Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Giorgi, Paolo (2014) Valutazione numerica e sperimentale della performance sismica di edifici in c.a. a bassa duttilita. Edifici a nucleo e a soletta piena. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
Available under License Creative Commons Attribution.

27Mb

Abstract (inglese)

This work reports seismic evaluation of two particular types of R/C (Reinforced concrete) buildings with low ductility capacity: U-core buildings, or torsionally deformable buildings, and flat-slab buildings. In both cases, although for different reasons, these structures are extremely vulnerable to seismic action. Special studies with suitable approaches are therefore demanded from seismic standard codes when treating them.
Examples of U-core buildings are the typical multi-storey apartment blocks built in Italy between 1960s and 1980s with a rigid central staircase, i.e. the R/C U-core, in most cases designed only to withstand static actions, in accordance with the design code of those year. The main structural problem of these buildings is due to their in-plan irregularity, which involves torsional behavior when subjected to seismic events. This produces large displacements and deformations of the flexible edge and strong forces on the R/C U-core which represents the stiff edge.
Flat-slab buildings do not generally have problems of low torsional stiffness since, if well designed, they are equipped with perimeter frames or walls. One of the major problems lies in the connections between the slabs and their supporting columns. Large bending moments and shear forces are concentrated at the connections, which are thus susceptible to non-ductile, sudden, brittle punching failure. Connections failing in this mode have very little post-failure rotational capacity or ductility.
A common issue for these two types of buildings is therefore the low energy dissipation capacity due to limited ductility, which is translated by standard seismic codes in quite low values of the behavior factor 'q'. A good estimation of this factor, by non-linear numerical analysis or experimental evidences, is mandatory for a proper seismic evaluation of the cited buildings.
Based on the foregoing, the present work is therefore divided into four parts. All of them are first preceded by a short Introduction where the major features of these buildings and an overview of the current developments in research and seismic codes are presented.
Part 1 studies non-linear static methods (pushover methods) for seismic assessment of both regular and irregular buildings. The applicability and validity of such methods, in particular of the advanced pushover methods specifically developed to be applied to irregular structures, to the case study of U-core buildings is evaluated. As most innovative result, Part 1 presents and discusses the validation of the N1 method, a non-linear static procedure recently proposed by Bosco et al. and its improvement, in order to make it completely conform to the widely accepted N2 method. In the present work, the N1 corrected method is presented and validated with reference to a set of 22 steel and R/C frames, with regular and irregular mass distribution in height. This analytical correction was facilitated by introducing coefficient , calculated in closed form from the results of modal analysis. N1 thus becomes equivalent to N2 and can be used for practical applications in the same conditions, with the advantage that it can easily be adapted to the modern Displacement-Based Seismic Design of structures.
Part 2, which is essential for the numerical study conducted on U-core and flat-slab buildings, reports the validation of the adopted non-linear numerical model through the reproduction of three experimental tests on complex RC walls found in literature.
Part 3 represents the main part of this thesis. It covers seismic analysis of U-core buildings by means of non-linear dynamic analyses aimed at numerical evaluation of behavior factor 'q', to be used in less expensive but still reliable spectral response analyses. Numerical evaluation was conducted on suitably designed case studies representing typical U-core buildings designed only for gravity loads with various core eccentricities and torsional stiffness.
Part 4 reports study of flat-slab buildings for which provisions in seismic design codes are still largely deficient. Results from experimental tests on four specimens of full-scale flat-plate slab-edge column connections made with normal concrete and steel fiber-reinforced lightweight concrete are reported. Quasi-static reversed cyclic loading was applied to the specimens to investigate their ductile behavior. Analytical interpretation of the experimental results in order to obtain correspondent values of ductility capacity and behavior factor is also reported. Numerical simulation and extension of the results have been also conduced. This part of the research is still far from being exhaustive and is suitable for further future investigation

Abstract (italiano)

Il presente lavoro di tesi affronta lo studio e la valutazione della performance sismica di due tipologie particolari di edifici in C.A. a bassa capacità  dissipativa, per i quali mancano in letteratura studi sufficientemente approfonditi e dati sperimentali adeguati. Nello specifico si tratta degli edifici detti "a nucleo", appartenenti alla categoria degli edifici torsionalmente deformabili, e degli edifici a telaio con soletta piena bidirezionale.
Gli edifici a nucleo sono caratterizzati da una bassa rigidezza torsionale che, unita molte volte a una spiccata irregolarità  in pianta dovuta all'eccentricità  del nucleo stesso, comporta un'accentuata deformazione torsionale per effetto delle azioni sismiche. Questo genera grandi spostamenti e deformazioni nel lato più flessibile, mentre l'azione sismica, in termini di forze, è assorbita quasi interamente dal nucleo di C.A., cui viene affidata tutta la duttilità  strutturale e la capacità  di dissipare energia mediante deformazioni plastiche.
Per gli edifici a soletta piena le criticità  sono rappresentate dai nodi soletta-pilastro, in cui si hanno grandi concentrazioni sia di momenti flettenti sia di sforzi taglianti che possono portare a delle rotture improvvise di natura fragile per taglio-punzonamento.
Queste due tipologie edilizie hanno pertanto in comune la bassa capacità  dissipativa dovuta ad una limitata duttilità  strutturale, che si traduce in valori bassi del fattore di struttura 'q' che gli viene attribuito nelle norme antisismiche.
Dopo una breve Introduzione in cui vengono descritte le principali caratteristiche degli edifici trattati, nonchè una valutazione dello stato dell'arte e della situazione normativa attuale, la Parte 1 della tesi si dedica allo studio dei metodi di analisi statica non lineare (metodi di pushover) per la valutazione sismica degli edifici sia regolari sia irregolari (pushover evoluti) quali sono gli edifici a nucleo in esame. Tale lavoro ha portato a proporre una miglioria al metodo di pushover N1, tale da renderlo del tutto equivalente al metodo N2 di comprovata validità .
Quindi ci si è dedicati allo studio e alla valutazione sismica delle due tipologie di edifici in esame mediante analisi non lineari e prove sperimentali.
L'importanza assunta dalle analisi non lineari per il raggiungimento degli obiettivi del presente lavoro di tesi, ha reso indispensabile un'estensiva attività  preliminare di validazione dello strumento numerico adottato, ampiamente documentata nella Parte 2, attraverso la riproduzione di tests sperimentali e risultati analitici attesi.
Nella Parte 3 lo studio degli edifici a nucleo è stato infatti affrontato mediante analisi dinamiche non lineari finalizzate alla valutazione numerica del fattore di struttura 'q'. Come caso studio si sono indagati edifici esistenti progettati per i soli carichi gravitazionali, al variare dell'eccentricità  e della rigidezza torsionale del nucleo, tenendo in conto gli effetti dovuti all'ingobbamento contrastato.
Nella Parte 4 è stato invece affrontato lo studio degli edifici a soletta piena bidirezionale per i quali il quadro normativo in materia sismica risulta ancora ampiamente deficitario. Nello specifico si sono progettati e realizzati dei tests sperimentali finalizzati alla valutazione della duttilità  intrinseca dei nodi di bordo soletta-pilastro confezionati sia con calcestruzzo ordinario sia con calcestruzzo innovativo fibrorinforzato. Allo studio sperimentale è seguita una prima fase di modellazione numerica. Lo studio qui riportato su questo argomento è ancora lungi dall'essere esaustivo e si presta ad ulteriori futuri approfondimenti

