Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

De Marchi, Fabiola (2014) Studio dei metaboliti chimici dell'uva finalizzato a valutare le potenzialità enologiche, nutraceutiche ed industriali di alcune varietà di vite e nuovi approcci di metabolomica. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
5Mb

Abstract (inglese)

Grape, wine and oenology by-products are rich in polyphenols and in particular flavonoids: flavonols, anthocyanins, flavanols and proanthocyanidins. Those molecules are plants secondary metabolites and may also contribute to the bitterness and astringency of grapes and wines. In recent years, epidemiological studies have revealed the great potential of polyphenols and flavonoids in human diet on protection against cancers, infections, their role in anti-aging and also against the development of several chronic diseases such as cardiovascular diseases (CVDs) or diabetes. Their role for human health is attributed mainly to their antioxidant, anti-inflammatory, antimicrobial activities. Therefore these bio-compounds could find promising applications in pharmaceutical, nutraceutical and food industries as active ingredients in supplements with antioxidant activity, value-added ingredients in fortified foods or as natural dyes and preservatives.
The aim of this research is to investigate the contents of chemical metabolites in several unique Vitis vinifera varieties and hybrids, and to examine their potential for oenological, nutraceutical and industrial applications. Modern spectrophotometry, chromatography and mass spectrometry (MALDI/MS, LC/MS, GC/MS) analytical techniques were applied in order to achieve the aims of the research.
Nine Vitis vinifera italian native grape varieties from Friuli Venezia Giulia and Veneto regions, were investigated for their enological potential, by studying the main classes of polyphenols and aroma compounds of grapes and their organoleptic wine characteristics.
In addition 32 hybrid varieties (21 red, 11 white) that belong to the CRA-VIT Grapevine Germplasm Collection located in Conegliano (TV) were studied to evaluate their nutraceutical and industrial potential.
The study of anthocyanins of red hybrids showed that some varieties (e.g. Seibel 8357) have rich content of pigments and are therefore attractive for the production of natural dyes that are used in the food and pharmaceutical industry. Moreover, some varieties (Bacò 1 and Seibel 10878) were also found interesting for their triglycerides content in grape seed oil with high linoleic acid content (up to 70%), which is essential fatty acid effective in reducing LDL cholesterol.
The nutraceutical potential of hybrid varieties was investigated by studying grape seed proanthocyanidins. Oligomeric and polymeric proanthocyanidins with different degree of galloylation were determined in grape seed extracts suggesting potential application of the extracts as antioxidants in nutraceutical products and also as oenological tannins.
Eventually, a new methodology was established for grape metabolome study based on High-Resolution Mass Spectrometry (HR-MS) analysis and the ‚Äúsuspect screening analysis‚ÄĚ approach. This method was proved to be very effective due to the ability to identify hundreds of compounds in one single run and also individual classes of grape polyphenols

Abstract (italiano)

L’uva, il vino ed i sottoprodotti dell’industria enologica sono ricche fonti di polifenoli e flavonoidi, quali flavonoli, antociani, flavanoli e proantocianidine. Questi composti determinano le caratteristiche sensoriali delle uve e dei vini, come il colore, il sapore e l’astringenza.
Numerosi studi epidemiologici hanno dimostrato che questi composti esercitano un’azione benefica sulla salute umana e proteggono dall’insorgere di patologie croniche e degenerative soprattutto a carico dell’apparato cardiovascolare, grazie alle loro proprietà antiossidanti, anticancro, antinfiammatorie ed antimicrobiche. Questi biocomponenti, una volta estratti dalle varie parti della pianta, possono trovare importanti applicazioni come principi attivi di supplementi farmaceutici con attività antiossidante, ingredienti a valore aggiunto in alimenti fortificati, coloranti e conservanti naturali per l’industria alimentare.
Lo scopo della ricerca è quello di studiare, mediante le moderne tecniche analitiche di spettrofotometria, cromatografia e spettrometria di massa (MALDI/MS, LC/MS, GC/MS), i metaboliti nelle uve di alcune varietà di Vitis vinifera e di viti ibride ad oggi poco conosciute al fine di individuarne le potenzialità enologiche, nutraceutiche ed industriali.
Sono state valutate le potenzialità enologiche di nove varietà di V. vinifera appartenenti a vitigni autoctoni del Friuli Venezia Giulia e del Veneto, attraverso lo studio delle principali classi di polifenoli e aromi delle uve e dei principali parametri chimici e profili organolettici dei vini.
Inoltre, sono state studiate le uve di 32 varietà di viti ibride (21 rosse e 11 bianche) presenti nella collezione del Germoplasma viticolo del CRA-VIT al fine di valutarne le potenzialità per i loro impieghi industriali e nella nutraceutica.
Lo studio degli antociani delle varietà ibride rosse ha evidenzato alcune varietà particolarmente ricche di pigmenti (es. il Seibel 8357) e quindi interessanti per la produzione di coloranti naturali che vengono impiegati in particolare nell’industria alimentare e farmaceutica. Lo studio dei trigliceridi dell’olio di vinaccioli delle uve ibride ha evidenziato che in generale queste varietà hanno un elevato contenuto di acido linoleico (superiore al 70%), un acido grasso essenziale avente la proprietà di diminuire i livelli di colesterolo LDL, ed alcune varietà particolarmente interessanti per la loro produttività (Bacò 1 e Seibel 10878). Le potenzialità nutraceutiche di queste varietà sono state investigate anche studiando le proantocianidine negli estratti di vinaccioli. Sono state determinate numerose proantocianidine oligomere e polimere aventi diversi gradi di galloilazione, utilizzabili, oltre che come preparati antiossidanti, anche come tannini enologici per la chiarifica di mosti e vini.
Infine, √® stato sviluppato un nuovo metodo per lo studio della metabolomica dell‚Äôuva mediante analisi di spettrometria di massa ad alta risoluzione (HR-MS) con un approccio di ‚Äúsuspect screening analysis‚ÄĚ. Il metodo √® risultato molto efficace, ed ha permesso l‚Äôidentificazione di centinaia di metaboliti con una singola analisi, incluse diverse classi di polifenoli dell‚Äôuva

