Stable isotope dendrochronology in stressed trees: insights into plant-pest interactions and physiological functions during tree life.
Stable isotope dendrochronology in stressed trees: insights into plant-pest interactions and physiological functions during tree life

Direttore del corso: Ch.mo Prof. Antonio Berti
Coordinatore d'indirizzo: Ch.mo Prof. Francesco Favaron
Supervisore: Ch.mo Prof. Andrea Battisti
Co-supervisori: Dr.ssa Federica Camin, Dr. Nicola La Porta

Dottorando: Yuri Gori

Gennaio, 2014
Declaration

I hereby declare that this submission is my own work and that, to the best of my knowledge and belief, it contains no material previously published or written by another person nor material which to a substantial extent has been accepted for the award of any other degree or diploma of the university or other institute of higher learning, except where due acknowledgment has been made in the text.

Yuri Gori, 16th January 2014

A copy of the thesis will be available at http://paduaresearch.cab.unipd.it/

Dichiarazione

Con la presente affermo che questa tesi è frutto del mio lavoro e che, per quanto io ne sia a conoscenza, non contiene materiale precedentemente pubblicato o scritto da un'altra persona né materiale che è stato utilizzato per l’ottenimento di qualunque altro titolo o diploma dell'università o altro istituto di apprendimento, a eccezione del caso in cui ciò venga riconosciuto nel testo.

Yuri Gori, 16 gennaio 2014

Una copia della tesi sarà disponibile presso http://paduaresearch.cab.unipd.it/
Index

Sede Amministrativa: Università degli Studi di Padova .. 1

Riassunto ... 5

Summary ... 7

General Introduction ... 9

Objectives ... 34

List of original papers ... 37

Section 1 .. 38

Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of *Picea abies* as climate proxies. .. 38

Section 2 .. 39

Fungal root pathogen (*Heterobasidion parviporum*) increases drought stress in Norway spruce stand at low elevation in the Alps.. 39

Section 3 .. 40

Tree-ring isotope analysis of Norway spruce suffering from long-term infection by the pathogenic white-rot fungus *Heterobasidion parviporum*. .. 40

Section 4 .. 41

Tree rings and stable isotopes reveal the short- and long-term effects of insect defoliation on Norway spruce (*Picea abies*). .. 41

General conclusions ... 97

References ... 101

Acknowledgements .. 113
Riassunto

Nonostante numerosi studi dimostrano una stretta relazione tra i meccanismi fisiologici delle piante e gli isotopi stabili presenti all’interno del legno dei loro anelli, ben poche sono le ricerche svolte in questo settore.

L’obiettivo generale di questa tesi è stato di esplorare e sviluppare nuovi metodi che permettano di identificare le risposte fisiologiche di piante stressate per la presenza di funghi patogeni o per la defogliazione causata da insetti. Il metodo che propongo con la presente tesi prevede l’analisi degli accrescimenti annuali (dendrocronologia) e degli isotopi stabili negli anelli del legno.

La tesi è suddivisa in quattro sessioni.

Nella prima sviluppo un metodo per stimare alcuni parametri climatici dai valori isotopici di *Picea abies*. Il metodo ha richiesto la calibrazione del clima sulla base delle cronologie isotopiche dell’ossigeno, del carbonio, e dell’idrogeno in differenti matrici del legno (legno intero, cellulosa e gruppi metilici della lignina). Il modello elaborato è stato in grado di ricostruire la temperatura media-annua nel sud-est delle Alpi. Il modello ha inoltre individuato le migliori componenti del legno e le migliori proxy isotopiche per la ricostruzione climatica.

La seconda parte ha lo scopo di studiare gli effetti dell’ambiente sull’abete rosso infetto da *Heterobasidion parviporum* per un lungo periodo. Nella conclusione di questo lavoro ipotizzo una maggiore aggressività del fungo alle quote più basse; in questo ambiente il fungo agisce molto più velocemente, portando spesso le piante all’arresto dell’accrescimento radiale e ad una maggiore sofferenza nei periodi secchi. Inoltre si è potuto stimare il periodo di inizio delle infezioni croniche e la perdita di accrescimento che hanno subito le piante infettate.