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Scotta, Roberto
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > SCIENZE DELL'INGEGNERIA CIVILE E AMBIENTALE
Data di deposito della tesi:24 Gennaio 2014
Anno di Pubblicazione:24 Gennaio 2014
Parole chiave (italiano / inglese):edifici torsionalmente deformabili, edifici a soletta piena in C.A., valutazione sismica, analisi non lineari, prove cicliche, duttilità
Settori scientifico-disciplinari MIUR:Area 08 - Ingegneria civile e Architettura > ICAR/09 Tecnica delle costruzioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Civile, Edile e Ambientale
Codice ID:6346
Depositato il:14 Nov 2014 09:31
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[I.1] Beyer K., Dazio A. and Priestley M. J. N., (2008). Inelastic wide-column models for U-shaped reinforced concrete walls, Journal of Earthquake Engineering, 12, Suppl.1: 1-33 Cerca con Google

[I.2] Paulay T. and Priestley M.J.N., (1992). Seismic design of reinforced concrete and mansory buildings, New York: John Wiley and Sons Cerca con Google

[I.3] Anagnostopoulos S.A., Alexopoulou C. and Stathopoulos K.G., (2010). An answer to an important controversy and the need for caution when using simple models to predict inelastic earthquake response of buildings with torsion, Earthquake Engineering and Structural Dynamics, 39: 521-540 Cerca con Google

[I.4] Fardis M.N., (2006). WORKSHOP on the use of the Eurocodes in the Mediterranean Countries, 27-29 November, Varese, Italy Cerca con Google

[I.5] Coull A. and Tawfik S. Y., (1981). Analysis of core structures subjected to torsion, Building and Environment, 16 (3): 221-228 Cerca con Google

[I.6] Ile N. and Reynouard J. M., (2000). Nonlinear analysis of reinforced concrete shear wall under earthquake loading, Journal of Earthquake Engineering, 4 (2): 183-213 Cerca con Google

[I.7] Scott B.D., Park R. and Priestley M.J.N., (1982). Stress-strain behavior of concrete confined by overlapping hoops at low and high strain rates, ACI Journal, 79 (2): 13-27 Cerca con Google

[I.8] Kwan A.K.H., (1993). Improved wide –column-frame analogy for shear/core wall analysis, ASCE Journal of the structural Engineering, 119 (2): 420-437 Cerca con Google

[I.9] Ile N. and Reynouard J. M., (2005). Behaviour of U-shaped walls subject to uniaxial and biaxial cyclic lateral loading, Journal of Earthquake Engineering, 9 (1): 67-94 Cerca con Google

[I.10] Topçu A. Structural system irregularities-photos, Civil Engineering Faculty web page, Eskisehir Osmangazi University Cerca con Google

[I.11] Lucchini A., Monti G. and Kunnath S., (2008). A simplified method for evaluating the seismic demand in asymmetric-plan multi-storey buildings, The 14th conference on Earthquake Engineering, October 12-17, Beijing, China Cerca con Google

[I.12] Lucchini A., Monti G. and Kunnath S., (2009). Seismic behavior of single-story asymmetric-plan buildings under uniaxial excitation, Earthquake Engineering and Structural Dynamics, 38: 1053-1070 Cerca con Google

[I.13] Lucchini A., Monti G. and Spacone E., (1010). Asymmetric-plan buildings: irregularity levels and nonlinear seismic response, ReLuis2010, Italy Cerca con Google

[I.14] Humar J.M. and Fazileh F., (2010). Discussion of 'Seismic behavior of single-story asymmetric-plan buildings under uniaxial excitation' by Lucchini A., Monti G., Kunnath S., Earthquake Engineering and Structural Dynamics, 39: 705-708 Cerca con Google

[I.15] Lucchini A., Monti G. and Kunnath S., (2010). Discussion by Humar and Fazileh of 'Seismic behavior of single-story asymmetric-plan buildings under uniaxial excitation', Earthquake Engineering and Structural Dynamics, 39: 941-944 Cerca con Google

[I.16] Paulay T., (1997). Seismic torsional effects on ductile structural wall system, Journal of Earthquake Engineering, 1 (4): 721-745 Cerca con Google

[I.17] Paulay T., (1997). Displacement-based design approach to earthquake-induced torsion in ductile buildings, Engineering Structures, 19 (9): 699-707 Cerca con Google

[I.18] Paulay T., (1998). Torsional mechanisms in ductile building systems, Earthquake Engineering and Structural Dynamics, 27: 1101-1121 Cerca con Google

[I.19] Paulay, T., (2001). Some design principles relevant to torsional phenomena in ductile buildings, Journal of Earthquake Engineering, 5 (3): 273-308 Cerca con Google

[I.20] D.M. 14/01/2008 (NTC08). Nuove Norme tecniche per le Costruzioni (Regulations for Constructions), Rome, G.U. n. 29 del 04/02/2008 (in Italian) Cerca con Google

[I.21] CEN Eurocode 8, (2004). Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules of buildings, European Committee for Standardization, Brussels Cerca con Google

[I.22] Goel R.K. and Chopra A.K., (1990). Inelastic seismic response of one-story, asymmetric plan systems, Report No. EERC 90/14, University of California, Berkeley, CA Cerca con Google

[I.23] De La Llera J.C. and Chopra A.K., (1995). Understanding the inelastic seismic behavior of asymmetric-plan buildings, Earthquake Engineering and Structural Dynamics, 24 (4): 549-572 Cerca con Google

[I.24] Chandler A.M., Duan X.N. and Rutenberg A., (1996). Seismic torsional response: assumptions, controversies and research progress, European Earthquake Engineering, 10 (1): 37-51 Cerca con Google

[I.25] De Stefano M., Faella G. and Ramasco R., (1998). Inelastic seismic response of one-way plan-asymmetric systems under bi-directional ground motions, Earthquake Engineering and Structural Dynamics, 27: 363-376 Cerca con Google

[I.26] Stathopoulos K.G. and Anagnostopoulos S.A., (1998). Elastic and inelastic torsion in buildings, Proceedings of the Eleventh European Conference on Earthquake Engineering, Paris, France. Balkema: Rotterdam Cerca con Google

[I.27] Riddell R. and Santa-Maria H., (1999). Inelastic response of one-storey asymmetric-plan systems to bi-directional earthquake motions, Earthquake Engineering and Structural Dynamics, 28 (3): 273-285 Cerca con Google

[I.28] Ghersi A. and Rossi P., (2001). Influence of bi-directional ground motions on the inelastic response of one-storey in-plan irregular structures, Engineering Structures, 23 (6): 579-591 Cerca con Google