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Curioni, Andrea
Correlatore:Flamini, Riccardo
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > TERRITORIO, AMBIENTE, RISORSE E SALUTE
Data di deposito della tesi:24 Gennaio 2014
Anno di Pubblicazione:24 Gennaio 2014
Parole chiave (italiano / inglese):Polifenoli; antiossidanti di uva e vino; Vitis vinifera; vitigni minori; ibridi; metaboliti secondari; antociani; proantocianidine; flavonoli; olio di vinaccioli; nutraceutica; bioenergie; estratti naturali; HPLC; LC-MS; MALDI-MS; metabolomica
Settori scientifico-disciplinari MIUR:Area 07 - Scienze agrarie e veterinarie > AGR/13 Chimica agraria
Struttura di riferimento:Dipartimenti > Dipartimento Territorio e Sistemi Agro-Forestali
Codice ID:6331
Depositato il:03 Nov 2014 13:32
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Adámez J. D., Samino E. G., Sánchez E. V., González-Gómez D. (2012) In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control, 24: 136-141. Cerca con Google

Angelini U., Costacurta A., Cancellier S. (1980) Dindarella. Riv. Vit. Enol., suppl. ottobre. Cerca con Google

Bagchi D., Bagchi M., Stohs S. J., Das D. K., Ray S. D., Kuszynski C. A., Joshi S. S., Pruess H. G. (2000) Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology, 148: 187-197. Cerca con Google

Bagchi D., Sen C. K., Ray S. D., Das D. K., Bagchi M., Preuss H.G., Vinson J.A. (2003) Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract. Mutat. Res., 523‚Äď524: 87-97. Cerca con Google

Bail S., Stuebiger G., Krist S., Unterweger H., Buchbauer G. (2008) Characterisation of various grape seed oils by volatile compounds, triacylglycerol composition, total phenols and antioxidant capacity. Food Chem., 108: 1122-1132. Cerca con Google

Balde A., De Bruyne T., Pieters L., Kolodziej H., Vanden Berghe D., Claeys M., Vlietinck A. (1995) Tetrameric proanthocyanidins containing a double interflavanoid (A-type) linkage from Pavetta owariensis. Phytochemistry, 40: 933. Cerca con Google

Balu M., Sangeetha P., Murali G., Panneerselvam C. (2006) Modulatory role of grape seed extract on age-related oxidative DNA damage in central nervous system of rats. Brain Res. Bull., 68: 469-473. Cerca con Google

Bautista-Ortín A. B., Martínez-Cutillas A., Ros-García J. M., López-Roca J. M., Gómez-Plaza, E. (2005) Improving colour extraction and stability in red wines: the use of maceration enzymes and enological tannins. Int. J. Food Sci. Technol., 40: 867-878. Cerca con Google

Bavaresco L., Mattivi F., De Rosso M., Flamini R. (2012) Effects of Elicitors, Viticultural Factors, and Enological Practices on Resveratrol and Stilbenes in Grapevine and Wine. Mini-Rev. Med. Chem., 12 (13): 1366-1381. Cerca con Google

Baydar N. G., √Ėzkan G., Sańüdi√ß O. (2004) Total phenolic contents and antibacterial activities of grape (Vitis vinifera L.) extracts. Food Control, 15: 335-339. Cerca con Google

Baydar N. G., √Ėzkan G. (2006) Tocopherol contents of some Turkish wine by-products. Eur. Food Res. Technol., 223: 290-293. Cerca con Google

Bavaresco L., Petegolli D., Cantu E., Fregoni M., Chiusa G., Trevisan M. (1997) Elicitation and accumulation of stilbene phytoalexins in grapevine berries infected by Botrytis cinerea. Vitis, 36: 77-83. Cerca con Google

Beveridge T. H. J., Girard B., Kopp T., Drover J. C. G. (2005) Yield and Composition of Grape Seed Oils Extracted by Supercritical Carbon Dioxide and Petroleum Ether: Varietal Effects. J. Agric. Food Chem., 53: 1799-1804. Cerca con Google

Braga, F. G., Lencart e Silva, F. A., Alves, A. (2002) Recovery of winery by-products in the douro demarcated region: Production of calcium tartrate and grape pigments. Am. J. Enol. Vitic., 53 (1): 41-45. Cerca con Google

Brenton A. G., Godfrey A. R. (2010) Accurate Mass Measurement: Terminology and Treatment of Data. J. Am. Soc. Mass Spectrom., 21: 1821-1835. Cerca con Google

Cabredo-Pinillos S., Cedr√≥n-Fern√°ndez T., S√°enz-Barrio C. (2008) Differentiation of ‚ÄúClaret‚ÄĚ, Ros√®, Red and Blend wines based on the content of volatile compounds by headspace solid-phase microextraction and gas chromatography. Eur. Food Res. Technol., 226: 1317-1323. Cerca con Google

Cancellier S., Costacurta A., Angelini U., Segattini G. (1980) Cabrusina. Riv. Vit. Enol., suppl. ottobre. Cerca con Google

Cancellier S. (1992) Un vecchio vitigno dei colli trevigiani: la ‚ÄúBoschera‚ÄĚ. L'Informatore Agrario, n. 14. Cerca con Google

Cancellier S., Giacobbi P. (2004) Antichi vitigni veneti a bacca nera. In: Recupero, conservazione e valorizzazione del germoplasma viticolo veneto. Eds. Veneto Agricoltura, 33-91. Cerca con Google

Cancellier S., Michelet E. (2006) Il vitigno Grapariol. L’informatore Agrario, n. 35. Cerca con Google

Castillo-Mu√Īoz N., G√≥mez-Alonso S., Garc√≠a-Romero E., Hermos√≠n-Guti√©rrez I. (2007) Flavonol profiles of Vitis vinifera red grapes and their single-cultivar wines. J. Agric. Food Chem., 55: 992-1002. Cerca con Google

Castillo-Mu√Īoz N., G√≥mez-Alonso S., Garc√≠a-Romero E., Hermos√≠n-Guti√©rrez I. (2010) Flavonol profiles of Vitis vinifera white grape cultivars. J. Food Compos. Anal., 23: 699-705. Cerca con Google

