provides a criterion to evaluate the accuracy of the approximate (uniform-flow) model, compared to the regular (steady-flow) model, also for non-linear equations in non-equilibrium conditions. The approximate solution presents many advantages which become crucial for long-term morphological computations at watershed scale. The accuracy of the approximate solution appears to improve when the river is schematized with a coarse computational grid although, of course, with a corresponding loss of spatial resolution. A detailed comparative analysis of the accuracy and resolution of both models has been carried out, with an application to the lower Zambezi river in Mozambique.

Finally, with the methodology previously developed, in Chapter 3 we investigated the effects of damming on the morphological evolution of lower Zambezi river. In fact, the few, coarse and non simultaneous data have been integrated with the help of the same simplified model utilized for the morphological analysis. The Zambezi river is the fourth largest river in Africa (after Congo, Nile and Niger) and it is the largest African river flowing into the Indian Ocean. The lower Zambezi in Mozambique is strongly influenced by the presence of two very large reservoirs (Kariba dam and Cahora Bassa dam) that have modified the natural seasonal flows, as well as the sediment balance and morphology of the river. In particular, downstream of the Cahora Bassa reservoir down to the delta, non negligible effects are taking place, such as local scour, bank collapse and shore-line progressive erosion, together with economic and ecologic consequences on shrimp production and biodiversity alteration. In order to assess and possibly mitigate those effects, a quantitative and qualitative analysis of the erosion/sedimentation/sediment transport phenomena along the lower Zambezi is urgently needed. As already mentioned, the main constraint is represented by the scanty and unreliable data available: the Mozambican hydrometric monitoring network is very scarce and no bathymetric survey of the river has been made. Besides the systematic flow records at the dam sites and few occasional measurements of turbidity and bottom granulometry, only the Digital Elevation Model (DEM) is available. Therefore, the objective of Chapter 3 is investigating the effects of the presence of Kariba and Cahora Bassa dams on the downstream morphology, integrating the few, coarse and non simultaneous data with a simplified model. The results of simulations substantially agree with the celebrated scale of Lane, (quite often invoked to explain the effects of river damming), on the condition that the time- and space-propagation of the disturbances is taken into account. In fact, the reduction of waterflow seems to have an immediate effect downstream by initially fostering the sediment deposition. Subsequently, the total interception of sediment by the dam slowly takes over and inverts this tendency. A larger degradation (or smaller aggradation) with respect to the natural conditions (no dams) seems to represent the eventual dominant effect of damming in the long term evolution of the river.


Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Di Silvio, Giampaolo
Ph.D. course:Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE > IDRODINAMICA E MODELLISTICA AMBIENTALE
Data di deposito della tesi:January 2008
Anno di Pubblicazione:January 2008
Key Words:morphological data, one-dimensional model, sediment transport, long-term morphodynamics, bathymetric survey, space resolution, Zambezi, dams
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/01 Idraulica
Struttura di riferimento:Dipartimenti > pre 2012 - Dipartimento di Ingegneria Idraulica, Marittima, Ambientale e Geotecnica
Codice ID:625
Depositato il:08 Sep 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Agarwal K.K. and Idiculla K.C., (2002). Reservoir sedimentation surveys using Global Positioning System, Central Water Commission Ministry of Water Resources New Delhi. Cerca con Google

Anderson, J. & Dutton, P. & Goodman, P. & Souto, B. (1990). Evaluation of the wildlife resource in the Marromeu complex with recommendations for its further use. LOMACO, Maputo, Mozambique. Cerca con Google

Armanini, A. & Di Silvio, G. (1988), A one-dimensional model for the transport of a sediment mixture in non-equilibrium condition, Journal of Hydraulic Research., 26 (3), 275-292. Cerca con Google

Armanini, A. (1995), Non-uniform sediment transport: dynamics of the active layer, Journal of Hydraulic Research, 33 (5). Cerca con Google

Attwell, R.I.G. (1970). Some effects of lake Kariba on the ecology of a floodplain of the mid-Zambezi valley of Rhodesia. Biological Conservation, 2 (3), 189-196. Cerca con Google

Baker, B. (1880). The River Nile. Proc. Inst. Civ. Engrs., 50, 376. Cerca con Google

Basson, G. (2004). Proposed Zambezi river Case Study for ISI: Africa. Confidential paper for IHP-UNESCO ISI Steering Committee. Paris. Cerca con Google