[I.29] Tso W.K, Myslimaj B., (2002). Effect of strength distribution on the inelastic torsional response of asymmetric structural systems, Proceedings of the 12th European Conference on Earthquake Engineering, Paper No. 081, London, UK Cerca con Google

[I.30] Peruš I., Fajfar P., (2002). On inelastic seismic response of asymmetric single-storey structures under bi-axial excitation, In: Proceedings of the third European workshop on the seismic behaviour of irregular and complex structures, CD ROM. Florence, September Cerca con Google

[I.31] Stathopoulos K.G., Anagnostopoulos S.A., (2003). Inelastic earthquake response of single-story asymmetric buildings: an assessment of simplified shear-beam models, Earthquake Engineering and Structural Dynamics; 32: 1813–1831 Cerca con Google

[I.32] Peruˇs I., Fajfar P., (2005). On the inelastic torsional response of single-storey structures under bi-axial excitation, Earthquake Engineering and Structural Dynamics; 34 (8): 931-941 Cerca con Google

[I.33] Boroschek R.L., Mahin S.A., (1992). Investigation of coupled lateral-torsional response in multistory buildings, Tenth World Conference on Earthquake Engineering, 7, Madrid, Spain: 3881-3886 Cerca con Google

[I.34] Stathopoulos K.G., Anagnostopoulos S.A., (2002). Inelastic earthquake induced torsion in buildings: results and conclusions from realistic models, In: Proceedings of the 12th European conference on earthquake engineering, CD ROM, London, September Cerca con Google

[I.35] De-la-Colina J., (2003). Assessment of design recommendations for torsionally unbalanced multistorey buildings, Earthquake Spectra 19: 47-66 Cerca con Google

[I.36] Maruˇsi´c D., Fajfar P., (2005). On the inelastic seismic response of asymmetric buildings under bi-axial excitation, Earthquake Engineering and Structural Dynamics, 34 (8): 943-963 Cerca con Google

[I.37] Stathopoulos K.G., Anagnostopoulos S.A., (2005). Inelastic torsion of multi-storey buildings under earthquake excitations, Earthquake Engineering and Structural Dynamics, 34: 1449-1465 Cerca con Google

[I.38] Georgoussis G.K., (2007). Modal eccentricities of asymmetric structures, The Structural Design of Tall and Special Buildings, 15: 339-361 Cerca con Google

[I.39] Georgoussis P., Didier J., et al., (2006). The role of inelastic torsion in the determination of residual deformations, Journal of Earthquake Engineering, 11: 133-157 Cerca con Google

[I.40] Fernandez D. VI,Cruz E.F., (2006). Parametric study of the non-linear seismic response of three-dimensional building models., Engineering Structures, 28: 756-770 Cerca con Google

[I.41] Lin J.L., Tsai K.C., (2008). Seismic analysis of two-way asymmetric building systems under bi-directional seismic ground motions, Earthquake Engineering and Structural Dynamics, 37 (2): 305-328. DOI: 10.1002/eqe.759 Cerca con Google

[I.42] De Stefano M., Pintucchi B., (2008). A review of research on seismic behaviour of irregular building structures since 2002, Bulletin of Earthquake Engineering, 6: 285-308 Cerca con Google

[I.43] Mazars J., Kotronis P., Ragueneau F. and Casaux G. (2006). Using multifiber beams to account for shear and torsion. Applications to concrete structural elements, Computer Methods in Applied Mechanics and Engineering, 195 (52): 7264-7281 Cerca con Google

[I.44] MacLeod I.A., (1973). Analysis of shear wall buildings by the frame method, Proceedings of the Institution of Civil Engineers, 55 (2): 593-603 Cerca con Google

[I.45] MacLeod I.A. and Hosny H.M., (1977). Frame analysis of shear wall cores, Journal of the Structural Division, ASCE 103 (ST10): 2037-2047 Cerca con Google

[I.46] Stafford Smith B. and Abate A., (1981). Analysis of non-planar shear wall assemblies by analogous frame, Proceedings of the Institution of Civil Engineer, 71 (2): 395-406 Cerca con Google

[I.47] Oesterle R., Fiorato A., Johal L., Carpenter J., Russell H. and Corely W., (1976). Earthquake resistant structural walls – tests of isolated walls, Report to National Science Foundation, PCA Construction Technology Laboratories, Skokie, Illinois, USA Cerca con Google

[I.48] Oesterle, R., Aristizabal-Ochoa, J., Fiorato, A. Russell, H., and Corley, W. [1979] ‘‘Earthquake Resistant Structural Wall-Tests of Isolated Walls – Phase II,’’ Report to National Science Foundation, PCA Construction Technology Laboratories, Skokie, Illinois, USA Cerca con Google

[I.49] Vallenas J.M., Bertrero V.V. and Popov E.P., (1979). Hysteretic behavior of reinforced concrete structural walls, Report UBC/EERC-79/20, University of California, Berkeley, CA Cerca con Google

[I.50] Goodsir W.J., (1985). The design of coupled frame-wall structures for seismic actions, Research Report 85-8, Department of Civil Engineering, University of Canterbury, Christchurch, New Zealand Cerca con Google

[I.51] Elnashai A., Pilakoutas K. and Ambraseys N., (1990). Experimental behaviour of reinforced concrete walls under earthquake loading, Earthquake Engineering and Structural Dynamics, 19 (3): 389-407 Cerca con Google

[I.52] Dazio A., Wenk T. and Bachmann H., (1999). Versuche an Stahlbetontragwa¨nden unter zyklischstatischer Einwirkung (Quasi-static cyclic tests on RC structural walls), Technical Report, IBK Report Nr. 239, Institut fu¨ r Baustatik und Konstruktion, ETH Zurich, Switzerland Cerca con Google

[I.53] Thiele K., Wenk T. and Bachmann H., (2000). Versuche an Stahlbetontragwa¨nden unter pseudodynamischer Einwirkung (Pseudo-dynamic tests on RC structural walls), Technical Report, IBK Report Nr. 257, Institut fu¨ r Baustatik und Konstruktion (IBK), ETH Zurich, Switzerland Cerca con Google

[I.54] Rothe D.H., (1992). Untersuchungen zum nichtlinearen Verhalten von Stahlbetonwandscheiben unter Erdbebenbeanspruchung (Studies on the nonlinear behaviour of RC walls subjected to seismic loading), VDI Fortschrittsberichte No. 117, Du¨sseldorf, Germany Cerca con Google

[I.55] Yabana S., Kanazaea K., Ohmiya Y., Taniguchi H. and Kambayashi A. (1996). Shaking table tests of earthquake resisting walls, Proc. of the 11th World Conference on Earthquake Engineering, Acapulco, Mexico Cerca con Google

[I.56] Inoue N., Yang K. and Shibata A., (1997). Dynamic non-linear analysis of reinforced concrete shear wall by finite element method with explicit analytical procedure, Earthquake Engineering and Structural Dynamics, 26 (9): 967-986 Cerca con Google

[I.57] Sollogoub P., Combescure D., Queval J.-C. and Chaudat T., (2000). In plane seismic behavior of several 1/3rd scaled R/C bearing walls – Testing and interpretation using non linear numerical modeling, Proc. of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand Cerca con Google