Chen Z.Y., Ma K.Y., Liang Y., Peng C., Zuo Y. (2011) Role and classification of cholesterol-lowering functional foods. J . Funct. Foods, 3: 61-69. Cerca con Google

Cos P., De Bruyne T., Hermans N., Apers S., Vanden Berghe D., Vietlinck A. J. (2003) Proanthocyanidins in Health Care: Current and New Trends. Curr. Med. Chem., 10: 1345-1359. Cerca con Google

Cravero M. C. (1991) Gli acidi idrossicinnamiltartarici dell’uva e del vino. Annali dell’Istituto Sperimentale per l’Enologia di Asti, (XXII): 275-294. Cerca con Google

Crews C., Hough P., Godward J., Brereton P., Lees M., Guiet S., W. Winkelmann (2006) Quantitation of the Main Constituents of Some Authentic Grape-Seed Oils of Different Origin. J. Agric. Food Chem., 54: 6261-6265. Cerca con Google

Dalmasso G., Eynard I. (1979) Manuale di viticoltura moderna, Ed. Hoepli. Cerca con Google

Davies A. J., Mazza G. (1993) Copigmentation of simple and acylated anthocyanins with colorless phenolic compounds. J. Agric. Food Chem., 41: 716-720. Cerca con Google

De Beer D., Joubert E., Gelderblom W. C. A., Manley M. (2002) Phenolic compounds: a review of their possible role as in vivo antioxidants of wine. S. Afr. J. Enol. Vitic., 23 (2): 48-61. Cerca con Google

De Campos M. A. S. L., Leimann F. V., Pedrosa R. C., Ferreira S. R. S. (2008) Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresour. Technol., 99: 8314-8420. Cerca con Google

Del Caro A., Fanara C., Genovese A., Moio L., Piga A., Piombino P. (2012) Free and enzymatically hydrolysed volatile compounds of sweet wines from Malvasia and Muscat grapes (Vitis vinifera L.) grown in Sardinia. S. Afr. J. Enol. Vitic., 33 (1): 115-121. Cerca con Google

De Marchi F., Seraglia R., Molin L., Traldi P., De Rosso M., Panighel A., Dalla Vedova A., Gardiman M., Giust M., Flamini R., (2012) Seed oil triglyceride profiling of thirty-two hybrid grape varieties. J. Mass Spectrom., 47 (9): 1113-1119. Cerca con Google

Demirtas I., Pelvan E., √Ėzdemir I. S., Alasalvar C., Ertas E. (2013) Lipid characteristics and phenolics of native grape seed oils grown in Turkey. Eur. J. Lipid Sci. Tech., 115: 641-647. Cerca con Google

De Pascual-Teresa S., Sanchez-Ballesta M. T. (2008) Anthocyanins: from plants to health. Phytochem. Rev., 7: 281-299. Cerca con Google

De Rosso M., Panighel A., Carraro R., Padoan E., Favaro A., Dalla Vedova A., Flamini R., (2010) Chemical characterization and enological potential of Raboso varieties by study of secondary grape metabolites. J. Agric. Food Chem., 58: 11364-11371. Cerca con Google

De Rosso M., Tonidandel L., Larcher R., Nicolini G., Ruggeri V., Dalla Vedova A., De Marchi F., Gardiman M., Flamini R. (2012) Study of anthocyanic profiles of twenty-one hybrid grape varieties by liquid chromatography and precursor-ion mass spectrometry. Anal. Chim. Acta, 732: 120-129. Cerca con Google

Di Majo D., La Guardia M., Giammanco S., La Neve L., Giammanco M. (2008) The antioxidant capacity of red wine in relationship with its polyphenolic constituents. Food Chem., 111: 45-49. Cerca con Google

Di Stefano R., Cravero M. C. (1991) Metodi per lo studio dei polifenoli dell’uva. Riv. Vitic. Enol., 49 (2): 37-45. Cerca con Google

Di Stefano R., Borsa D., Maggiarotto G., Corino L. (1995) Terpeni e polifenoli di uve aromatiche a frutto colorato prodotte in Piemonte. L’Enotecnico, XXXI (4), 75-85. Cerca con Google

Downey M. O., Harvey J. S., Robinson S. P. (2003) Synthesis of flavonols and expression of flavonol synthase genes in the developing grape berries of Shiraz and Chardonnay (Vitis vinifera L.). Aust. J. Grape Wine Res., 9: 110-121. Cerca con Google

Downey M. O., Dokoozlian N. K., Krstic M. P. (2006) Cultural practice and environmental impacts on the flavonoid composition of grape and wine: a review of recent research. Am. J. Enol. Vitic., 57 (3): 257-268. Cerca con Google

Dunn W. B., Erban A., Weber R. J. M., Creek D. J., Brown M., Breitling R., Hankemeier T., Goodacre R., Neumann S., Kopka J., Viant M. R. (2013) Mass appeal: metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics, 9: 44-66. Cerca con Google

Espín J. C., García-Conesa M. T., Tomás-Barberán F. A. (2007) Nutraceuticals: facts and fiction. Phytochemistry, 68: 2986-3008. Cerca con Google

FAOSTAT, FAO Statistical Database (2011). Food and Agriculture Organization of the United Nations. www.faostat.fao.org, consultato il 29/10/2013. Vai! Cerca con Google

Favretto D., Flamini R. (2000) Application of Electrospray Ionization Mass Spectrometry to the Study of Grape Anthocyanins. Am. J. Enol. Vitic., 51 (1): 55-64. Cerca con Google

Feliciano R. P., Krueger C. G., Shanmuganayagam D., Vestling M. M., Reed J. D. (2012) Deconvolution of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry isotope patterns to determine ratios of A-type to B-type interflavan bonds in cranberry proanthocyanidins. Food Chem., 135: 1485-1493. Cerca con Google

Fernandes L., Casal S., Cruz R., Pereira J. A., Ramalhosa, E. (2013) Seed oils of ten traditional Portuguese grape varieties with interesting chemical and antioxidant properties. Food Res. Int., 50 (1): 161-166. Cerca con Google

Figueiredo-González M., Martínez-Carballo E., Cancho-Grande B., Santiago J. L., Martínez M. C., Simal-Gándara J. (2012) Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between their biosynthesis pathways. Food Chem., 130: 9-19. Cerca con Google