Baxter, R.M. (1977). Environmental effects of dams and impoundments. Ann. Rev. Ecol. Syst., 8, 255-283. Cerca con Google

Bates, P.D. & Anderson, M.G. & Baird, L. & Walling, D.E. & Simm, D. (1992). Modelling floodplain flow with a two dimensional finite element scheme. Earth Surface Processes and Landform. 17, 575-588. Cerca con Google

Bates, P.D. & Anderson, M.G. & Hervouet, J.M. (1995). An initial comparison of 2-dimensional finite element codes for river flood simulation. Proc. Inst. Civ. Engrs. Water: Maritime and Energy 112, 238-248. Cerca con Google

Baum, R.L. & Savage, W.Z. & Godt, J.W. (2002), TRGRS - A Fortran program for transient rainfall infiltration and Gps-based regional slope stability analysis, U.S. Geological Survey Open-File Report 02-424. Cerca con Google

Beasley, D.B. & Huggins, L.F. & Monke, E.J. (1980). ANSWERS: A model for watershed planning, Trans. Am. Soc. Agric. Engrs. 23, 938-944. Cerca con Google

Beilfuss, R.D. & Allan, D.G. (1996). Watled Crane and wetland surveys in the great Zambezi delta, Mozambique. Proceedings African Crane and Wetland training workshop, 345-354. Cerca con Google

Beilfuss, R.D. & Davies, B.R. (1999). Prescribed flooding and wetlands rehabilitation in the Zambezi delta, Mozambique. An Int. Perspective on Wetland Rehabilitation, 143-158. Cerca con Google

Beilfuss, R. & Dos Santos D. (2001). Patterns of Hydrological Change in the Zambezi Delta, Mozambique. Program for the Sustainable Management of Cahora Bassa Dam and the Lower Zambezi Valley. Working Paper #2. Direc?ço Nacional das Aguas, Maputo, Mozambique. Cerca con Google

Beven, K. (1989). Changing ideas in hydrology - The case of physically based models. Journal of Hydrology. 105, 157-172. Cerca con Google

Bolla Pittaluga, M. & Seminara, G. (2003). Depth integrated modelling of suspended sediment transport, Water Resources Research, 39 (5), 1137. Cerca con Google

Bolton, P. (1978). The Control of Water Resources in the Zambezi Basin and its Implications for Mozambique. Occasional Paper on Appropriate Technology. School of Engineering Science, University of Edinburgh, Scotland. Cerca con Google

Bolton, P. (1983). The regulation of the Zambezi in Mozambique: a study of the origins and impact of the Cabora Bassa Project, PhD Thesis. University of Edinburgh. Cerca con Google

Bolton, P. (1984). Sediment deposition in major reservoir in the Zambezi basin. Proceeding of the Harare Symposium: Challenges in Africa Hydrology and Water Resources. IAHR Publ.n°144. Cerca con Google

Bowmaker, A.P. (1960). A report on the Kariba lake area and Zambezi river prior to inundation, and the initial effects of inundation with particular reference to the fisheries. Report on the training center on fishery survey for the countries of African region. FAO Library Fiche AN:59986. Rome. Cerca con Google

Brandt, S.A. (2000). Classification of geomorphological effects downstream of dams. Catena. 40, 375-401. Cerca con Google

Brigada de Engenharia Hidraulica, Miss?o de Fomento e Povoamento do Zambeze (BEH-MFPZ), (1964). Vale do Zambeze: elementos de estudo, sedimentologia e reconheçimento de fundações. Plano geral de fomento e occupaç?o. Anexos. Lourenço Marques (Maputo). Mozambique. Cerca con Google

Bruk, S. (2003). Sediment research and social response: Regional Accents and the International Sediment Initiative of IHP. Proc. of the ICCORES-UNESCO Workshop: From watershed slopes to coastal areas: sedimentation processes at different scales, Venice, Dec. 2003. Cerca con Google

Catuneanu, O. & Wopfner, H. & Eriksson, P.G. & Cairnecross, B. Rubidge, B.S. & Smith, R.M.H. & Hancox, P.J. (2005). The Karoo basins of south-central Africa. Journal of African Earth Sciences. 43, 211-253. Cerca con Google