Nella terza parte dimostro che l’uso degli isotopi stabili può essere usato per evidenziare risposte fisiologiche dell’abete rosso infetto da *H. parviporum*. Ho avanzato l’ipotesi che a seguito dell’attacco del patogeno le piante di abete rosso a bassa quota possano aver accresciuto la conduttanza stomatica.

Nella quarta parte le analisi degli isotopi stabili e degli accrescimenti legnosi sono stati applicati per identificare eventuali risposte fisiologiche indotte da *Cephalcia arvensis* in
piante di abete rosso ripetutamente defogliate. Nelle conclusioni di tale lavoro viene ipotizzato che le piante, a causa di periodi aridi precedenti l’attacco dell’insetto, hanno attinto alle sostanze di riserva rendendosi così suscettibili agli attacchi dell’insetto a causa della conseguente maggiore concentrazione di zuccheri e amminoacidi negli aghi.

In generale si può affermare che l’applicazione congiunta di queste due tecniche costituisce un valido strumento di investigazione scientifica su tematiche eco-fisiologiche riguardati i processi di resilienza delle specie arboree a passati eventi di danni biotici o abiotici.
Summary

Although the links between plant physiological processes and stable isotopes in tree rings are well known, few studies have carried out stable isotope analyses in stressed plants.

The general objective of this thesis is to develop new tools able to identify the short- and long-term responses of plants to fungal attack and insect feeding. I propose a new methodology, which uses stable isotope values as indicators of physiological responses and which was tested on infected and defoliated Norway spruce trees sampled in the south-eastern Alps.

The thesis is divided into four main sections.

In the first section, I present a model designed to accurately estimate environmental proxies for *Picea abies*, which would serve as the basis for further analyses. This model required calibration and assessment of the effects of climate on the stable isotope signature in different wood components. For this purpose, I developed a simple model to reconstruct mean annual temperature in the south-eastern Alps. I found that δ^{18}O and δ^2H values in whole wood were the best signallers of climate.

The second section is aimed at clarifying the influence of environmental conditions on Norway spruce suffering from long-term infection by the white-rot fungus *Heterobasidion parvipurum*. I found that at low elevations, where climatic conditions are unsuitable, *H. parvipurum* was seemingly more aggressive, causing plants to decline more rapidly, decreasing the ability of host trees to cope with drought and, in some cases, arresting cambial activity.

In the third section, I propose using stable isotope ratios as a physiological indicator of Norway spruce affected by *H. parvipurum* over a long period of time and put this forward as a novel way for providing insights into plant–pathogen relationships. I obtained evidence that stomatal conductance increases in *Picea abies* affected by *H. parvipurum*.

The fourth section focuses on stable isotope ratios and tree-ring chronologies to investigate the short- and long-term effects of defoliation of *Picea abies* caused by *Cephalcia arvensis*. I found that drought stress prior to insect attack may have caused the
trees to mobilise reserves, making them more susceptible to *Cephalcia* attack as a result of increased soluble sugars and amino acids.
Li circuli delli rami degli alberi segati mostrano il numero delli anni suoi
e quali furono più umidi e più secchi secondo la maggiore o minore loro grossezza.
E così mostrano gli aspetti del mondo dov'essi erano volti;
perché più grossi sono a settentrione che a meridio;
e così il centro dell'albero per tal causa è più vicino alla scorza sua meridionale
tale alla scorza settentrionale.