[I.58] Lestuzzi P., Wenk T. and Bachmann H., (1999). Dynamische Versuche an Stahlbetontragwa¨nden auf dem ETH-Erdbebensimulator (Shaking table tests on RC structural walls),‘‘ Technical Report, IBK Report Nr. 240, Institut fu¨ r Baustatik und Konstruktion, ETH Zurich, Switzerland Cerca con Google

[I.59] Pinho R., (2000). Shaking table testing of RC walls, ISET Journal of Earthquake Engineering, Special Issue on Experimental Techniques, 37 (4): 119-142 Cerca con Google

[I.60] Reynouard J.M. and Fardis M.N., (2001). Shear wall structures, CAFEEL-ECOEST/ICONS Thematic Report No. 5, LNEC (Laborato´rio Nacional de Engenharia Civil), Lisboa, Portugal Cerca con Google

[I.61] Beyer K., Dazio A. and Priestley M.J.N., (2008). Seismic design of torsionally eccentric buildings with U-shaped walls, Research Report No. ROSE-2008/3, Ed. IUSS Press, pag.303 Cerca con Google

[I.62] Beyer K., Dazio A. and Priestley, M.J.N., (2008). Quasi-static cyclic tests of two u-shaped reinforced concrete walls, Journal of Earthquake Engineering, 12 (7): 1023-1053 Cerca con Google

[I.63] CEN Eurocode 8, (1994). Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules of buildings, European Committee for Standardization, Brussels Cerca con Google

[I.64] Ile N. and Reynouard J.M., (2005). Behaviour of U-shaped walls subject to uniaxial and biaxial cyclic lateral loading, Journal of Earthquake Engineering, 9 (1): 67-94 Cerca con Google

[I.65] Ile N. and Reynouard J.M., (2000). Nonlinear analysis of reinforced concrete shear wall under earthquake loading, Journal of Earthquake Engineering, 4 (2): 183-213 Cerca con Google

[I.66] Ile N., Reynounrd J.M. and Georgin J.F., (2002). Non-linear response and modeling of RC walls subjected to seismic loading, ISET Journal of Earthquuke Technology, 39 (1-2): 1-21 Cerca con Google

[I.67] Millard A., (1993). CASTEM 2000, Manuel d'utilisation, CEA-LA MBS Report No. 93/007, Saclay, France, 186p Cerca con Google

[I.68] Beyer K., Dazio A. and Priestley, M.J.N., (2008). Inelastic wide-column models for U-shaped reinforced concrete walls, Journal of Earthquake Engineering, 12 (S1): 1-33 Cerca con Google

[I.69] Constantin R. and Beyer K., (2012). Modelling of reinforced concrete core walls under bi-directional loading, in 15 WCEE, Lisboa (Portugal) Cerca con Google

[I.70] Zaharia R., Taucer F., Pinto A., Molina J., Vidal V., Coelho E., Candeias P., (2006). Pseudodynamic Earthquake Tests on a Full-Scale RC Flat-Slab Building Structure, Institute for the Protection and Security of the Citizen European Laboratory for Structural Assessment (ELSA) -21020 Ispra (VA), Italy Cerca con Google

[I.71] ACI committee 318, (2005). Building code requirements for reinforced concrete (ACI 318-05). Farmington Hills (MI): American Concrete Institute (ACI) Cerca con Google

[I.72] Walraven J. (convener), (2012). Model Code 2010. Final draft, vols. 1 & 2,. fib Bulletin Nos. 65 & 66, ISBN 978-2-88394-105-2 Cerca con Google

[I.73] Raccomandazioni finali del RILEM (Réunion Internationale des Laboratoires d'Essais et de recherches sur les Matériaux et les construction) TC 162-TDF: Test and design methods for steel fibre reinforced concrete, 2001-2003 Cerca con Google

[I.74] Documento tecnico 204, (2006). Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Strutture di Calcestruzzo Fibrorinforzato, Consiglio Nazionale delle Ricerche Cerca con Google

[I.75] BS EN 14889 Part 1, (2006). Steel Fibres for concrete – Definitions, specifications and conformity, Agosto 2006 Cerca con Google

[I.76] BS EN 14889 Part 2, (2006). Polymerhic Fibres for concrete – Definitions, specifications and conformity, Agosto Cerca con Google

[I.77] EN 14651, (2007). Test method for metallic fibered concrete - Measuring the flexural tensile strength (Limit Of Proportionality (LOP), residual Cerca con Google

[1.1] Freeman S.A., (1998). The capacity spectrum method as a tool for seismic design, In: Proceedings of the 11th European Conference on Earthquake Engineering, Paris, France Cerca con Google

[1.2] Fajfar P., Fischinger M., (1989). N2-A method for non-linear seismic analysis of regular buildings. In: Proceedings of the 9th World Conference on Earthquake Engineering, V: 111-116, Tokyo Cerca con Google

[1.3] Fajfar P., Gaspersic P., (1996).The N2 method for the seismic damage analysis of RC buildings, Earthquake Engineering and Structural Dynamics, 25: 31-46 Cerca con Google

[1.4] Fajfar P., (1999). Capacity spectrum method based on inelastic demand spectra, Earthquake Engineering and Structural Dynamics, 28: 979-993 Cerca con Google

[1.5] CEN Eurocode 8, (2004). Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules of buildings, European Committee for Standardization, Brussels Cerca con Google

[1.6] Circolare 02 febbraio 2009. Istruzioni per l’applicazione delle Nuove norme tecniche per le costruzioni (Regulations for Constructions) di cui al D.M. 14/01/2008, Rome (In Italian) Cerca con Google

[1.7] ATC-40, (1996). Applied Technology Council - Seismic evalua Cerca con Google

tion and retrofit of concrete buildings, vols. 1 and 2. Report No. ATC-40, Redwood City, CA Cerca con Google

[1.8] FEMA 440, (2005). Applied Technology Council - Improvement of nonlinear static seismic demands analysis procedures. FEMA 440 Report, Redwood City, CA Cerca con Google

[1.9] D.M. 14/01/2008 (NTC08). Nuove Norme tecniche per le Costruzioni (Regulations for Constructions), Rome, G.U. n. 29 del 04/02/2008 (in Italian) Cerca con Google

[1.10] Bosco M., Ghersi A., Marino E.M., (2009). On the evaluation of seismic response of structures by nonlinear static methods, Earthquake Engineering and Structural Dynamics, 38: 1465-1482 Cerca con Google

[1.11] Chopra A.K., (2007). Dynamics of Structures – Theory and Applications to Earthquake Engineering, 3rd edn. Prentice Hall, New Jersey, Section 19.7.3 Cerca con Google

[1.12] FEMA 368, (2001). NEHRP Recommended provisions for seismic regulations for new buildings and other structures – Part 2: Commentary, Federal Emergency Management Agency, Washington, DC, USA Cerca con Google

[1.13] CEN FEMA 369, (2001). NEHRP Recommended provisions for seismic regulations for new buildings and other structures – Part 1: Provisions, Federal Emergency Management Agency, Washington, DC, USA Cerca con Google