Centro Nacional de Cartografia e Teledetecç?o de Moçambique - Cenacarta (2000). Carta de Moçambique, escala 1:50,000 (various sheets). Maputo, Mozambique. Cerca con Google

Chenje, M. (2000), State of the Environment Zambezi Basin 2000, SADC/IUCN/ZRA/SARDC, Maseru/Lusaka/Harare, 63. Cerca con Google

Cotter, A.S. & Chaubey, I. & Costello, T.A. & Soerens, T.S. & Nelson, M.A. (2003). Water quality model output uncertainty as affected by spatial resolution of input data. Journal of American Water Resources Association (JAWRA) 39(4),977-986. Cerca con Google

Coulthard, T.J. & Hicks, D.M. & Van De Wiel, M.J. (2007). Cellular modelling of river catchments and reaches: Advanteges, limitations and prospects. Geomorphology, 90, 192-207. Cerca con Google

Davies, R.D. & Beilfuss, R.D. & Thoms, M.C. (2000). Cahora Bassa Retrospective, 1974-1997: effects of flow regulation on the Lower Zambezi River. Limnology in the developing word, 27, 1-9. Cerca con Google

De Vries, M. (1993). Use of models for river problems, Studies and Reports in Hydrology Series, no. 51, UNESCO. Cerca con Google

Di Silvio, G. & Peviani, M.A. (1989). Modelling Short- and Long-Term evolution of mountain rivers: an application to the torrent Mallero (Italy). Published at: International Workshop on fluvial hydraulics of mountains regions. Trent, Italy. Cerca con Google

Di Silvio, G. (1991). Sediment exchange between stream and bottom: a four layer model. Int. Workshop on Grain Sorting in Rivers. Ascona (Switzerland), 21-25 Oct. 1991,163-192. Cerca con Google

Di Silvio, G. & Marin, A. (1996a). Analytical approach to river morphodynamics : effects of space-and time-irregularities and grain-size non-uniformity. Commission of the European Communities, Directorate General XII for Science, Research and Development, Research and Technical Development Program in the Field of Environment, FRIMAR Project, Technical Report n. 2, 48. Cerca con Google

Di Silvio, G. (1996b). Sediment yield estimates and prediction methods proceedings, Int. Conf. on Reservoir Sedimentation, vol. 2., Sect. v, 643-660, Ft. Collins, Colorado, 9-13 Sept.1996. Cerca con Google

Di Silvio, G. & Marion, A. (1997), About delivery ratio: how does it change in time and space?, XXVII Congress IAHR., S.Francisco (USA), 10-15 Aug. 1997. Vol. D/b, 90-95. Cerca con Google

Di Silvio, G. (2004a). Modelling long-term reservoir sedimentation for optimal management strategies. Proceedings of the 6th Int. Conference on Hydro-Science and Engineering, Brisbane (Australia), 30 May - 3 Jun. 2004. Cerca con Google

Di Silvio, G. (2004b). Review of state-of-the-art research on erosion and sediment dynamics from catchment to coast (a Northern perspective). Meeting of the Task Force Group of ISI (International Sediment Initiative) of UNESCO-IHP. Paris, 23-24 Sept. 2004. Cerca con Google

Di Silvio, G. (2006). Sediment sources and causes: Approaches to sediment yield evaluation Proceeding of the International Sediment Initiative Conference (ISIC). Khartoum, 12-15 November 2006, Sudan. Cerca con Google

Du Toit, R.F. (1984). Some environmental aspects of proposed hydro-electric schemes on the Zambezi river, Zimbabwe. Biological Conservation, 28, 73-87. Cerca con Google

Earth Resources Observation & Science (EROS), (2000). HYDRO1K Africa Documentation. Elevation Derivative Database. U.S. Geological Survey, Sioux Falls. U.S.A. http://edc.usgs.gov/products/elevation/gtopo30/hydro/. Vai! Cerca con Google

Egiazaroff, I. V. (1965). Calculation of non-uniform sediment concentrations. Journal of Hydraulic Div., 91, 225-248. Cerca con Google

Fasolato, G. & Ronco, P. & Di Silvio, G. (2007a). Boundary conditions in river morphodynamics. An analytical solution. Journal of Hydraulic Research (in revision). Cerca con Google

Fasolato, G. & Ronco, P. & Di Silvio, G. (2007b). Validity of simplified one-dimensional models. Journal of Hydraulic Engineering ASCE (in revision). Cerca con Google