Flamini R., Dalla Vedova A., Calò A. (2001) Studio sui contenuti monoterpenici di 23 accessioni di uve Moscato: correlazione tra profilo aromatico e varietà. Riv. Vitic. Enol., N. 2/3. Cerca con Google

Flamini R. (2008) Hyphenated techniques in Grape and Wine Chemistry, John Wiley & Sons Ltd. Eds., ISBN 978-0-470-06187-9. Cerca con Google

Flamini R., Traldi P. (2010) Mass Spectrometry in Grape and Wine Chemistry, John Wiley & Sons Ltd. Eds., ISBN 978-0-470-39247-8. Cerca con Google

Flamini R., De Rosso M., De Marchi F., Dalla Vedova A., Panighel A., Gardiman M., Maoz I., Bavaresco L. (2013) An innovative approach to grape metabolomics: stilbene profiling by suspect screening analysis. Metabolomics, 9 (6): 1243-1253. Cerca con Google

Foo L. Y., Lu Y., Howell A. B., Vorsa N. (2000) A-Type proanthocyanidin trimers from cranberry that inhibit adherence of uropathogenic P-fimbriated Escherichia coli. J. Nat. Prod., 63: 1225-1228. Cerca con Google

Frankel E. N., German J. B., Kinsellaa J. E., Parks E., Kanner J., (1993) Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. The Lancet, 341 (8843): 454-457. Cerca con Google

Frazier R. A., Deaville E. R., Green R. J., Stringano E., Willoughby I., Plant J., Mueller-Harvey, I. (2010) Interactions of tea tannins and condensed tannins with proteins. J. Pharm. Biomed. Anal., 51: 490-495. Cerca con Google

Frémont L. (2000) Biological effects of resveratrol. Life Sci., 66 (8): 663-673. Cerca con Google

Fulcrand H., Remy S., Souquet J. M., Cheynier V., Moutounet M. (1999) Study of Wine Tannin Oligomers by On-Line Liquid Chromatography Electrospray Ionization Mass Spectrometry. J. Agr. Food Chem., 47: 1023-1028. Cerca con Google

Gil-Ch√°vez G. J., Villa J. A., Ayala-Zavala J. F., Heredia J. B., Sepulveda D., Yahia E. M., Gonz√°lez-Aguilar G. A. (2013) Technologies for Extraction and Production of Bioactive Compounds to be Used as Nutraceuticals and Food Ingredients: An Overview. Compr. Rev. Food Sci. Food Saf., 12: 5-23. Cerca con Google

Giusti M., Rodriguez-Saona L., Griffin D., Wrolstad R. (1999) Electrospray and Tandem Mass Spectrometry as Tools for Anthocyanin Characterization. J. Agr. Food Chem., 47: 4657-4664. Cerca con Google

Giusti M. M., Wrolstad R. E. (2003) Acylated anthocyanins from edible sources and their applications in food systems. Biochem. Eng. J., 14 (3): 217-225. Cerca con Google

GonzaŐĀlez-Barreiro C., Rial-Otero R., Cancho-Grande B., Simal-G√°ndara J. (2013) Wine aroma compounds in grape: a critical review. Crit. Rev. Food Sci. Nutr., DOI: 10.1080/10408398.2011.650336. Cerca con Google

GonzaŐĀlez-Centeno M. R., Jourdes M., Femenia A., Simal S., Rossell√≥ C., Teissedre P. L. (2012) Proanthocyanidin composition and antioxidant potential of the stem winemaking byproducts from 10 different grape varieties (Vitis vinifera L.). J. Agric. Food Chem., 60: 11850-11858. Cerca con Google

Griffiths W. J., Koal T., Wang Y., Kohl M., Enot D. P., Deigner H. P. (2010) Targeted metabolomics for biomarker discovery. Angew. Chem. Int. Ed., 49: 5426-5445. Cerca con Google

Gu L., Kelm M. A., Hammerstone J. F., Zhang Z., Beecher G., Holden J., Haytowitz D., Prior R. L. (2003) Liquid chromatographic/electrospray ionization mass spectrometric studies of proanthocyanidins in foods. J. Mass Spectrom., 38: 1272-1280. Cerca con Google

Gu L., Kelm M. A., Hammerstone J. F., Beecher G., Holden J., Haytowitz D., Prior R. L. (2003a) Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J. Agric. Food Chem., 51: 7513-7521. Cerca con Google

Gunata Y. Z., Bayonove C. L., Baumes R. L., Cordonnier R. E. (1985) The aroma of grapes. Extraction and determination of free and glycosically bound fractions of some grape aroma components. J. Chrom. A, 331: 85-90. Cerca con Google

Han X., Shen T., Lou H. (2007). Dietary polyphenols and their biological significance. Int. J. Mol. Sci., 8 (9): 950-988. Cerca con Google

Hanton S. D. (2001) Mass Spectrometry of Polymers and Polymer Surfaces. Chem. Rev., 101: 527-569. Cerca con Google

Haselgrove L., Botting D., van Heeswijck R., H√łj P. B., Dry P. R., Ford C., Iland P. G. (2000) Canopy microclimate and berry composition: the effect of bunch sun exposure on the phenolic composition of Vitis vinifera L. cv Shiraz grape berries. Aust. J. Grape Wine Res., 6: 141-149. Cerca con Google

He J., Giusti M. M. (2010) Anthocyanins: Natural Colorants with Health-Promoting Properties. Annu. Rev. Food Sci. Technol., 1: 163-87. Cerca con Google

He F., He J.-J., Pan Q.-H., Duan C.-Q. (2010) Mass-spectrometry evidence confirming the presence of pelargonidin-3-O-glucoside in the berry skins of Cabernet Sauvignon and Pinot Noir (Vitis vinifera L.). Aust. J. Grape Wine Res., 16: 464-468. Cerca con Google

Hermos√≠n-Guti√©rrez I., Castillo-Mu√Īoz N., G√≥mez-Alonso S., Garc√≠a-Romero E. (2011) Flavonol profiles for grape and wine authentication. In: ACS symposium series. American Chemical Society, Washington, DC. Cerca con Google

