Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Galenda, Alessandro (2008) Advanced Perovskite Materilas For Intermediate Temperature Solid Oxide Fuel Cells. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

The research program developed during the Ph.D. School is focussed on the study of advanced materials for applications in the intermediate temperature solid oxide fuel cells (IT-SOFCs).
Fuel cells (FCs) are often considered as the best solution to produce clean energy starting from various primary resources. FCs are employed for the direct production of electric power by electrochemical conversion of the potential energy of a fuel. Fuel cells work as a common galvanic cell: the fuel is oxidised at the anode and the combustive (usually air) is reduced at the cathode.
Among the various kind of fuel cells, solid oxide fuel cells are very interesting thanks to their singular properties, such as the high output powers (reaching megawatts) and the excellent efficiency (until about 70% with the co-generation). Another interesting characteristic is the ability to work with different type of fuels. Beyond hydrogen (whose usage involves the well know difficulties concerning production, transportation and storage), SOFCs can operate with alcohols (such as methanol and ethanol) or hydrocarbons. This can offer significant opportunity in renewable energy field taking into consideration fuels derived from bio-masses and urban or industrial rubbish.
A common SOFC usually works at very high temperature (800÷1100°C). Anyway, many studies have been carried out to develop new materials able to guarantee the best performances at lower temperatures (500÷700°C) and build the new generation of SOFCs: the so-called Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs). Nevertheless it is, necessary to develop new electrolyte materials characterized by high anionic conduction at lower temperatures and new electrodes with electronic, or better mixed ionic-electronic conductivity (MIEC) and a suitable activity toward fuel oxidation and combustive reduction.
In the present study, several perovskite based oxide materials have been considered. These particular compounds show a wide range of interesting chemical and physical properties. Moreover, these characteristics can be tuned employing different constituting elements and different kinds and amounts of dopant elements.
Taking into account the literature research outcomes, two kinds of perovskites have been studied: gallates and cuprates. The first ones are lanthanum gallate doped with strontium and iron and with strontium and copper (La0.8Sr0.2Ga0.8Fe0.2O3-?, named LSGF, La0.8Sr0.2Ga0.8Cu0.2O3-?, LSGC), while the second types derive from lanthanum cuprate (LaCu0.8Co0.2O3-?, LCC1, and La2Cu0.8Co0.2O4-?, LCC2).
The samples have been prepared by means of two wet-chemistry procedure (Pechini process and the Polyacrylamide Gel method) to avoid using the high temperature ceramic route and to study the influence of the preparation procedure.
The obtained catalysts were characterized by means of X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), and Diffuse Reflectance Infrared spectroscopy Fourier Transform (DRIFT) Spectroscopy.
In general, XRD revealed the presence, beside the desired one, of minor phases whose amount and typology is influenced by the composition and doping. In the case of LCC1, in contrast, a mixture of La2Cu0.8Co0.2O4-? and CuO, was obtained instead of LaCu0.8Co0.2O3-?. XPS investigation testifies the surface segregation of strontium as carbonate and of lanthanum as oxide and hydroxide. Copper is present as copper oxide both in LCC1 and LCC2. As a general consideration, the presence of carbonate species and hydroxyl groups is mainly a surface phenomenon.
Interesting information have been obtained from the catalytic tests. The reactivity of the materials has been investigated toward methanol and ethanol under several conditions: tests with pure alcohol vapours, under oxidising atmosphere (enriching the carrier gas with O2) and in steam reforming conditions, have been carried out at several temperatures between RT and 400°C. The experiments were performed employing a home made continuous flow reactor monitoring the exit stream by IR and QMS.
Significant differences have been observed between the samples obtained by means of the two different preparation procedures: the results, as a whole, indicate that the samples obtained by Gel procedure show a higher activity.
Both in alcohol oxidation (carried out with oxygen) and in alcohol steam reforming the higher activity of cuprate based materials is evident. LSGF and LSGC, in contrast, exhibit lower reactivity. It has also to be considered that a certain poisoning of the catalysts surfaces was observed as a consequence of the interaction with the reaction products (carbon dioxide, as an example). This is particularly true when the reaction is carried out with the only alcohols or under steam reforming conditions.
The cathodic activity was investigated by measuring the oxygen permeability throughout the materials pressed as a pellet. The permeation mechanism is specific for O2 and provides useful information concerning both redox and transport properties (for oxide anions) for the investigated material. Permeability measurements were carried out employing a home made reactor. This is expressly conceived, realized and optimized during the PhD term. A detailed study concerning the materials (ceramic macor) and fittings has been done (paying particular attention to the pasting of the samples on the ceramic support). The tests have been monitored by means of QMS and show particularly interesting results for the cuprates.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Glisenti, Antonella
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > SCIENZE MOLECOLARI > SCIENZE CHIMICHE
Data di deposito della tesi:31 Gennaio 2008
Anno di Pubblicazione:31 Gennaio 2008
Parole chiave (italiano / inglese):perovskite, intermediate temperature fuel cells, methanol, ethanol, doped gallate, doped cuprate, oxygen permeability
Settori scientifico-disciplinari MIUR:Area 03 - Scienze chimiche > CHIM/03 Chimica generale e inorganica
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Chimiche
Codice ID:626
Depositato il:10 Ott 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] K. Weissermel, H.J. Arpe industrial organic chemistry III Ed. VCH, 1997 Cerca con Google