Ferguson R.I.(1987). Accuracy and precision of methods for estimating river loads, Earth Surface Processes and Landforms, 12 (1), 95-104. Cerca con Google

Fournier, F. (1960). Climat et Erosion. Presses Universitaires de France, Paris. Cerca con Google

Galappatti, R. & Vreugdenhil, C.B. (1985). A depth-integrated model for suspended sediment transport. Journal of Hydraulic Research, 23, 4. Cerca con Google

Gavin, J.S.R. (1990). Non linear estimation. Springer Series on Statistics, 189p. Cerca con Google

Gee, D.M. & Anderson, M.G. & Baird, L. (1990). Large floodplain modelling. Earth Surface Processes and Landform. 15, 513-523. Cerca con Google

Germanoski, D. & Ritter, D.F. (1988). Tributary response to local base level lowering below a dam. Regulated Rivers: Reservoir Management. 2, 11-24. Cerca con Google

Golterman, H.L. (1983). Study of the relationship between water quality and sediment transport. UNESCO Technical Papers in Hydrology, n°26. Cerca con Google

Grant, G. (2002). Emerging Issues for Water, Sediment, and Rivers: an International Cross-Cultural Comparison, Keynote Lecture, 9th International Symposium on the Interactions Between Sediments and Water, Banff Springs Hotel, Canada. Cerca con Google

Gurnell, A.M. & Petts, G.E. (2002). Island-dominated landscapes of large floodplain rivers, an European perspective. Freshwater Biology. 47, 581-600. Cerca con Google

Guy, P.R. (1980-81). River bank erosion in the mid-Zambezi valley, downstream of lake Kariba. Biological Conservation, 19, 199-212. Cerca con Google

Hall, A. & Valente, I. & Davies, B.R. (1977). The Zambezi River in Mozambique: the physico-chemical status of the Middle and Lower Zambezi prior to the closure of the Cabora Bassa Dam, Freshwater Biology, 7, 187-206. Cerca con Google

Hardy, R.J. & Bates, P.D. & Anderson, M.G. (1999). The importance of spatial resolution in hydraulic models for floodplain environments. Journal of Hydrology, 216,124-136. Cerca con Google

Hayashi, H. & Clifford, M. & Banda, D. (2005). Cause of Turbidity in Luangwa River - Case of Dry Season. Proceeding of the XXXI IAHR Congress, Seoul, Korea, 11-16 Sept., 2005, 5335-5340. Cerca con Google

Hidroelétrica de Cahora Bassa (HCB), (2004). Various Technical Reports on Cahora Bassa Project. Songo. Mozambique. Cerca con Google

Hidrotécnica Portuguesa (1967). Cahora Bassa undertaking (1st phase), Additament 2. Ministerio do Ultramar, Conselho Superior de Fomento Ultramarino, Grupo de Trabalho para o Zambeze. DNA Maputo, Mozambique. Cerca con Google

Hirano, M. (1971). River bed degradation with armouring. Trans. of JSCE. 3(2). Cerca con Google

Istituto Nacional de Geologia (ING), (1987). Carta Geologica, escala 1: 1'000'000. Ministerio dos Recursos Minerais. Mozambique. Cerca con Google

Julien, P. & Shah, S. (2005). Sedimentation Initiatives in Developing Countries. Draft-Report for the International Sedimentation Initiative (ISI) of IHP-UNESCO. Colorado State University. Cerca con Google

Kondolf, G.M. (1997). Hungry water: effects of dams and gravel mining on river channels. Environmental Management, 21 (4), 533-551. Cerca con Google

Lahmeyer Int, EDF, Knight Piesold, 2001. Final Report on Meteorolgy, Hydrology and Sediment Transport. Mepanda Uncua and Cahora Bassa North Project. Republica de Moçambique, Maputo, doc.n°021. Cerca con Google

Lane, E.W. (1955). The importance of fluvial morphology in hydraulic engineering. Proc. Am. Soc. Civil Eng., 81, 1-17. Cerca con Google

Lee, D.S., R.D. Kingdon, J.M. Pacyna, A.F. Bouwman, and I. Tegen, (1999). Modelling base cations in European sources, transport and deposition of calcium. Atmos. Environ., 33, 224102256. Cerca con Google