“Trattato della Pittura”
XVI secolo, Leonardo da Vinci
1 Stable isotopes in plants

1.1 Theory and nomenclature of stable isotopes

An isotope is one of two or more atoms of the same element containing different numbers of neutrons. The superscript number on the left of an element designation is called the “mass number”, which is the sum of the number of neutrons and protons in the atomic nucleus. Isotopes can be radioactive or non-radioactive. The former disintegrate spontaneously over time to form other isotopes, while the latter don’t decay to other isotopes and thus are also known as stable isotopes.

The three main elements in wood (carbon, oxygen and hydrogen) all have more than one stable (non-radioactive) isotope.

Carbon has two stable isotopes, ^{12}C and ^{13}C, each with six protons and with either six or seven neutrons. These isotopes have almost identical chemical properties but the difference in mass allows their physical, chemical and biological processes to be discriminated, thereby providing an environmental signal. By convention, the ratio of ^{13}C to ^{12}C is expressed in delta (δ) notation with reference to a standard material for which the isotopic ratio is known (Eq. 1). The carbon isotope ratio ($\delta^{13}\text{C}$) is expressed in parts per thousand (%) as

$$\delta^{13}\text{C} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1\right)1000$$

Eq. 1

where R_{sample} and R_{standard} are the $^{13}\text{C}/^{12}\text{C}$ ratios in a sample and a standard, respectively. The chosen standard in the case of carbon was a fossil belemnite from the Pee Dee formation of South Carolina, which is now exhausted and has been replaced by ‘Vienna-PDB’ or VPDB (Coplen, 1995). On this scale, the carbon isotopic ratio of CO$_2$ in air is about -8‰.

Oxygen has three natural stable isotopes, each with eight protons and between 8 and 10 neutrons. The $^{18}\text{O}/^{16}\text{O}$ ratio has traditionally been used in the environmental sciences. In the case of water, ice and plant material, the standard mean ocean water (SMOW) was adopted, now replaced by Vienna-SMOW or VSMOW. Water containing the lighter isotopes of oxygen will evaporate more easily than water containing the heavier isotopes, so source water is isotopically heavier than the moisture that evaporates from it. The effect is temperature dependent, so that cold air masses are isotopically lighter than warm air masses. When
moisture vapour condenses the opposite is true, with the heavier isotopes condensing more readily, and again the isotopic ratio depends on the temperature at which condensation takes place. Global variations in the $\delta^{18}O$ of precipitation are thus linked in a complex way to climate (Dansgaard, 1964).

Hydrogen has two stable isotopes, the heavier being deuterium (2H or D). The $^2H/H$ ratio is also expressed relative to SMOW or VSMOW using the δ notation as δD ($\%$). Moisture vapour is lower in deuterium compared to the source. The δD ratio of precipitation also varies globally and is linked in a complex way to climate. Variations in $\delta^{18}O$ and δD of precipitation are also strongly correlated but differ in magnitude along a global meteoric water line (IAEA, 1981).

1.2 Stable isotopes in tree rings

All the carbon in each annual tree ring comes from CO$_2$ in air, while O and H come from soil water, hence precipitation. However, the isotopic composition of wood differs from that in either air or water because trees do not passively collect and store these elements. The carbon isotopic ratio of CO$_2$ in air is about -8%o (VPDB), while wood yields much lower values (-20%o to -30%o), showing that trees are depleted in ^{13}C compared to air. This change in ratio from air and water to wood compounds is known as fractionation, and the degree to which it occurs is controlled to some extent by climate and environmental conditions. Fractionation occurs during two physiological phases: i) when carbon dioxide diffuses through the stomata, and ii) when internal CO$_2$ is utilised by the photosynthetic enzyme RuBisCO (Fig. 1).

When air diffuses through the stomata, the lighter carbon dioxide molecules ($^{12}CO_2$) diffuse more easily than the heavier molecules ($^{13}CO_2$), simply because as molecules bounce off each other the lighter ones bounce furthest. The net effect is that internal air is depleted in ^{13}C relative to ambient air. When the stomatal opening is extremely small ($\leq 0.1\mu m$), collisions with guard cells increase and fractionation is much higher.