[2] Ullmann’s Encyclopaedia of the Chemical Technology V Ed, VCH, Weinheim, 1998 Cerca con Google

[3] Carrette, L., Friedrich, K.A., Stimming, U.; ChemPhysChem, 2000, 1, 162 Cerca con Google

[4] Haile, S.M.; Acta Mater., 2003, 51, 5981 Cerca con Google

[5] Weber, A., Ivers-Tiffée, E.; J. Power Sources, 2004, 127, 273 Cerca con Google

[6] Steele, B.C.H.; Solid State Ionics, 2000, 134, 3 Cerca con Google

[7] Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, k.; Renew. Sust. Energ. Rev., 2007, 11, 401 Cerca con Google

[8] Aroutiounian, V.M., Arakelyan, V.M., Shahnazaryan, G.E.; Sol. Energy, 2005, 78, 581 Cerca con Google

[9] Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., Grimes, C.A.; Sol. Energy Mater. Sol. Cells, 2006, 90, 2011 Cerca con Google

[10] Esper, B., Badura, A., Rogner, M.; Trend in plant science, 2006, 11, 543 Cerca con Google

[11] Rupprecht, J., Hankamer, B., Mussgnug, J.H., Ananyev, G., Dismukes, C., Kruse, O.; Appl. Microbiol. Biotechnol., 2006, 72, 442 Cerca con Google

[12] Palo, D.R., Dagle, R.A., Holladay, J.D.; Chem. Rev., 2007, 107, 3992 Cerca con Google

[13] McIntosh, S., Gorte, R.; Chem. Rev., 2004, 104, 4845 Cerca con Google

[14] Dilara, P.A., Vohs, J.M.; J. Phys. Chem., 1993, 97, 1919 Cerca con Google

[15] Winter, M.; Brodd, R.J.; Chem. Rev., 2004, 104, 4245 Cerca con Google

[16] Liu, J., Madsen B.D., Ji, Z., Barnett, S.A.; Electrochem Solid-State Lett., 2002, 5, A122 Cerca con Google

[17] Murray, E.P., Tsai, T., Barnett, S.A.; Nature, 1999, 400, 649 Cerca con Google

[18] Liu, J., Barnett, S.A.; Solid State Ionics, 2003, 158, 11 Cerca con Google

[19] Adler, S.B.; Chem. Rew., 2004, 104, 4791 Cerca con Google

[20] Maffei, N., Pelletier, L., McFarlan, A.; J. Power Sources, 2004, 136, 24 Cerca con Google

[21] Stover, D., Buchkremer, H.P., Uhlenbruck, S.; Ceram. Int., 2004, 30, 1107 Cerca con Google