Hofmann T., Glabasnia A., Schwarz B., Wisman K. N., Gangwer K. A., Hagerman, A. E. (2006) Protein binding and astringent taste of a polymeric procyanidin, 1,2,3,4,6-penta-O-galloyl-ÔĀ°-D-glucopyranose, castalagin, and grandinin. J. Agric. Food Chem., 54: 9503-9509. Cerca con Google

Huang D., Ou B., Prior R. L. (2005) The chemistry behind antioxidant capacity essays. J. Agric. Food Chem., 53: 1841-1856. Cerca con Google

Huang Z., Wang B., Williams P., Pace R. D. (2009) Identification of anthocyanins in muscadine grapes with HPLC-ESI-MS. Food Sci. Technol., 42: 819-824. Cerca con Google

Jerez M., Sineiro J., Guiti√°n E., N√ļ√Īez M. J. (2009) Identification of polymeric procyanidins from pine bark by mass spectrometry. Rapid Commun. Mass Spectrom., 23: 4013-4018. Cerca con Google

Jord√£o A. M., Ricardo-da-Silva J. M., Laureano O. (2005) Extraction of some ellagic tannins and ellagic acid from oak wood chips (Quercus pyrenaica L.) in model wine solutions: effect of time, pH, temperature and alcoholic content. S. Afr. J. Enol. Vitic., 26: 83-89. Cerca con Google

Kammerer D., Claus A., Schieber A., Carle R. (2004) Polyphenol Screening of Pomace from Red and White Grape Varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J. Agric. Food Chem., 52: 4360-4367. Cerca con Google

Kondo K., Kurihara M., Fukuhara K., Tanaka T., Suzuki T., Miyata N., Toyoda M. (2000) Conversion of procyanidin B-type (catechin dimer) to A-type: evidence for abstraction of C-2 hydrogen in catechin during radical oxidation. Tetrahedron Lett., 41: 485-488. Cerca con Google

Krauss M., Singer H., Hollender J. (2010) LC-high resolution MS in environmental analysis: from target screening to the identification of unknowns. Anal. Bioanal. Chem., 397: 943-951. Cerca con Google

Kritzinger E. C., Bauer F. F., du Toit W. J. (2013) Role of glutathione in winemaking: a review. J. Agric. Food Chem., 61: 269-277. Cerca con Google

Krueger C. G., Dopke N. C., Treichel P. M., Folts J., Reed J. D. (2000) Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry of Polygalloyl Polyflavan-3-ols in Grape Seed Extract. J. Agric. Food Chem., 48: 1663-1667. Cerca con Google

Kueger S., Steinhauser D., Willmitzer L., Giavalisco P. (2012) High-resolution plant metabolomics: from mass spectral features to metabolites and from whole-cell analysis to subcellular metabolite distributions. The Plant Journal, 70: 39-50. Cerca con Google

Labarbe B., Cheynier V., Brossaud F., Souquet J. M., Moutounet M. (1999) Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem., 47: 2719-2723. Cerca con Google

Lachman J., Hejtm√°nkov√° A., Hejtm√°nkov√° K., Horn√≠ńćkov√° S., Pivec V., Skala O., D√™dina M., PŇôibyl J. (2013) Towards complex utilisation of winemaking residues: Characterisation of grape seeds by total phenols, tocols and essential elements content as a by-product of winemaking. Ind. Crops Prod., 49: 445-453. Cerca con Google

Langcake P., Pryce R. J. (1977) A new class of phytoalexins from grapevines. Experientia, 33: 151-152. Cerca con Google

Liang Z., Yang Y., Cheng L., Zhong G. (2012) Polyphenolic composition and content in the ripe berries of wild Vitis species. Food Chem., 132: 730-738. Cerca con Google

L√≠sa M., Holńćapek M. (2008) Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chrom. A., 1198-1199: 115-130. Cerca con Google

Lizarraga D., Lozano C., Bried√© J. J., van Delft J. H., Touri√Īo S., Centelles J. J., Torres J. L., Cascante M. (2007) The importance of polymerization and galloylation for the antiproliferative properties of procyanidin-rich natural extracts. FEBS Journal, 274 (18): 4802-4811. Cerca con Google

Llobera A., Ca√Īellas J. (2007) Dietary fibre content and antioxidant activity of Manto Negro red grape (Vitis vinifera): pomace and stem. Food Chem., 101: 659-666. Cerca con Google

Llobera A., Ca√Īellas J. (2008) Antioxidant activity and dietary fibre of Prensal Blanc white grape (Vitis vinifera) by-products. Int. J. Food Sci. Technol., 43: 1953-1959. Cerca con Google

Lutterodt H., Slavin M., Whent M., Turner E., Yu L. (2011) Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chem., 128 (2): 391-399. Cerca con Google

Maier T., Schieber A., Kammerer D. R., Carle R. (2009). Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem., 112: 551-559. Cerca con Google

Makris D. P., Kallithraka S., Kefalas P. (2006) Flavonols in grapes, grape products and wines: Burden, profile and influential parameters. J. Food Compos. Anal., 19: 396-404. Cerca con Google

Malien-Aubert C., Dangles O., Amiot M. J. (2001) Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra and intermolecular copigmentation. J. Agric. Food Chem., 49: 170-176. Cerca con Google

Malien-Aubert C., Dangles O., Amiot M. J. (2002) Influence of procyanidins on the color stability of oenin solutions. J. Agric. Food Chem., 50: 3299-3305. Cerca con Google

Manach C., Scalbert A., Morand C., Rémésy C., Jiménez L. (2004). Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr., 79: 727-747. Cerca con Google

Mané C., Souquet J. M., Ollé D., Véran F., Mazerolles G., Cheynier V., Fulcrand H. (2007) Optimisation of simultaneous flavanol, phenolic acid, and anthocyanin extraction from grapes using an experimental design: application to the characterization of Champagne grape varieties. J. Agric. Food Chem., 55: 7224-7233. Cerca con Google

Man√© C., Sommerer N., Yalcin T., Cheynier V., Cole R.B., Fulcrand H. (2007a) Assessment of the Molecular Weight Distribution of Tannin Fractions through MALDI-TOF MS Analysis of Protein‚ąíTannin Complexes. Anal. Chem., 79: 2239. Cerca con Google