[1.14] Priestley M.J.N., Grant D.N. and Blandon C., (2005). Direct Displacement-Based Seismic Design, Proc. NZSEE Annual Conference Cerca con Google

[1.15] Priestley M.J.N., Calvi M.C. and Kowalsky M.J., (2007). Displacement-Based Seismic Design of Structures IUSS Press, Pavia, 670 pp. Cerca con Google

[1.16] Ghersi A., Bosco M., Marino M.E., (2007). Una più semplice procedura per la valutazione della risposta sismica delle strutture attraverso analisi statica non-lineare, Materiali ed Approcci innovativi per il progetto in Zona simica e la Mitigazione della Vulnerabilità delle Strutture. Università degli Studi di Salerno – Consorzio Reluis, 12-13 Febbraio Cerca con Google

[1.17] Albanesi T., Nuti C., (2007). Analisi statica non lineare (pushover)-Dispensa. Università degli studi Roma 3, Dipartimento di Strutture (DIS) Cerca con Google

[1.18] Lopez M.A. (2003). 3D Pushover of irregular RC building. Rose School Cerca con Google

[1.19] Kalkan E., Kunnath S.K. (2006). Adaptive modal combination procedure for nonlinear static analysis of building structures. J struct ùeng (ASCE) 132(1): 1721-1731 Cerca con Google

[1.20] Chopra A.K., Goel G.K., (2002). A modal pushover analysis procedure for estimating seismic demands for buildings, Earthquake Engineering and Structural Dynamics, 31 (3): 561-582 Cerca con Google

[1.21] Chopra A.K., Goel G.K., (2004). A modal pushover analysis procedure to estimate seismic demands for unsymmetric-plan buildings, Earthquake Engineering and Structural Dynamics, 33 (8): 903-927 Cerca con Google

[1.22] Chopra A.K., Goel G.K., Chintanapakdee C., (2004). Evaluation of modified MPA procedure assuming higher modes as elastic to estimate seismic demands, Earthquake Spectra 20 (3): 757-778 Cerca con Google

[1.23] Reyes J.C., Chopra A.K., (2011). Three-dimensional modal pushover analysis of buildings subjected to two components of ground motion, including its evaluation for tall buildings, Earthquake Engineering and Structural Dynamics, 40: 789-806 Cerca con Google

[1.24] Reyes J.C., Chopra A.K., (2011) Evaluation of three-dimensional modal pushover analysis for unsymmetric/plan buildings subjected to two components of ground motion, Earthquake Engineering and Structural Dynamics, 40 (13): 1475-1494 Cerca con Google

[1.25] Kilar V., Fajfar P., (1997). Simple push-over analysis of asymmetric buildings, Earthquake Engineering and Structural Dynamics, 26: 233-249 Cerca con Google

[1.26] Fajfar P., Marusic D., Perus I., (2005). Torsional effects in the pushover-based seismic analysis of buildings, Journal of Earthquake Engineering, 9 (6): 831-854 Cerca con Google

[1.27] Kreslin M., Fajfar P., (2011). The extended N2 method taking into account higher mode effects in elevation, Earthquake Engineering and Structural Dynamics, 40: 1571-1589 Cerca con Google

[1.28] Kreslin M., Fajfar P., (2012). The extended N2 method taking into account higher mode effects in both plan and elevation, Bulletin of Earthquake Engineering, 10 (2): 695-715 Cerca con Google

[1.29] Gunay M.S., Sucuoglu H., (2010). An improvement to linear-elastic procedures for seismic performance assessment, Earthquake Engineering and Structural Dynamics, 39: 907-931 Cerca con Google

[1.30] Sucuoglu H., Gunay M.S., (2010). Generalized force vectors for multi-mode pushover analysis, Earthquake Engineering and Structural Dynamics, 40 (1): 55-74 Cerca con Google

[1.31] Antoniou S., Pinho R., (2004). Development and verification of a displacement-based adaptive pushover procedure, Journal of Earthquake Engineering, 8 (5): 643-661 Cerca con Google

[1.32] Savoia M., Ferracuti B., Pinho, R., (2008). Force/Torque pushover method for plan irregular structures, Nonlinear Static Methods for design/Assessment of 3D structures, 5-6 May, Lisbona, Portugal Cerca con Google

[1.33] Bento R., Bhatt C., Pinho R., (2010). Using nonlinear static procedures for seismic assessment of the 3D irregular SPEAR building, Earthquake structure, 1 (2): 177-195 Cerca con Google

[1.34] Lucchini A., Monti G., Kunnath S., (2008). A simplified method for evaluating the seismic demand in asymmetric-plan multi-storey buildings, The 14th conference on Earthquake Engineering, October 12-17, Beijing, china Cerca con Google

[1.35] Fujii K., (2011). Nonlinear static procedure for multi-story asymmetric frame buildings considering bi-directional excitation, Journal of Earthquake engineering, 15 (2): 245-273 Cerca con Google

[1.36] Bhatt C., Bento R., (2011). Assessing the torsional response of existing RC building using the extended N2 methos, Bulletin of Earthquake Engineering, 9 (4): 1183-1201 Cerca con Google

[1.37] Magliulo G, Maddaloni G, Cosenza E, (2008). Extension of N2 method to plan irregular buildings considering accidental eccentricity, Proceedings of the 14th World Conference on Earthquake Engineering (14WCEE), Beijing, China Cerca con Google

[1.38] Baros D.K., Anagnastopoulos S.A., (2008). An assessment of static nonlinear pushover analyses in 2-D and 3-D applications, In: Bento R., Pinho R. (eds) 3D Pushover 2008 – proceedings of nonlinear static methods for design/assessment of 3D structures. IST Press, Lisbon, pp. 45-58 Cerca con Google

[1.39] Ghersi A., Marino E.M., Neri F., (1999). A simple procedure to design steel frame to fail in global mode, In: Proceedings of the 6th International Colloquium on Stability & Ductility of Steel Structures, Timisoara, Romania Cerca con Google

[1.40] Marino E.M., Neri F., Rossi P.P., (1999). A design procedure for steel frames with rigid connections, In: Proceedings of the Conference Eurosteel ’99, Prague, Czech Republic Cerca con Google

[1.41] Midas Gen rel 7.4.1. User Manual Cerca con Google

[1.42] Taucer E.F., Spacone E., Filippou F.C., (1991). A fiber beam-column element for seismic response analysis of reinforced structures. EERC Report 91/17. Earthquake Engineering Research Center, University of California, Berkeley Cerca con Google

[1.43] Spacone E., Filippou F.C., Taucer E.F., (1996). Fiber beam-column model for nonlinear analysis of R/R frames: Part I: Formulation, Earthquake Engineering and Structural Dynamics, 25: 711-725 Cerca con Google

[1.44] Spacone E., Filippou F.C., Taucer E.F., (1996). Fiber beam-column model for nonlinear analysis of R/R frames: Part II: Applications, Earthquake Engineering and Structural Dynamics, 25: 727-742 Cerca con Google