[22] Hrovat, M., Ahmad-Khanlou, A., Samardzija, Z., Hole, J.; Mat. Res. Bull., 1999, 34, 2027 Cerca con Google

[23] Bi, Z., Yi, B., Wang, Z., Dong, Y., Wu, H., She, Y, Cheng, M.; J. Electrochem. Soc., 2004, 7, A105 Cerca con Google

[24] Kharton, V.V., Marques, F.M.B., Atkinson A.; Solid State Ionics, 2004, 174, 135 Cerca con Google

[25] Yamaji, K., Horita, T., Ishikawa, M., Sakai, N., Yokokawa, H.; Solid State Ionics, 1998, 108, 415 Cerca con Google

[26] Huang, K., Goodenough, J.B.; J. Alloy Compd., 2000, 303, 454 Cerca con Google

[27] Fierro, J.L.G., Pena, M.A.; Chem. Rev., 2001, 101, 1981 Cerca con Google

[28] Zheng, F., Bordia, R.K., Pederson, L.R.; Mat. Res. Bull., 2004, 39, 141 Cerca con Google

[29] Ishihara, T., Yamada, T., Arikawa, H., Nishiguchi, H., Takita, Y.; Solid State Ionics, 2000, 135, 631 Cerca con Google

[30] Raghuveer, V., Ravindranathan Thampi K., Xanthopoulos, N., Mathieu, H.J., Viswanathan, B.; Solid State Ionics, 2001, 140, 263 Cerca con Google

[31] Raghuveer, V., Viswanathan, B.; Fuel, 2002, 81, 2191 Cerca con Google

[32] Yu, H.C., Fung, K.Z., Guo, T.C., Chang, W.L.; Electrochim. Acta, 2004, 50, 811 Cerca con Google

[33] Sin, A., Oldier, P.; Adv. Mat., 2000, 12, 649 Cerca con Google

[34] Malavasi, L; Mozzati, M.C.; Polizzi, S.; Azzoni, C.B.; Flor, G.; Chem. Mater., 2003, 15, 5036 Cerca con Google

[35] Douy, A. Int. J. Inorg. Mater., 2001, 3, 699 Cerca con Google

[36] Huang, K.; Goodenough, J.B.; J. Solid State Chem., 1998, 136, 274 Cerca con Google

[37] Jin, W.; Li, S.; Huang, P.; Xu, N., Shi, J.; J. Membr. Sci., 2000, 170, 9 Cerca con Google

[38] Galenda, A., Natile, M.M., Krishnan, V., Bertagnolli, H., Glisenti, A.; Chem. Mater., 2007, 19, 2796 Cerca con Google

[39] Karppinen, M., Yamauchi, H., Suematsu, H., Isawa, K., Nagano, M., Itti, R., Fukunaga, O.; J. Solid State Chem., 1997, 130, 213 Cerca con Google

[40] Falcon, H., Martinez-Lope, M.J., Alonso, J.A., Fierro, J.L.G., Appl. Cat., B, 2000, 26, 131 Cerca con Google

[41] Darracq, S., Kang, S.G., Choy, J.H., Demazeau, G.; J. Solid State Chem., 1995, 114, 88 Cerca con Google

[42] Vai! Cerca con Google

[43] McIntyre, N.S., Cook, M.G.; Anal. Chem., 1975, 47, 2208 Cerca con Google

[44] Shkerin, S.N., Kuznetsov, M.V., Kalashnikova, N.A.; Russ. J. Electrochem., 2003, 39, 591 Cerca con Google

[45] Zhu, Y., Tan, R., Yi, T., Gao, S., Yan, C., Cao, L.; J. Alloy Comp., 2000, 311, 16 Cerca con Google

[46] Dai, H.X., Ng, C.F., Au, C.T.; J. Catal., 2001, 197, 251 Cerca con Google

[47] Bocquet, A.E., Chalker, P., Dobson, J.F., Healy, P.C., Myhra, S., Thompson, J.G.; Physica C, 1989, 160, 252 Cerca con Google