Markus M. A., Morris B. J. (2008). Resveratrol in prevention and treatment of common clinical conditions of aging. Clin. Interventions Aging, 3 (2): 331-339. Cerca con Google

Martin K. R., Appel C. L. (2010) Polyphenols as dietary supplements: a double-edged sword. Nutr. Diet. Suppl., 2: 1-12. Cerca con Google

Mateo J. J, Gentilini N., Huerta T., Jiménez M., Di Stefano R. (1997) Fractionation of glucoside precursors of aroma in grapes and wine. J. Chrom. A, 778: 219-224. Cerca con Google

Mattivi F., Guzzon R., Vrhovsek U., Stefanini M., Velasco R. (2006) Metabolite Profiling of Grape: Flavonols and Anthocyanins. J. Agr. Food Chem., 54: 7692-7702. Cerca con Google

Mattoli L., Cangi F., Maidecchi A., Ghiara C., Ragazzi E., Tubaro M., Stella L., Tisato F., Traldi P. (2006) Metabolomic fingerprinting of plant extracts. J. Mass Spectrom., 41: 1534-1545. Cerca con Google

McRae J. M., Kennedy J. A. (2011) Wine and grape tannin interactions with salivary proteins and their impact on astringency: a review of current research. Molecules, 16: 2348-2364. Cerca con Google

Monagas M., Gomez-Cordovés C., Bartolomé B., Laureano O., Ricardo da Silva J. M. (2003) Monomeric, Oligomeric, and Polymeric Flavan-3-ol Composition of Wines and Grapes from Vitis vinifera L. Cv. Graciano, Tempranillo, and Cabernet Sauvignon. J. Agric. Food Chem., 51: 6475-6481. Cerca con Google

Mouls L., Fulcrand H. (2012) UPLC-ESI-MS study of the oxidation markers released from tannin depolymerization: toward a better characterization of the tannin evolution over food and beverage processing. J. Mass Spectrom., 47: 1450-1457. Cerca con Google

Naczk M., Shahidi F., (2000) Phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J. Pharm. Biomed. Anal., 41: 1523-1542. Cerca con Google

Nakamura Y., Tsuji S., Tonogai Y. (2003) Analysis of proanthocyanidins in grape seed extracts, health foods and grape seed oils. J. Health Sci., 49 (1): 45-54. Cerca con Google

Nassiri-Asl M., Hosseinzadeh H. (2009) Review of the pharmacological effects of Vitis vinifera (grape) and its bioactive compounds. Phytother. Res., 23: 1197-1204. Cerca con Google

Neves A. C., Spranger M. I., Zhao Y., Leandro M. C., Sun B. (2010) Effect of Addition of Commercial Grape Seed Tannins on Phenolic Composition, Chromatic Characteristics, and Antioxidant Activity of Red Wine. J. Agric. Food Chem., 58: 11775-11782. Cerca con Google

Nerantzis E. T., Tataridis P. (2006). Integrated enology - utilization of winery wastes for the production of high added value products. e-J. Sci. Technol., 1 (3): 79-89. Cerca con Google

Nixdorf S. L., Hermosín-Gutiérrez I. (2010) Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity. Anal. Chim. Acta, 659: 208-215. Cerca con Google

OIV, Organisation Internationale de la Vigne et du Vin (2012) International code of oenological practices, part II. 3.2-1, 3. Wines, 3.2 clarification of wine (OIV: Paris, France). Cerca con Google

OIV, Organisation Internationale de la Vigne et du Vin (2013) International oenological codex oenological tannins COEI-1-tannins: 2009, INS N¬į: 181, 1-25 (OIV: Paris, France). Cerca con Google

Ortega-Regules A., Romero-Cascales I., López-Roca J. M., Ros-García J. M., Gómez-Plaza E. (2006) Anthocyanin fingerprint of grapes: environmental and genetic variations. J. Sci. Food Agric., 86: 1460-1467. Cerca con Google

√Ėzvural E. B., Vural H. (2011) Grape seed flour is a viable ingredient to improve the nutritional profile and reduce lipid oxidation of frankfurters. Meat Sci., 88: 179-183. Cerca con Google

Pandey K. B., Rizvi S. I., (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell. Longevity, 2 (5): 270-278. Cerca con Google

Panighel A., Gardiman M., De Marchi F., De Rosso M., Dalla Vedova A., Flamini R. (2012) Studio dei profili polifenolici ed aromatici di alcuni vitigni autoctoni del Veneto e Friuli Venezia Giulia. Riv. Vitic. Enol., 2: 41-60. Cerca con Google

Pardo J. E., Fern√°ndez E., Rubio M., Alvarruiz A., Alonso G. L. (2009) Characterization of grape seed oil from different grape varieties (Vitis vinifera). Eur. J. Lipid Sci. Tech., 111 (2): 188-193. Cerca con Google

Passos C. P., Cardoso S. M., Domingues M. R. M., Domingues P., Silva C. M., Coimbra M. A. (2007) Evidence for galloylated type-A procyanidins in grape seeds. Food Chem., 105: 1457-1467. Cerca con Google

Pastrana-Bonilla E., Akoh C. C., Sellappan S., Krewer G. (2003) Phenolic content and antioxidant capacity of Muscadine grapes. J. Agric. Food Chem., 51: 5497-5503. Cerca con Google

Peng X., Ma J., Cheng K. W., Jiang Y., Cheng F., Wang M. (2010) The effects of grape seed extract fortification on the antioxidant activity and quality attributes of bread. Food Chem., 119: 49-53. Cerca con Google

Peralbo-Molina A., de Castro M. D. L. (2013) Potential of residues from the Mediterranean agriculture and agrifood industry. Trends Food Sci. Technol., 32: 16-24. Cerca con Google

Plumb G. W., De Pascual-Teresa S., Santos-Buelga C., Cheynier V., Williamson G. (1998) Antioxidant Properties of Catechins and Proanthocyanidins: Effect of Polymerisation, Galloylation and Glycosylation. Free Rad. Res., 29: 351-358. Cerca con Google

Poggi G. (1939) Atlante ampelografico. Consorzio provinciale tra i produttori dell'Agricoltura, Sezione viticoltura (Udine). Cerca con Google