Fractionation also occurs when internal CO$_2$ is utilised by RuBisCO. During carboxylation, the photosynthetic enzyme tends to use ^{12}C in preference to ^{13}C. Discrimination against ^{13}C during carbon fixation by trees can be expressed as:

$$\Delta^{\%} = a + (b - a) \left(\frac{c_r}{c_a} \right)$$

Eq. 2
where a is the discrimination against 13CO$_2$ during diffusion through the stomata ($\approx -4.4\%$), b is the net discrimination due to carboxylation ($\approx -27\%$), and c_i and c_a are intercellular and ambient CO$_2$ concentrations, respectively (Farquhar et al., 1982; McCarroll and Loader, 2004). The dominant environmental factors influencing stable carbon isotopic ratios in tree rings should, therefore, be those controlling the rate of stomatal conductance and the rate of photosynthesis.

18O and 2H stable isotopes come from soil water. Initial discrimination occurs within the soil: the lighter water evaporates more easily than the water containing the heavier isotopes, the net effect being that soil water is isotopically heavier (e.g. 18O or 2H enrichment) than air moisture. Fractionation does not occur during water uptake by roots (Wershaw et al., 1966), but instead during leaf transpiration. Evaporation leads to a loss of lighter isotopes and consequent 18O enrichment (Saurer et al., 1998). The level of enrichment of leaf water above source water at the site of evaporation (Δ^{18}O$_c$) is given by:

$$\Delta^{18}O_c = \epsilon^* + \epsilon_k + (\Delta^{18}O_v - \epsilon_k) \epsilon_o/\epsilon_i$$

Eq. 3

where ϵ^* is the proportional depression of water vapour pressure by the heavier H$_2^{18}$O, ϵ_k is the fractionation as water diffuses through the stomata and leaf boundary layer, $\Delta^{18}O_v$ is the oxygen isotope composition of water vapour in the atmosphere (relative to source water), and ϵ_a and ϵ_i are the ambient and intercellular vapour pressures, respectively (McCarroll and Loader, 2004). As a consequence, evaporation raises the δ^{18}O of leaf water. The net effect depends on stomatal conductance and vapour pressure deficit, both of which are linked to relative humidity (RH), and the resulting fractionation is moderated by the δ^{18}O of moisture vapour outside the leaf (Roden et al., 2000; McCarrol and Loader, 2004).
Fig. 1 Scheme of carbon isotope fractionation. High stomatal conductance leads to high discrimination; the activity of the RuBisCO is not limited by CO₂ concentration, thus it discriminates against ¹³C. Low stomatal conductance leads to low discrimination; since the limiting factor of photosynthesis is a low stomatal conductance, RuBisCO fix a higher proportion of ¹³C (From Ferro, 2005, drawn by Gori Y.).

1.3 Isotope analysis and wood components

In order to determine the stable isotope ratios of a tree-ring sample, the wood (tree-ring sample) must be pyrolysed. The gaseous form is currently the only one suitable for mass spectrometry. This first stage may be carried out “off-line”, typically as single samples or small batches, or “on-line” as part of an integrated system involving quantitative combustion or pyrolysis of the sample.