[48] Saitoh, T., Mizokawa, T., Bocquet, A.E., Namatame, H., Fujimori, A., Takeda, T., Takano, M.; Surf. Sci. Spectra, 1999, 6, 294 Cerca con Google

[49] Bernal, S., Botana, F.J., Garcia, R., Rodriguez-Izquierdo, J.M.; Reactivity of Solids, 1987, 4, 23 Cerca con Google

[50] Milt, V.G., Spretz, R., Ulla, M.A., Lombardo, E.A., Fierro, J.L.G.; Catal. Lett., 1996, 42, 57 Cerca con Google

[51] Yang, R., Zhang, Y., Iwama, Y., Tsubaki, N.; Appl. Catal., A, 2005, 288, 126 Cerca con Google

[52] Rodriguez-Ramos, I., Guerrero-Ruiz, A., Rojas, M.L., Fierro, J.L.G.; Appl. Catal., 1991, 68, 217 Cerca con Google

[53] Laosiripojana, N., Assabumrungrat, S.; Chem. Eng. Sci., 2006, 61, 2540 Cerca con Google

[54] Royer, S., Berubè, F., Kiliaguine, S.; Appl. Catal., A, 2005, 282, 273 Cerca con Google

[55] Lisi, L., Bagnasco, G., Ciambelli, P., De Rossi, S., Porta, P., Russo, G., Turco, M., J. Solid State Chem, 1999, 146, 176 Cerca con Google

[56] De Asha, A.M., Nix, R.M.; J Chem Soc Faraday Trans., 1995, 91, 3611 Cerca con Google

[57] Auroux, A.; Gervasini, A. J. Phys. Chem. 1990, 94, 6371 Cerca con Google

[58] Rethwisch, D. G.; Dumesic, J. A. Langmuir 1986, 1-2, 73 Cerca con Google

[59] Lavalley, J. C. Trends Phys. Chem. 1991, 2, 305 Cerca con Google

[60] Martin, D.; Duprez, D. J. Mol. Catal. A: Chem. 1997, 118, 113 Cerca con Google

[61] Lombardo, E.A., Tanaka, K., Toyoshima, I.; J. Catal., 1983, 80, 340 Cerca con Google

[62] Wagner, C.D. In Practical Surface Analysis; Briggs, D., Seah, M. P., Eds.; Wiley: New York, 1983 Cerca con Google

[63] Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.; Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Physical Electronics: Eden Prairie, MN, 1992. Cerca con Google

[64] McCabe, R.W., Mitchell, P.J.; Ind. Eng. Chem. Prod. Res. Dev., 1984, 23, 196 Cerca con Google

[65] Domok, M., Tòth, M., Rasko, J., Erdohelyi, A.; Appl. Catal., B, 2007, 69, 262 Cerca con Google

[66] Erdohelyi, A., Rasko, J., Kecsk[s, T., Tòth, M., Domok, M., Baàn, K.; Catal. Today, 2006, 116, 367 Cerca con Google

[67] Laosiripojana, N., Assabumrungrat, S.; J. Power Sources, 2007, 163, 943 Cerca con Google

[68] Yee, A., Morrison, S.J., Idriss, H.; J. Catal., 1999, 186, 279 Cerca con Google

[69] Golay, S., Doepper, R., Renken, A.; Appl. Catal., A, 1998, 172, 97 Cerca con Google

[70] Rasko, J., Hancz, A., Erdohelyi, A.; Appl. Catal. A, 2004, 269, 13 Cerca con Google

[71] Morpurgo, F.; tesi di laurea, Effetto del drogaggio sulla reattività del manganato di lantanio nell’ossidazione dell’etanolo, Università degli Studi di Padova, A.A. 2006-07, Relatore Dr. Antonella Glisenti Cerca con Google

[72] Zecchina, A., Scarano, D., Bordiga, S., Spoto, G.; Advances in Catalisys, 2001, 46, 265 and references therein. Cerca con Google