Leopold, L.B. & Wolman, M.G. & Miller, J.P. (1964). Fluvial processes in geomorphology. Freeman, San Francisco, 522p. Cerca con Google

Liu, J.T. & Huang, J.S. & Hsu, R.T. & Chyan, J.M. (2000). The coastal depositional system of a small mountainous river: a perspective from grain-size distribution. Marine Geology, 165, 63-86. Cerca con Google

Magilligan, F.J. & Nislow, K. H. (2005). Changes in hydrologic regime by dams. Geomorphology, 71, 61-78.. Cerca con Google

Maner, S.B. (1958) Factors affecting sediment delivery rates in the red hills physiographic area, Transactions of American Geophysics 39, 669-675. Cerca con Google

Montgomery, D.R. & Dietrich, W.E. (1994). A physically based model for the topographic control on shallow landsliding, Water Resources Research, 30, 1153-1171. Cerca con Google

Morgan, R.P.C. & Quinton, J.N. & Smith, R.E. & Govers, G. & Poesen, J.W.A. & Anerswald, K. & Chisci, G. & Torri, D. & Styczen, M.E. (1998). The European soil erosion model (EUROSEM): A process-based approach for predicting sediment transport from fields and small catchments. Earth Surface Processes and Landforms, 23, 527-544. Cerca con Google

Morris, G.L. & Fan, J. (1998). Reservoir Sedimentation Handbook, McGraw-Hill, pp. 746. Cerca con Google

Nearing, M.A. & Foster, G.R. & Lane, L.J. & Finker, S.C. (1989). A process-based soil erosion model for USDA, WEPP (Water Erosion Prediction Project technology), Trans. Am. Soc. Agric. Engnrs., 32, 1587-1593. Cerca con Google

Nicholas, A.P. & Quine, T.A. (2007). Crossing the divide: Representation of channels and processes in reduced-complexity river models at reach and landscape scales. Geomorphology, 90, 318-339. Cerca con Google

Nugent, C. (1986). Historical changes in the behaviour of the Zambezi river at Nyamuomba. Zimbabwe Sci. News, 20, 121-131. Cerca con Google

Nugent, C. (1990). The Zambezi river: tectonism, climatic change and drainage evolution. Palaeogeography, Palaeoclimatology, Palaeoecology, 78, 55-69. Cerca con Google

Ongley, E.D. (1982). Influence of season, source and distance on physical and chemical properties of suspended sediment. In: Recent Developments in the Explanation and Prediction of Erosion and Sediment Yields, Proc.Exeter Symp. July 1982. 371-384. IAHS Publ.n°137. Cerca con Google

Orpen, J.L & Swain, C.J. & Nugent, C. & Zhou, P.P. (1989). Wrench-fault ant half-graben tectonics in the development of the Palaeozoic Zambezi Karoo basin in Zimbabwe - the "lower Zambezi" and "mid-Zambezi" basins respectively - and regional implications. Journal of African Earth Sciences. 8, (2/3/4), 215-229. Cerca con Google

Parker, G. P. & Klingeman, P. C. (1982). On why gravel bed streams are paved. Water Resources Research, 18-5, 1409-1423. Cerca con Google

Parker, G. & Paola, C. & Leclair, S. (2000). Probabilistic Exner sediment balance equation for mixtures with no active layer, Journal of Hydraulic Engineering - ASCE, 126, 818. Cerca con Google

Peart, M. & Walling, D.E. (1982). Particle size characteristics of fluvial suspended sediment. In: Recent Developments in the Explanation and Prediction of Erosion and Sediment Yields, Proc.Exeter Symp. July 1982. 371-384. IAHS Publ.n°137. Cerca con Google

Pelpola, C.P & Hickin, E.J. (2004). Long-term bed load transport rate based on aerial-photo and ground penetrating radar surveys of fan-delta growth, Coast Mountains, British Columbia. Geomorphology, 57, 169-181. Cerca con Google

Petts, G.E. & Gurnell, A.M. (2005). Dams and geomorphology: Research progress and future directions. Geomorphology, 71, 27-47. Cerca con Google

Proc. of the joint U.S.-Chinese Workshop on Sediment Transport and Environmental Studies, Marquette University, Milwaukee, Wis., July 2002 - Int. Journal of Sediment Research,18, (2), 2003. Cerca con Google