The stable carbon, hydrogen and oxygen isotope ratios of the resulting sample gases are determined using a stable isotope ratio mass spectrometer (IRMS): an aliquot of sample gas is placed in the mass spectrometer where it is ionised. The charged particles are accelerated by high voltage and pass down a flight tube where a magnetic field deflects them according to differences in their mass towards Faraday cup detectors. The ratios from the detectors are compared with the results from standards of known isotopic composition. Reference materials of known isotopic compositions relative to an international standard are used to calibrate the sample isotopic compositions.
Stable isotope analyses may be performed using whole wood, cellulose or lignin (Leavitt and Long, 1986, 1984). Given that there is no material exchange and no further fractionation (Dellus et al., 1997), the isotope ratios of cellulose are often thought to be the most meaningful indicator of environmental conditions during tree growth (Ferrio and Voltas, 2005). Cellulose extraction, even by the simple bath method (Leavitt and Danzer, 1993; Gori et al., 2013a, see section 1), is still time-consuming and it has recently been suggested, at least for some tree species, that both carbon and oxygen isotope ratios in whole wood may yield as good a climatic signal as cellulose (Borella et al., 1999; Saurer et al., 2000), since stable isotope ratios differ according to site features and tree species. It has also been suggested that stable hydrogen isotope values of lignin methoxyl groups in tree rings may be a suitable paleoclimate proxy (Keppeler et al., 2007). Stable isotopes have been measured in a huge number of tree species (Table 1, updated to December 2013) but, as far as ecological research is concerned, the issue of whether wood component extraction is necessary is still an open question.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Species</th>
<th>Site</th>
<th>Wood component</th>
<th>Isotopes</th>
<th>Environmental or physiological signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anderson et al. (1998)</td>
<td>Abies alba</td>
<td>Switzerland</td>
<td>Cellulose</td>
<td>δ^{13}C, δ^{18}O</td>
<td>Temperature, precipitation and RH</td>
</tr>
<tr>
<td>Anderson et al. (2002)</td>
<td>Abies alba</td>
<td>Switzerland</td>
<td>Cellulose</td>
<td>δ^{18}O</td>
<td>Temperature, precipitation and RH</td>
</tr>
<tr>
<td>Barbour et al. (2001)</td>
<td>Quercus sp., Pinus sp.</td>
<td>Various</td>
<td>Wholewood, cellulose, lignin</td>
<td>δ^{18}O</td>
<td>Correlations between δ^{18}O of various wood constituents</td>
</tr>
<tr>
<td>Barszczowa et al. (2005)</td>
<td>Pinus nigra</td>
<td>Croatia, Spain</td>
<td>Needles</td>
<td>δ^{13}C</td>
<td>δ^{13}C variations in needles</td>
</tr>
<tr>
<td>Battipaglia et al. (2008)</td>
<td>Acer pseudoplatanus, Fagus sylvatica</td>
<td>Italy</td>
<td>Cellulose, wholewood</td>
<td>δ^{18}O</td>
<td>Climate signals in different wood components</td>
</tr>
<tr>
<td>Battipaglia et al. (2009)</td>
<td>Abies alba, Picea abies</td>
<td>Italy</td>