[73] Jiang, C.J., Trimm, D.L., Wainwright, M.S., Cant, N.W.; Appl. Catal., A, 1993, 97, 145 Cerca con Google

[74] Llorca, J., Homs, N., Ramirez de la Piscina, P.; J. Catal., 2004, 227, 556 Cerca con Google

[75] Velu S., Suzuki, K., Vijayaray, M., Barman, S., Gopinath, C.; Appl. Catal., B, 2005, 55, 287 Cerca con Google

[76] Collins, S.E., Baltanas, M.A:, Bonivardi, A.L.; J. Phys. Chem. B, 2006, 110, 5498 Cerca con Google

[77] Bolis, V., Magnacca, G., Cerrato, G., Morterra, C.; Thermochim. Acta, 2001, 379, 147 Cerca con Google

[78] Manoilova, O.V., Podkolzin, S.G., Tope, B., Lercher, J., Stangland, E.E., Goupil, J.M., Weckhuysen, B.M. J. Phys. Chem. B, 2004, 108, 15770 Cerca con Google

[79] van der Heijden, A.W.A.M., Belliere, V., Alonso, L.E., Daturi, M., Manoilova, O.V., Weckhuysen, B.M.; J. Phys. Chem. B, 2005, 109, 23993 Cerca con Google

[80] Ferri, D., Forni, L.; Appl. Catal. B, 1998, 16, 119 Cerca con Google

[81] Royer, S., Duprez, D., Kaliaguine, S.; J. Catal., 2005, 234, 364 Cerca con Google

[82] Fadley, C.S.; Progress in Surface Science, 1984, 16, 275 Cerca con Google

[83] Tsuruta, Y., Todaka, T., Nisiguchi, H., Ishihara, T., Takita, Y.; J. Electrochem. Soc., 2001, 4, E13 Cerca con Google

[84] Yuenyongchaiwat, J., Tantayanon, S., Lou, J., Ma, Y.H.; J. Mater. Sci., 2004, 39, 7067 Cerca con Google

[85] Leonidov, I.A., Kozhevnikov, V.L., Mitberg, E.B., Patrakeev, M.V., Kharton, V.V., Marques, F.M.B.; J. Mater Chem., 2001, 11, 1201 Cerca con Google

[86] Kharton V.V., Shaulo, A.L., Viskup, A.P., Avdeev, M., Kurbakov, A.I., Naumovich, E.N., Marques, F.M.B.; Solid State Ionics, 2002, 150, 229 Cerca con Google

[87] Kozhukharov, V. Machkova, M., Ivanov, P., Bouwmeester, H. J. M., van Doorn, R.; J. Mater. Sci. Lett., 1996, 15, 1727 Cerca con Google

[88] Tabata, K, Kohiki, S.; J. Mater. Sci. Lett., 1987, 9, 1030 Cerca con Google

[89] van Doveren, H., Verhoeven, J.A.T.; J. Electron Spectrosc. Relat. Phenom., 1980, 21, 265 Cerca con Google

[90] Measures carry out in our laboratory on a SrCO3 powder (Aldrich 99.9+%) Cerca con Google

[91] Polini, R., Falsetti, A., Traversa, E., Schaf, O., Knauth, P.; J. Eur. Cer. Soc., 2007, 27, 4291 Cerca con Google

[92] Galenda, A., Natile, M.M., Glisenti, A.; Surf. Sci. Spectra, 2006, 13, 31 Cerca con Google

[93] Tsyganenko, A.A., Filimonov, V.N.; J. Mol. Struct., 1973, 19, 579 Cerca con Google

[94] Chen, W, Wen, T., Nie, H., Zheng, R.; Mat. Res. Bull., 2003, 38, 1319 Cerca con Google

[95] Ciambelli, P., Cimino, S., Lisi, L., Faticanti, M., Minelli, G., Pettiti, I., Porta, P.; Appl. Catal., B, 2001, 33, 193 Cerca con Google