Renschler, C.S. & Harbor, J. (2002). Soil erosion assessment tools from point to regional scales - the role of geomorphologists in land management research and implementation. Geomorphology, 47, 189-209. Cerca con Google

Ricci, V. (2006). Principali tecniche di regressione con R. Lecture notes, vito_ricco@yahoo.it. Cerca con Google

Roehl, J.E. (1962). Sediment source areas, and delivery ratios influencing morphological factors, International Association of Hydrological Sciences 59, 202-213. Cerca con Google

Ronco, P. & Fasolato, G. & Di Silvio G. (2006). The case of Zambezi River in Mozambique: some investigations on solid transport phenomena downstream Cahora Bassa Dam. Proceeding of International Conference on Fluvial Hydraulics, Riverflow 2006. Lisbon, 1345-1354. Cerca con Google

Ronco P. & Fasolato G. & Di Silvio G. (2007a). Simulating the profile evolution of large unsurveyed rivers: the case of Zambezi (Austral Africa). Proceedings of the 32nd IAHR Congress, Venice (CD). Cerca con Google

Ronco P. & Fasolato G. & Di Silvio G. (2007b). Modelling evolution of bottom profile and grainsize distribution in unsurveyed rivers. Geomorphology, (in revision). Cerca con Google

Ronco P. & Fasolato G. & Di Silvio G. (2008). Morphological effects of damming on lower Zambezi. Int. Journal of Sediment Research, (in revision). Cerca con Google

SCC Brokonsult (Scandiaconsult), 2001. Final Report: Three Crossing Schemes. Consulting Services for Zambeze River Crossing at Caia in Mozambique. Ministerio das Obras Publica e Habitaçao, Republica de Moçambique. Maputo, 5. Cerca con Google

Schumm, S.A. (1969). River metamorphosis. Proc. Am. Soc. Civ. Eng., J. Hydraul. Div. HY1, 255-273. Cerca con Google

Schumm, S.A. (1973). Geomorphic thresholds and complex response of drainage system. In: Fluvial Geomorphology, Proceedings of the 4th Annual Geomorphology Symposia. Bimghamton, New York, George Allen and Unwin, Boston, 299-310. Cerca con Google

Scodanibbio, L. & Manez, G. (2005). The World Commission on Dams: a fundamental step towards integrated water resources management and povery reduction? A pilot case in the lower Zambezi, Mozambique. Physics and Chemistry of the Earth, 30, 976-983. Cerca con Google

SMEC (2004). Final Report - Zambeze River Basin Mozambique Flood Risk Analysis Project, Maputo. 2. Cerca con Google

Shoko, D.S.M. & Gwavava, O. (1999). Is magmatic underplating the cause of post-rift uplift and erosion within the Cahora Bassa basin, Zambezi rift, Zimbabwe? Journal of African Earth Sciences. 28 (2), 465-485. Cerca con Google

Sun, T. & Paola, C. & Parker, G. & Meakin, P. (2002). Fluvial fan delta: linking channel processes with large-scale morphodynamics. Water Resources Research, 38 (8), 1151. Cerca con Google

Suschka, J. & Napica, P. (1986). Ten years after the conclusion of Cabora Bassa Dam. The impacts of large water projects on the environment: proceedings of an international symposium. Paris, UNEP/UNESCO. 171-203. Cerca con Google

Starmans, G.A.N. (1950). The hydrology of the Tana river. Proc. Conference on Hydrology and Water Resources, Nairobi. Cerca con Google

Strahkov, N.M (1967). Principles of Lithogenesis, vol.1, Olivier&Boyd, Edimbugh. Cerca con Google

Sumi, T. & Hirose, T. (2002). Accumulation of Sediments in Reservoirs, EOLSS - Encyclopedia of Life Support Systems. Cerca con Google

Sutherland, R.A. & Bryan, R.B. (2003) Variability of particle size characteristics of sheetwash sediments and fluvial suspended sediment in a small semiarid catchment, Kenya. Catena, 16(2), 189-204. Cerca con Google

Syvitski, J.P. & Morehead, M.D. & Bahr, D.B. & Mulder, T. (2000). Estimating fluvial sediment transport: the rating parameters. Water Resources Research, 36 (9), 2747-2760. Cerca con Google

Tate E.M. & Farquharson, F.A.K. (2000). Simulating reservoir management under the threat of sedimentation: the case of Tarbela dam on the river Indus. Water Resources Management, 14, 191-208. Cerca con Google