Prieur C., Rigaud J., Cheynier V., Moutounet M. (1994) Oligomeric and polymeric procyanidins from grape seeds. Phytochemistry, 36 (3): 781-784. Cerca con Google

Prodanov M. P., Domínguez J. A., Blázquez I., Salinas M. R., Alonso G. L. (2005) Some aspects of the quantitative/qualitative assessment of commercial anthocyanin-rich extracts. Food Chem., 90: 585-596. Cerca con Google

Quideau S., Deffieux D., Douat-Casassus C., Poységu L. (2011) Plant Plyphenols: Chemical Properties, Biological Activities, and Synthesis. Angew. Chem. Int. Ed., 50: 586-621. Cerca con Google

Reed J. D., Krueger C. G., Vestling M. M. (2005) MALDI-TOF mass spectrometry of oligomeric food polyphenols. Phytochemistry, 66: 2248-2263. Cerca con Google

Reemtsma T. (2009) Determination of molecular formulas of natural organic matter molecules by (ultra-) high-resolution mass spectrometry. Status and needs. J. Chrom. A, 1216: 3687-3701. Cerca con Google

Registro Nazionale delle Varietà di Vite, http://catalogoviti.politicheagricole.it/home.php, consultato il 12/11/2013. Vai! Cerca con Google

Regolamento (CE) 479/2008 del Consiglio del 29 aprile 2008, sulla OCM del settore vitivinicolo. Cerca con Google

Renaud S., De Lorgeril M. (1992) Wine, alcohol, platelets, and the French paradox for coronary heart disease. The Lancet, 339: 1523-1526. Cerca con Google

Ribéreau-Gayon P., Glories Y., Maujean A., Dubourdieu D. (1998) Trattato di enologia II, Chimica del vino, Stabilizzazione, Trattamenti, EdAgricole. Cerca con Google

Ricardo da Silva J. M., Rigaud J., Cheynier V., Cheminat A., Moutounet M. (1991) Procyanidin dimers and trimers from grape seeds. Phytochemistry, 30 (4): 1259-1264. Cerca con Google

Ricardo da Silva J. M., Cheynier V., Souquet J. M., Moutounet M. (1991a) Interaction of Grape Seed Procyanidins with Various Proteins in Relation to Wine Fining. J. Sci. Food Agric., 57: 111-125. Cerca con Google

Rocha S. M., Coutinho P., Barros A., Delgadillo I., Coimbra M. (2006) Rapid tool for distinction of wines based on the global volatile signature. J. Chrom. A, 1114: 188-197. Cerca con Google

Rockenbach I. I., Rodrigues E., Gonzaga L. V., Caliari V., Genovese M. I., Gonçalves A. E. S. S., Fett R. (2011) Phenolic compounds content and antioxidant activity in pomace from selected red grapes (Vitis vinifera L. and Vitis labrusca L.) widely produced in Brasil. Food Chem., 127: 174-179. Cerca con Google

Rojas-Chertó M., Kasper P. T., Willighagen E. L., Vreeken R. J., Hankemeier T., Reijmers T. H. (2011) Elemental composition determination based on MSn. Bioinformatics, 27 (17): 2376-2383. Cerca con Google

Ross C. F., Hoye C., Fernandez-Plotka V. C. (2011) Influence of heating on the polyphenolic content and antioxidant activity of grape seed flour. J. Food Sci., 76 (6): 884-890. Cerca con Google

Rubio M., Alvarez-Ortí M., Alvarruiz A., Fernández E., Pardo J. E. (2009) Characterization of Oil Obtained from Grape Seeds Collected during Berry Development. J. Agric. Food Chem., 57: 2812-2815. Cerca con Google

Sana T. R., Roark J. C., Li X., Waddell K., Fischer S. M. (2008) Molecular formula and METLIN personal metabolite database matching applied to the identification of compounds generated by LC/TOF-MS. J. Biomol. Tech., 19: 258-266. Cerca con Google

Sandhu A. K., Gu L. (2010) Antioxidant Capacity, Phenolic Content, and Profiling of Phenolic Compounds in the Seeds, Skin, and Pulp of Vitis rotundifolia (Muscadine Grapes) As Determined by HPLC-DAD-ESI-MSn. J. Agric. Food Chem., 58 (8): 4681-4692. Cerca con Google

Santos-Buelga C., Scalbert, A. (2000) Proanthocyanidins and tannin-like compounds - nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric., 80: 1094-1117. Cerca con Google

Sanz M. L., Martínez-Castro I., Moreno-Arribas M. V. (2008) Identification of the origin of commercial enological tannins by the analysis of monosaccharides and polyalcohols. Food Chem., 111: 778-783. Cerca con Google

Sarni-Manchado P., Cheynier V., Moutounet M. (1999). Interactions of grape seed tannins with salivary proteins. J. Agric. Food Chem., 47: 42-47. Cerca con Google

Scalbert A., Brennan L., Fiehn O., Hankemeier T., Kristal B. S., van Ommen B., Pujos-Guillot E., Verheji E., Wishart D., Wopereis S. (2009) Mass-spectrometry-based metabolomics: limitations and recommendations for future progress with particular focus on nutrition research. Metabolomics, 5: 435-458. Cerca con Google

Schiller J., S√ľ√ü R., Arnhold J., Fuchs B., Le√üig J., M√ľller M., Petkovic M., Spalteholz H., Zsch√∂rnig O., Arnold K. (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog. Lipid Res., 43: 449-488. Cerca con Google

Schneider A. (2006) Aspetti genetici nello studio dei vitigni del territorio. Quad. Vitic. Enol. Univ. Torino, 28, 2005-2006. Cerca con Google

Schwarz M., Picazo-Bacete J. J., Winterhalter P., Hermosín-Gutiérrez I. (2005) Effect of copigments and grape cultivar on the color of red wines fermented after the addition of copigments. J. Agric. Food Chem., 53: 8372-8381. Cerca con Google

Shahidi F. (2000). Antioxidants in food and food antioxidants. Food / Nahrung, 44 (3): 158-163. Cerca con Google