<td>Cellulose extraction</td>
<td>δ^{18}O, δ^{13}C</td>
<td>Temperature and precipitation</td>
</tr>
<tr>
<td>Battipaglia et al., 2010</td>
<td>Pinus pinea</td>
<td>Italy</td>
<td>Cellulose</td>
<td>δ^{13}C, δ^{15}N</td>
<td>Influence of air pollution on trees</td>
</tr>
<tr>
<td>Battipaglia et al., 2013</td>
<td>Various</td>
<td>Italy, North Carolina, Tennessee</td>
<td>Cellulose</td>
<td>δ^{13}O, δ^{15}C</td>
<td>CO$_2$ increases WUE</td>
</tr>
<tr>
<td>Becker et al. (1991)</td>
<td>Quercus sp., Pinus sylvestris</td>
<td>Central Europe</td>
<td>Nitrocellulose</td>
<td>δ^{13}C, δ^{18}H</td>
<td>Qualitative to Lateglacial-Holocene transition</td>
</tr>
<tr>
<td>Bert et al. (1997)</td>
<td>Abies alba</td>
<td>France</td>
<td>Holocellulose</td>
<td>δ^{13}C</td>
<td>Possible age related trend, changing WUE response to CO$_2$</td>
</tr>
<tr>
<td>Buhay and Edwards (1995)</td>
<td>Elm, pine maple</td>
<td>Canada</td>
<td>Cellulose</td>
<td>δ^{18}O, δ^{18}H</td>
<td>Modelled δ^{18}O of precipitation and air RH</td>
</tr>
<tr>
<td>Burk and Stuiver</td>
<td>Various</td>
<td>America</td>
<td>Cellulose</td>
<td>δ^{18}O</td>
<td>RH and temperature</td>
</tr>
<tr>
<td>(1981)</td>
<td>Chevillat et al. (2005)</td>
<td>Various</td>
<td>Central Europe</td>
<td>Various tissues</td>
<td>δ^{13}C</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Craig (1954)</td>
<td>Sequoia gigantea</td>
<td>America</td>
<td>Whole wood</td>
<td>δ^{13}C</td>
<td>Correlation between δ^{13}C and atmosphere</td>
</tr>
<tr>
<td>Cullen and Grierson (2006)</td>
<td>Callitris glaucaphylla</td>
<td>Australia</td>
<td>Cellulose, wholewood</td>
<td>δ^{18}O, δ^{13}C</td>
<td>Climate signals in different wood components</td>
</tr>
<tr>
<td>Cullen and Macfarlane C. (2005)</td>
<td>Various</td>
<td>Controlled experiment</td>
<td>Various tissues</td>
<td>δ^{18}O, δ^{13}C</td>
<td>Various cellulose extraction methods</td>
</tr>
<tr>
<td>De Micco V. et al (2007)</td>
<td>Pinus pinaster</td>
<td>Italy</td>
<td>Wholewood</td>
<td>δ^{13}C</td>
<td>δ^{13}C variations within-tree rings</td>
</tr>
<tr>
<td>Dubois (1984)</td>
<td>Pinus sylvestris</td>
<td>United Kingdom</td>
<td>Nitrocellulose</td>
<td>δ^{2}H</td>
<td>Link to deuterium content of prec. and RH enrichment</td>
</tr>
<tr>
<td>Dupouey et al. (1993)</td>
<td>Fagus sylvatica</td>
<td>France</td>
<td>Cellulose</td>
<td>δ^{13}C</td>
<td>Correlation between δ^{13}C and soil moisture</td>
</tr>
<tr>
<td>Duquesnay et al. (1998)</td>
<td>Fagus sylvatica</td>
<td>France</td>
<td>Cellulose</td>
<td>δ^{13}C</td>
<td>Long-term trend and age effect</td>
</tr>
<tr>
<td>Edwards et al. (2000)</td>
<td>Abies alba</td>
<td>Germany</td>
<td>Cellulose</td>
<td>δ^{13}C, δ^{18}O</td>
<td>Correlation between δ^{13}C, δ^{18}O and temperature</td>
</tr>
<tr>
<td>Epstein and Krishnamurthy (1990)</td>
<td>Pinus aristata</td>
<td>California</td>
<td>Nitrocellulose</td>
<td>δ^{13}C, δ^{18}O</td>
<td>Correlation with temperature</td>
</tr>
<tr>
<td>Epstein and Yapp (1976)</td>
<td>Various</td>
<td>Scotland and America</td>
<td>Wholewood</td>
<td>δ^{18}O</td>
<td>Correlation with winter temperature</td>