[1.45] Scotta R., Tesser L., Vitaliani R., Saetta A., (2009). Global damage indexes for the seismic performance assessment of R.C. structures, Earthquake Engineering and Structural Dynamics, 38: 1027-1049 Cerca con Google

[1.46] Park R., Kent D.C. and Sampson R.A., (1972). Reinforced concrete members with cyclic loading, ASCE Journal of Structural Division, 98 (7): 1341-1360 Cerca con Google

[1.47] Park R., Priestley M.J.N. and Gill W.D., (1982). Ductility of square-confined concrete columns, ASCE Journal of Structural Engineering, 108 (4): 929-950 Cerca con Google

[1.48] Menegotto M., Pinto P.E., (1973). Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal forced and bending, Procs. IABSE Symp. on the Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon, Portogallo Cerca con Google

[1.49] Filippou F.C., Popov E.P., Bertero V.V., (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints, Report UCB/EERC-83/19, University of California, Berkeley, USA Cerca con Google

[2.1] Lowes L.N., Lehman D.E., Birely A.C. (University of Washington); Kuchma D.A., Hart C.R., Marley K.P. (University of Illinois, Urbana-Champaign), (2012). Behavior, Analysis, and Design of Complex Wall Systems: Planar Wall Test Program Summary Document, https://nees.org/warehouse/project/104/, 2004-2012 Vai! Cerca con Google

[2.2] http://nees.org/ Vai! Cerca con Google

[2.3] http://www.nsf.gov/ Vai! Cerca con Google

[2.4] Mazzoni, S., McKenna, F., Scott, M. H, Fenves, G. L., and Jeremic, B. [2007] Open System for Earthquake Engineering Simulation (OpenSees) Command LanguageManual, University of California, Berkeley, California (http://opensees.berkeley.edu/) Vai! Cerca con Google

[2.5] Faria R., Oliver J., Cervera M., (1998). A strain-based plastic viscous-damage model for massive concrete structures, Int. J. Solids Structures, 35 (14): 1533-1558 Cerca con Google

[2.6] Scotta R., Vitaliani R., Saetta A., O~nate E., Hanganu A., (2001). A scalar damage model with a shear retention factor for the analysis of reinforced concrete structures: theory and validation, Computers and Structures, 79: 737-755 Cerca con Google

[2.7] Scotta R., Tesser L., Vitaliani R., Saetta A., (2009). Global damage indexes for the seismic performance assessment of r.c. structures, Earthquake Engineering and Structural Dynamics, 38: 1027–1049 Cerca con Google

[2.8] Tesser L., Filippou F.C., Talledo D.A., Scotta R., Vitaliani R., (2011). Nonlinear analysis of r/c panels by a two parameter concrete damage model, COMPDYN 2011, III ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering M. Papadrakakis, M. Fragiadakis, V. Plevris (eds.), Corfu, Greece, 25–28 May Cerca con Google

[2.9] Tesser L., Scotta R., Vitaliani R., Talledo D.A., (2011). Nonlinear analysis of R/C shear walls subjected to seismic loadings, XVI Convegno ANIDIS, Bari, Italy, 18-22 Settembre Cerca con Google

[2.10] Bathe K.J., Dvorkin E.N., (1985). A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, International Journal For Numerical Methods In Engineering, 21: 367-383 Cerca con Google

[2.11] Park R., Kent D.C. and Sampson R.A., (1972). Reinforced concrete members with cyclic loading, ASCE Journal of Structural Division, 98 (7): 1341-1360 Cerca con Google

[2.12] Park R., Priestley M.J.N. and Gill W.D., (1982). Ductility of square-confined concrete columns, ASCE Journal of Structural Engineering, 108 (4): 929-950 Cerca con Google

[2.13] Mander J.B., Priestley M.J.N. and Park R., (1988b). Theoretical stress-strain model of confined concrete, Journal of Structural Engineering, 114 (8): 1804-1826 Cerca con Google

[2.14] D.M. 14/01/2008 (NTC08). Nuove Norme tecniche per le Costruzioni (Regulations for Constructions), Rome, G.U. n. 29 del 04/02/2008 (in Italian) Cerca con Google

[2.15] Gopalaratnam V.S., Shah S.P., (1985). Softening response of plain concrete in direct tension, ACI Journal, 82: 310-323 Cerca con Google

[2.16] Menegotto M., Pinto P.E., (1973). Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal forced and bending, Procs. IABSE Symp. on the Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon, Portogallo Cerca con Google

[2.17] Filippou F.C., Popov E.P., Bertero V.V., (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints, Report UCB/EERC-83/19, University of California, Berkeley, USA Cerca con Google

[2.18] Lowes L.N., Lehman D.E., Birely A.C. (University of Washington); Kuchma D.A., Hart C.R., Marley K.P. (University of Illinois, Urbana-Champaign), (2012). Behavior, Analysis, and Design of Complex Wall Systems: Planar Wall Test Program Summary Document, https://nees.org/warehouse/project/104/, 2004-2012 Vai! Cerca con Google

[2.19] American Society of Civil Engineering, (2005). Minimum Design Loads for Buildings and Other Structures. ASCE/SEI 7-10. ASCE, Reston, Virginia Cerca con Google

[2.20] American Concrete Institute, (2005). Building Code Requirements for Concrete (ACI 318-05) and Commentary (ACI 318R-05), American Concrete Institute, Farmington Hills, MI Cerca con Google

[2.21] Pe´gon P., Plumier C., Pinto A., Molina J., Gonzalez P., Tognoli P. and Hubert O., (2000). U-shaped walls: Description of the experimental set-up – Test report,’’ TMR-ICONS-TOPIC5, JRC Special Publication No.I.00.141, JRC Ispra, Italy Cerca con Google

[2.22] Pe´gon P., Plumier C., Pinto A., Molina J., Gonzalez P., Tognoli P. and Hubert O., (2000). U-shaped walls: Quasi-static test in the Y direction – Test report,’’ TMR-ICONS-TOPIC5, JRC Special Publication No.I.01.143, JRC Ispra, Italy Cerca con Google

[2.23] Pe´gon P., Plumier C., Pinto A., Molina J., Gonzalez P., Tognoli P. and Hubert O., (2000). U-shaped walls: Quasi-static test in the X direction – Test report, TMR-ICONS-TOPIC5, JRC Special Publication No.I.01.28, JRC Ispra, Italy Cerca con Google

[2.24] Pe´gon P., Plumier C., Pinto A., Molina J., Gonzalez P., Tognoli P. and Hubert O., (2000). U-shaped walls: Quasi-static bi-axial test in the X and Y directions – Test report,’’ Draft of Test Report, JRC Ispra, Italy Cerca con Google

[2.25] http://elsa.jrc.ec.europa.eu/ Vai! Cerca con Google

[2.26] Lowes L.N., Lehman D.E., Birely A.C. (University of Washington); Kuchma D.A., Hart C.R., Marley K.P. (University of Illinois, Urbana-Champaign), (2012). Behavior, Analysis, and Design of Complex Wall Systems: Coupled Wall Test Program Summary Document, https://nees.org/warehouse/project/104/NEES-2005-0104/Experiment-5/Trial-1/Rep-1, 2004-2012 Vai! Cerca con Google