[96] Capek, L., Kreibich, V., Dedecek, J., Grygar, T., Wichterlova, B., Sobalik, Z., Martens, J.A., Brosius, R., Tokarova, V.; Microporous Mesoporous Mater., 2005, 80, 279 Cerca con Google

[97] Perez-Ramirez, J., Kumar, M.S., Bruckner, A.; J. Mater. Chem., 2004, 223, 13 Cerca con Google

[98] Jitianu, A., Crisan, M., Meghea, A., Rau, I., Zaharescu, M.; J. Mater. Chem., 2002, 12, 1401 Cerca con Google

[99] Pedersen, T., Saadi, S., Nielsen, K.H., Mørup, S., Kammer, K.; Solid State Ionics, 2005, 176, 1555 Cerca con Google

[100] Russo, U.; Long, G.J. Mössbauer Spectroscopy Studies Of The High Oxidation State Of Iron in Mössbauer Spectroscopy Applied To Inorganic Chemistry, Vol 3, Long, G.J.; Grandjean, F., Ed.; Plenum Press, NY 1989 Cerca con Google

[101] Saorin, A., tesi di laurea, Studio dell’influenza dei droganti sulla distribuzione di siti attivi nelle perovskiti, Università degli Studi di Padova, A.A. 2005-06, Relatore Dr. Antonella Glisenti Cerca con Google

[102] Itoh, N., Kato, T., Uccida, K., Haraya, K.; J. Membr. Sci., 1994, 92, 239 Cerca con Google

[103] Ishihara, T., Ishikawa, S., Furuno, T., Yu, C., Ando, M., Nishiguchi, H., Takita, Y.; Solid State Ionics, 2004, 175, 367 Cerca con Google

[104] Ishihara, T., Tsuruta, Y., Chunying, Y., Tokada, T., Nishiguchi, H., Takita, Y.; J. Electrochem. Soc., 2003, 150, E17 Cerca con Google

[105] Tablet, C., Grubert, G., Wang, H., Schiestel, T., Schroeder, M., Langanke, B., Caro, J.; Catal. Today, 2005, 104, 126 Cerca con Google

[106] Teraoka, Y., Honbe, Y., Ishii, J., Furukawa, H., Moriguchi, I.; Solid State Ionics, 2002, 152-153, 681 Cerca con Google

[107] Lee, S., Lee, K.S., Woo, S.K., Kim, J.W., Ishihara, T., Kim, D.K.; Solid State Ionics, 2003, 158, 287 Cerca con Google

[108] Lee, K.S., Lee, S., Kim, J.W., Woo, S.K.; Desalination, 2002, 147, 439 Cerca con Google

[109] Shao, Z., Yang, W., Cong, Y., Dong, H., Tong, J., Xiong, G.; J. Membr. Sci., 2000, 172, 177 Cerca con Google

[110] Tong, J., Yang, W., Cai, R., Zhu, B., Lin, L.; Catal. Lett., 2002, 78, 129 Cerca con Google

[111] Skoog, D.A.; Leary, J.J.; Chimica Analitica Strumentale, EdiSES, Napoli, 1995 Cerca con Google

[112] Vai! Cerca con Google

[113] Hertz, H.; Ann. Physik, 1887, 31, 983 Cerca con Google

[114] Einstein, A.; Ann. Physik, 1905, 17,132 Cerca con Google

[115] C.S. Fadley in Electron Spectroscopy: theory, techniques and Applications vol 2 C.R. Brundle and A.D. Baker Eds Academic Press 1978 Chapter 1 Cerca con Google

[116] Shirley, D. A.; Phys. Rev. B 1972, 5, 4709 Cerca con Google

[117] Little, L.H.; Infrared Spectra of Adsorbed Species, Academic Press, Press and N.Y. 1996 Cerca con Google

[118] Weckhuysen, B.M., Schoonheydt, R.A.; Catal. Today, 1999, 49, 441 Cerca con Google

[119] Dickson, D.P.E., Berry, F.J.; Mössbauer spectroscopy, Cambridge University Press, London 1986 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record