Thomas, D.S.G. & Shaw, P.A. (1992). The Zambezi river: tectonism, climatic change and drainage evolution - is there really evidence for a catastrophic flood? A discussion. Palaeogeography, Palaeoclimatology, Palaeoecology. 91, 175-182. Cerca con Google

Trebossen, H. & Deffontaines, B. & Classeau, N. & Kouame, J. & Rudant, J.P. (2005). Monitoring coastal evolution and associated littoral hazards of Frech Guiana shreline evolution with radar images. Geoscience, 337, 1140-1153. Cerca con Google

Walford, H.L. & White, N.J. & Sydow, J.C. (2005). Solid sediment load history of the Zambezi Delta. Earth and Planetary Science Letters, 238, 49-63. Cerca con Google

Walling, D.E. & Webb, B.W. (1983). The dissolved loads of rivers: a global overview. In: dissolved Loads of Rivers and Surface Water Quantity/Quality Relationships. Proc.Florence Symp. June 1981. 177-194, IAHS Publ. n°133. Cerca con Google

Walling, D.E., (1984). The sediment yields of African rivers. Proc. of the Harare Symposium: Challenges in Africa Hydrology and Water Resources, 1984. IAHR Publ.n°144. Cerca con Google

Walling, D.E. & Webb, B.W. (1988). The reliability of rating curve estimates of suspended sediment yield; some further comments. Sediment Budgets (Eds. Bordas, M:P:, Walling, D.E.). IAHS Publications no. 174, IAHS Press, Wallingford, U.K., 337-350. Cerca con Google

Walling, D.E. & Webb, B.W. (1996). Erosion and sediment yield: global and regional perspectives, IAHS Publ.n° 236. Cerca con Google

Wang, Z-Y. & Wu, B. & Wang G. (2007). Fluvial processes and morphological response in the Yellow and Weihe Rivers to closure and operation of Sanmenxia Dam. Geomorphology. 91 (1-2), 65-79. Cerca con Google

White, W.R. (2001) "Evacuation of Sediments from Reservoirs" Thomas Telford Publishing, London, 2001 Cerca con Google

Wicks, J.M. & Bathurst, J.C. (1996). SHE-SED: A physically based, distributed erosion and sediment yield component for the SHE hydrological modelling system, Journal of Hydrology, 175 (1-4), 213-238. Cerca con Google

Williams, J.R. and Berndt H.D., (1972). Sediment Yield Computed with Universal Equation, Journal of the Hydraulics Division, 98 (12), 2087-2098. Cerca con Google

Wischmeier W.H. & Smith D.D. (1978). Predicting rainfall erosion losses a guide to conservation planning U.S.D.A. Washington, Agr. Handbook No. 557. Cerca con Google

Wolock, D.M. & Price, C.V. (1994). Effect of Digital Elevation Model map scale and data resolution on a topography based watershed model. Water Resources Research. 30(11):3041-3052 Cerca con Google

World Meteorological Organization (WMO), (2005). WHYCOS Guidelines. WMO/TD-No.1282. Cerca con Google

World Commission on Dams (WCD), (2000). Dams and Development - A New Framework For Decision-Making, Earthscan, London & Sterling, VA. Cerca con Google

Wu, W. & Wang, S., Y. & Jia, Y. (2000). Non uniform sediment transport in alluvial rivers. Journal of Hydraulic Research, 38 (6). Cerca con Google

Yang, X. (2005). Manual on sediment management and measurements. WMO, Operational Hydrology Report n°47, pp.176. Cerca con Google

Zaghloul, S.S. (2006). Effects of Aswan High Dam on the Nile river regime at delta barrages area. Proceeding of the International Sediment Initiative Conference (ISIC). Khartoum, 12-15 November 2006, Sudan. Cerca con Google

Zhang, W. & Montgomery, R. (1994). Digital Elevation Model grid size, landscape representation and hydrologic simulations. Water Resources Research. 30(4):1019-1028. Cerca con Google

Zhou, Y. & Lu, X. & Huang, Y. & Zhu, Y. (2004). Anthropogenic impacts on the sediment flux in the dry-hot valleys of southwest China — an example of the Longchuan river. Journal of Mountain Science, 1(3) 239-249. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record