[2.27] Midas Gen rel 7.4.1. User Manual Cerca con Google

[3.1] Salvitti L.M., Elnashai A.S., (1996). Evaluation of behaviour factors for RC buildings by nonlinear dynamic analysis, 11 World Conference of Earthquake Engineering, Acapulco, Mexico, paper 1820 Cerca con Google

[3.2] Elnashai A.S., Salvitti L.M. and Broderick B.M., (1996). Assessment of EC8 beahviour factors for RC, Steel and Composite Frames, 11 World Conference of Earthquake Engineering, Acapulco, Mexico, paper 2050 Cerca con Google

[3.3] D.M. 14/01/2008 (NTC08). Nuove Norme tecniche per le Costruzioni (Regulations for Constructions), Rome, G.U. n. 29 del 04/02/2008 (in Italian) Cerca con Google

[3.4] Menegotto M., Pinto P.E., (1973). Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal forced and bending, Procs. IABSE Symp. on the Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon, Portogallo Cerca con Google

[3.5] Filippou F.C., Popov E.P., Bertero V.V., (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints, Report UCB/EERC-83/19, University of California, Berkeley, USA Cerca con Google

[3.6] Midas Gen rel 7.4.1. User Manual Cerca con Google

[3.7] CEN Eurocode 8, (2004). Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules of buildings, European Committee for Standardization, Brussels Cerca con Google

[3.8] http://gid.cimne.upc.es/ Vai! Cerca con Google

[3.9] Lucchini A., Monti G. and Kunnath S., (2009). Seismic behavior of single-story asymmetric-plan buildings under uniaxial excitation, Earthquake Engineering and Structural Dynamics, 38: 1053-1070 Cerca con Google

[3.10] Savoia M., Ferracuti B., Pinho, R., (2008). Force/Torque pushover method for plan irregular structures, Nonlinear Static Methods for design/Assessment of 3D structures, 5-6 May, Lisbona, Portugal Cerca con Google

[4.1] D.M. 14/01/2008 (NTC08). Nuove Norme tecniche per le Costruzioni (Regulations for Constructions), Rome, G.U. n. 29 del 04/02/2008 (in Italian) Cerca con Google

[4.2] CEN Eurocode 8, (2004). Design of structures for earthquake resistance – Part 1: General rules, seismic actions and rules of buildings, European Committee for Standardization, Brussels Cerca con Google

[4.3] ACI committee 318, (2005). Building code requirements for reinforced concrete (ACI 318-05). Farmington Hills (MI): American Concrete Institute (ACI) Cerca con Google

[4.4] Moehle JP., (1996). Seismic design considerations for flat-plate construction. In: Wight J.K., Kreger M.E., editors. ACI publication SP-162. Mete A. Sozen Symposium. Farmington Hills (MI): American concrete Institute. p. 430 Cerca con Google

[4.5] International code council, (2003). International building code (IBC-03). Whittier (CA); 2003. p. 656 Cerca con Google

[4.6] Ministry of Public works Greece, (2000). Greek Code for the design of R/C structures-EKOS 2000, Athens, Greece Cerca con Google

[4.7] Ministry of Public works Greece, (2000). Greek Seismic Code -EAK 2000 (amended June 2003), Athens, Greece, 2000 Cerca con Google

[4.8] Erberik M.A., Elnashai A.S., (2004). Fragility analysis of flat-slab structures, Engineering structures, 26 (7): 937-948 Cerca con Google

[4.9] Bollettino ufficiale 10/06/1994 CNR n° 166 parte IV. Comportamento di strutture in conglomerato cementizio fibrorinforzato Cerca con Google

[4.10] Batson G., (1976). Steel fiber reinforced concrete, Materials Science and Engineering, 25: 53-58 Cerca con Google

[4.11] Vandewalle L., (1999). Influence of tensile strength of steel fiber on toughness of high strength concrete. Proceedings of the third International Workshop on High-Performance Cement Composites (Mainz Germany), H. W. Reinhardt and A. E. Naaman, eds., RILEM Publications, Bagneux, France, pp. 331-337 Cerca con Google

[4.12] Balaguru P., Narahari R. and Patel M., (1992). Flexural Toughness of Steel Fiber Reinforced Concrete, ACI Materials Journal, 89 (6): 541-546 Cerca con Google

[4.13] Shah S.P., Rangan B.V., (1971). Fiber Reinforced Concrete Properties, ACI Journal, Proceedings 68 (2): 126-137 Cerca con Google

[4.14] ACI Committee 544, (1994). Report on Fiber Reinforced Concrete (ACI 544.1R- 96). American Concrete Institute, Farmington Hills, MI, pp. 7-24 Cerca con Google

[4.15] Grzybowski M., Shah S.P., (1990). Shrinkage Cracking on Fiber Reinforced Concrete, ACI Materials Journal, 87 (2): 138-148 Cerca con Google

[4.16] Shah S.P., Weiss J., Yang W., (1998). Shrinkage Cracking—Can It Be Prevented?, Concrete International, 20 (4): 51-55 Cerca con Google

[4.17] Banthia N., Azabi M., Pigeon M., (1993). Restrained Shrinkage Cracking in Fiber-Reinforced Cementitious Composites, Materials and Structures, 26 (7): 405-413 Cerca con Google

[4.18] Ong K.C.G., Paramasivam P., (1989). Cracking of Steel Fiber Reinforced Mortar due to Restrained Shrinkage. Fiber Reinforced Cements and Concretes: Recent Developments, R. N. Swamy and B. Barr, eds., Elsevier Science Publishers Ltd., London, UK,. pp. 179-187 Cerca con Google

[4.19] ASTM D570 – 98 (2010) e1. Standard Test Method for Water Absorption of Plastics Cerca con Google

[4.20] Cong L.., (2006). Seismic behavior of beam-column joint subassemblies reinforced with steel fibres. Final thesis of Master of Engineering at the University of Canterbury, Christchurch, New Zealand Cerca con Google

[4.21] Stevenson E.C., (1980). Fibre reinforced concrete in seismic design, Christchurch: Dept. of Civil Engineering University of Canterbury. viii,95 (11) leaves Cerca con Google

[4.22] ASTM C1018 – 97 (2006) e1. Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading) Cerca con Google

[4.23] Anon, (1988). Design considerations for steel fiber reinforced concrete. ACI Structural (American Concrete Institute), 85 (5): 563-580 Cerca con Google

[4.24] EN 14651, (2007). Test method for metallic fibered concrete - Measuring the flexural tensile strength (Limit Of Proportionality (LOP), residual Cerca con Google

[4.25] Raccomandazioni finali del RILEM (Réunion Internationale des Laboratoires d'Essais et de recherches sur les Matériaux et les construction) TC 162-TDF: Test and design methods for steel fibre reinforced concrete, 2001-2003 Cerca con Google