Shahidi F., Naczk M. (2003). Phenolics in Food and Nutraceuticals. New York: CRC Press, 2004, ISBN 0-203-59485-1. Cerca con Google

Shahidi F. (2004) Functional Foods: Their Role in Health Promotion and Disease Prevention. J. Food Sci., 69 (5): R146-149. Cerca con Google

Shahidi F., Chandrasekara A. (2010) Hydroxycinnamates and their in vitro and in vivo antioxidant activities. Phytochem. Rev., 9: 147-170. Cerca con Google

Shahidi F., Zhong Y., (2010a) Novel antioxidants in food quality preservation and health promotion. Eur. J. Lipid Sci. Technol., 112: 930‚Äď940. Cerca con Google

Siró I., Kápolna E., Kápolna B., Lugasi, A. (2008) Functional food. Product development, marketing and consumer acceptance-A review. Appetite, 51 (3): 456-467. Cerca con Google

Sleno L., Volmer D. A. (2006) Assessing the properties of internal standards for quantitative matrix-assisted laser desorption/ionization mass spectrometry of small molecules. Rapid Commun. Mass Spectrom., 20: 1517-1524. Cerca con Google

Soares S., Mateus N., de Freitas F. (2007) Interaction of different polyphenols with bovine serum albumin (BSA) and human salivary a-amylase (HSA) by fluorescence quenching. J. Agric. Food Chem., 55: 6727-6735. Cerca con Google

Somers T. C. (1971) The polymeric nature of wine pigments. Phytochemistry, 10 (9): 2175-2186. Cerca con Google

Souquet J-M., Cheynier V., Brossaud F., Moutounet M. (1996) Polymeric proanthocyanidins from grape skins. Phytochemistry, 43: 509-512. Cerca con Google

Souquet J-M., Labarbe B., Le Guernevé C., Cheynier V., Moutounet M. (2000). Phenolic composition of grape stems. J. Agric. Food Chem., 48: 1076-1080. Cerca con Google

Stoll N., Schmidt E., Thurow K. (2006) Isotope pattern evaluation for the reduction of elemental compositions assigned to high-resolution mass spectral data from Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. J. Am. Soc. Mass Spectrom., 17: 1692-1699. Cerca con Google

Sumner L. W., Amberg A., Barrett D., Beale M. H., Beger R., Daykin C. A., Fan T. W.-M., Fiehn O., Goodacre R., Griffin J. L., Hankemeier T., Hardy N., Harnly J., Higashi R., Kopka J., Lane A. N., Lindon J. C., Marriott P., Nicholls A.W., Reily M. D., Thaden J. J., Viant M. R. (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics, 3: 211-221. Cerca con Google

Sun B., Spranger I., Roque-do-Vale F., Leandro C., Belchior P. (2001) Effect of Different Winemaking Technologies on Phenolic Composition in Tinta Mi√ļda Red Wines. J. Agric. Food Chem., 49: 5809-5816. Cerca con Google

Tangolar S. G., Ozogul Y., Tangolar S., Torun A. (2009) Evaluation of fatty acid profiles and mineral content of grape seed oil of some grape genotypes. Int. J. Food Sci. Nutr., 60 (1): 32-39. Cerca con Google

Teissedre P. L., Frankel E. N., Waterhouse A. L., Peleg H., German J. B. (1996) Inhibition of In Vitro Human LDL Oxidation by Phenolic Antioxidants from Grapes and Wines. J. Sci. Food Agric., 70: 55-61. Cerca con Google

Tian Q., Giusti M. M., Stoner G. D., Schwartz S. J. (2005) Screening for anthocyanins using high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry with precursor-ion analysis, product-ion analysis, common-neutral-loss analysis, and selected reaction monitoring. J. Chrom. A, 1091: 72-82. Cerca con Google

Wang H., Race E. J., Shrikhande A. J. (2003) Characterization of Anthocyanins in Grape Juices by Ion Trap Liquid Chromatography‚ąíMass Spectrometry. J. Agric. Food Chem., 51 (7): 1839-1844. Cerca con Google

Wang L., Stoner G. D. (2008) Anthocyanins and their role in cancer prevention. Cancer Lett., 269 (2): 281-290. Cerca con Google

Wijendran V., Hayes K. C. (2004) Dietary n-6 and n-3 fatty acid balance and cardiovasculary health. Ann. Rev. Nutr., 24: 597-615. Cerca con Google

Xia E., Deng G., Guo Y., Li H. (2010) Biological activities of polyphenols from grapes. Int. J. Mol. Sci., 11 (2): 622-646. Cerca con Google

Xu X., Xie H., Wang Y., Wei X. (2010) A-type proanthocyanidins from lychee seeds and their antioxidant and antiviral activities. J. Agric. Food Chem., 58: 11667-11672. Cerca con Google

Yilmaz Y., Toledo R. T. (2004) Health aspects of functional grape seed constituents. Trends Food Sci. Technol., 15: 422-433. Cerca con Google

Yu J., Ahmedna M. (2013) Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol., 48 (2): 221-237. Cerca con Google

Vauzour D., Rodriguez-Mateo A., Corona G., Oruna-Concha M. J., Spencer J. P. E. (2010) Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients, 2: 1106-1131. Cerca con Google

Versari A., du Toit W., Parpinello G. P. (2012) Oenological tannins: a review. Aust. J. Grape Wine Res., 19: 1-10. Cerca con Google

Vidal S., Francis L., Guyot S., Marnet N., Kwiatkowski M., Gawel R., Cheynier V., Waters E. J. (2003) The mouth-feel properties of grape and apple proanthocyanidins in a wine-like medium. J. Sci. Food Agric., 83: 564. Cerca con Google

VIVC, Vitis International Variety Catalogue, www.vivc.de Vai! Cerca con Google

Zhang F., Liu J., Shi J. S. (2010) Anti-inflammatory activities of resveratrol in the brain: Role of resveratrol in microglial activation. Eur. J. Pharm., 636: 1-7. Cerca con Google

Zhu L., Zhang Y., Lu, J. (2012) Phenolic Contents and Compositions in Skins of Red Wine Grape Cultivars among Various Genetic Backgrounds and Originations. Int. J. Mol. Sci., 13 (3): 3492-3510. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record