[4.26] Documento tecnico 204, (2006). Istruzioni per la Progettazione, l’Esecuzione ed il Controllo di Strutture di Calcestruzzo Fibrorinforzato, Consiglio Nazionale delle Ricerche Cerca con Google

[4.27] Walraven J. (convener), (2012). Model Code 2010. Final draft, vols. 1 & 2,. fib Bulletin Nos. 65 & 66, ISBN 978-2-88394-105-2 Cerca con Google

[4.28] Plizzari A., (2009). Innovazioni ed esperienze Americane ed Italiane nel settore del calcestruzzo e dei materiali per le costruzioni, ACI Italy Chapter , SAIE Bologna, 28 Ottobre Cerca con Google

[4.29] Alexander S.D.B. and Simmonds S.H., (1992). Punching shear tests of concrete slab–column joints containing fiber reinforcement. ACI Structural Journal: 89 (4): 425-432 Cerca con Google

[4.30] Theodorakopoulos D.D. and Swamy N., (1993). Contribution of steel fibers to the strength characteristics of lightweight concrete slab–column connections falling in punching shear, ACI Structural Journal, 90 (4): 342-355 Cerca con Google

[4.31] Harajli M.H., Maalouf D. and Khatib H., (1995). Effect of fibers on the punching shear strength of slab–column connections, Cement & Concrete Composites, 17: 161-170 Cerca con Google

[4.32] McHarg P.J., Cook W.D., Mitchell D., and Young-Soo Y., (2000). Benefits of concentrated slab reinforcement and steel fibers on performance of slab–column connections, ACI Structural Journal, 97 (2): 225-234 Cerca con Google

[4.33] Choi K.K., Reda Taha M.M., Park H.G., and Maji A.K., (2007). Punching shear strength of interior concrete slab–column connections reinforced with steel fibers, Cement & Concrete Composites, 29: 409-420 Cerca con Google

[4.34] Cheng M.Y. and Parra-Montesinos G.J., (2010a). Evaluation steel fibers reinforcement for punching shear resistance in slab-column connections-part1: Monotonically increased load, ACI Structural Journal, 107(1): 101-109 Cerca con Google

[4.35] Nguyen-Minh L., Rovňák M. and Tran-Quoc T., (2012). Punching Shear Capacity of Interior SFRC Slab-Column Connections, Journal of Structural Engineering, 138 (5): 613-624 Cerca con Google

[4.36] Falkner H. and Gossla U., (2002). Design and safety of steel fibre reinforced concrete structural members, in Proceedings of the 1st fib Congress, Osaka Cerca con Google

[4.37] Cheng M.Y. and Parra-Montesinos G.J.,(2010b). Evaluation steel fibers reinforcement for punching shear resistance in slab-column connections-part2: Lateral displacement reversals, ACI Structural Journal, 107 (1): 110-118 Cerca con Google

[4.38] Adebar P., Mindess S., St.-Pierre, D. and Olund B., (1997). Shear Tests of Fiber Concrete Beams without Stirrups, ACI Structural Journal, 94 (1): 68-76 Cerca con Google

[4.39] Tan K.H., Murugappan K. and Paramasivam P., (1993). Shear Behavior of Steel Fiber Reinforced Concrete Beams, ACI Structural Journal, 90 (1): 3-11 Cerca con Google

[4.40] Ashour S.A., Hasanain G.S., and Wafa F.F., (1992). Shear Behavior of High-Strength Fiber Reinforced Concrete Beams, ACI Structural Journal, 89 (2): 176-184 Cerca con Google

[4.41] Minelli F. and Vecchio F.J., (2006). Compression Field Modeling of Fiber-Reinforced Concrete Members under Shear Loading, ACI Structural Journal, 103 (2): 244-252 Cerca con Google

[4.42] Kwak Y.K., Eberhard P.J., Kim W.S., and Kim J., (2002). Shear Strength of Steel Fiber-Reinforced Concrete Beams without Stirrups, ACI Structural Journal, 99 (4): 530-538 Cerca con Google

[4.43] Parra-Montesinos G.J., (2006). Shear Strength of Beams with Deformed Steel Fibers, Concrete International, 28 (11): 57-66 Cerca con Google

[4.44] Susetyo J., Vecchio F.J. and Gauvreau P., (2011). Effectiveness of Steel Fiber as Minimum Shear Reinforcement, ACI Structural Journal, 108 (4): 488-496 Cerca con Google

[4.45] CEN. EN 1992-1, (2004). EuroCode 2: Design of concrete structures - Part 1-1: General Rules and Rules for Buildings, European Commitee for Standardization, Bruxelles Cerca con Google

[4.46] Sito web della ditta Enco S.r.l.: www.encosrl.it/‎ Vai! Cerca con Google

[4.47] UNI 6556, (1976). Tests of concretes – Determination of static modulus of elasticity in compression (Italian standard) Cerca con Google

[4.48] Moehle J.P., (1996). Seismic design considerations for flat-plate construction. In: Wight J.K., Kreger M.E., editors. ACI publication SP-162. Mete A. Sozen Symposium. Farmington Hills (MI): American concrete Institute. p. 430 Cerca con Google

[4.49] Pan AD, Moehle JP., (1989). Lateral displacement ductility of reinforced concrete flat paltes, ACI Structural Journal, 86 (3): 250-8 Cerca con Google

[4.50] Pan A.D., Moehle J.P., (1989). An Experimental study of Slab-Column Connections, ACI Structural Journal, 89 (6): 626-638 Cerca con Google

[4.51] Robertson I.N., Kawai T., Lee J., Enomoto B., (2002). Cyclic testing of slab-column connections with shear reinforcement, ACI Structural Journal, 99(5): 605-13 Cerca con Google

[4.52] Sang W.H., Seong-Hoon K., Young-Mi P., Li-Hyung L., Thomas H.K.K., (2006). Hysteretic behavior of exterior post-tensioned flat plate connections, Engineering Structures, 28: 1983-1996 Cerca con Google

[4.53] Circolare 02 febbraio 2009. Istruzioni per l’applicazione delle “Nuove norme tecniche per le costruzioni” (Regulations for Constructions) di cui al D.M. 14/01/2008, Rome (In Italian) Cerca con Google

[4.54] CEN. EN 12512, (2001). Timber structures - Test methods - Cyclic testing of joints made with mechanical fasteners,. European Commitee for Standardization, Bruxelles Cerca con Google

[4.55] Bathe K.J., Dvorkin E.N., (1985). A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, International Journal For Numerical Methods In Engineering, 21: 367-383 Cerca con Google

[4.56] Park R., Kent D.C. and Sampson R.A., (1972). Reinforced concrete members with cyclic loading, ASCE Journal of Structural Division, 98 (7): 1341-1360 Cerca con Google

[4.57] Menegotto M., Pinto P.E., (1973). Method of analysis for cyclically loaded reinforced concrete plane frames including changes in geometry and non-elastic behavior of elements under combined normal forced and bending, Procs. IABSE Symp. on the Resistance and Ultimate Deformability of Structures Acted on by Well-Defined Repeated Loads, Lisbon, Portogallo Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record