</tr>
<tr>
<td>Farmer and Baxter (1974)</td>
<td>Quercus robur, Larix decidua</td>
<td>United Kingdom</td>
<td>Wholewood</td>
<td>δ^{13}C</td>
<td>Changing atmospheric δ^{13}C</td>
</tr>
<tr>
<td>February and Stock (1999)</td>
<td>Widdringtonia sp.</td>
<td>Africa</td>
<td>Cellulose</td>
<td>δ^{13}C</td>
<td>Air δ^{13}C</td>
</tr>
<tr>
<td>Feng and Epstein (1995)</td>
<td>Pinus sp., Juniper sp., Quercus sp.</td>
<td>America</td>
<td>Nitrocellulose</td>
<td>δ^{13}C</td>
<td>Precipitation and δ^{13}C trend</td>
</tr>
<tr>
<td>Feng et al. (1999)</td>
<td>Picea sp.</td>
<td>China</td>
<td>Nitrocellulose</td>
<td>δ^{18}O</td>
<td>Comparison of monsoon influence; recent vs. ancient period</td>
</tr>
<tr>
<td>Ferri J.P. and Vollas (2005)</td>
<td>Pinus halepensis</td>
<td>Spain</td>
<td>Cellulose, wholewood, extracted wood, lignin</td>
<td>δ^{18}O, δ^{13}C</td>
<td>Precipitation, temperature and vapour pressure deficit in various wood components</td>
</tr>
<tr>
<td>Freyer (1979a,b)</td>
<td>Various</td>
<td>Northern hemisphere</td>
<td>Cellulose</td>
<td>δ^{13}C</td>
<td>Atmospheric δ^{13}C trend</td>
</tr>
<tr>
<td>Freyer and Belacy (1983)</td>
<td>Quercus robur, Pinus sylvestris</td>
<td>Germany and Sweden</td>
<td>Cellulose</td>
<td>δ^{13}C</td>
<td>Temperature and precipitation</td>
</tr>
<tr>
<td>Gagen M. et al. (2006)</td>
<td>Pinus sylvestris, Pinus uncinata</td>
<td>France</td>
<td>Cellulose</td>
<td>δ^{13}C</td>
<td>δ^{13}C, ring width and wood density improve the climate signal</td>
</tr>
<tr>
<td>Gori et al. (2013a)</td>
<td>Picea abies</td>
<td>Italy</td>
<td>Wholewood, cellulose, lignin methoxyl groups</td>
<td>δ^{18}O, δ^{13}C, δ^{18}H</td>
<td>Climate signals in different wood components</td>
</tr>
<tr>
<td>Gori et al. (2013c)</td>
<td>Picea abies</td>
<td>Italy</td>
<td>Wholewood</td>
<td>δ^{18}O, δ^{13}C</td>
<td>Physiological responses of infected plants</td>
</tr>
<tr>
<td>Gray and Se (1984)</td>
<td>Picea glauca</td>
<td>Canada</td>
<td>Nitrocellulose</td>
<td>δ^{13}C</td>
<td>Temperature and source water</td>
</tr>
<tr>
<td>Gray and Thompson (1976)</td>
<td>Picea glauca</td>
<td>Canada</td>
<td>Cellulose</td>
<td>δ^{18}O</td>
<td>Temperature</td>
</tr>
<tr>
<td>Gray and Thompson (1977)</td>
<td>Picea glauca</td>
<td>Canada</td>
<td>Wholewood, lignin and cellulose</td>
<td>δ^{18}O</td>
<td>Temperature; cellulose preserve the best temperature signal</td>
</tr>
<tr>
<td>Guerrieri M.R. et</td>
<td>Picea abies</td>
<td>Italy,</td>
<td>Wholewood</td>
<td>δ^{13}C, δ^{15}N</td>
<td>Influence of different</td>
</tr>
<tr>
<td>Study</td>
<td>Species</td>
<td>Location</td>
<td>Isotope</td>
<td>Additional Notes</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>al (2009)</td>
<td>Quercus cerris</td>
<td>Switzerland</td>
<td>$\delta^{18}O$</td>
<td>Nitrogen emission sources on tree physiology</td>
<td></td>
</tr>
<tr>
<td>Hemming et al. (1998)</td>
<td>Fagus sylvatica, Pinus sylvestris, Quercus robur</td>
<td>United Kingdom</td>
<td>Various</td>
<td>$\delta^{18}O, \delta^{13}C, \delta^{2}H$</td>
<td>RH, temperature, precipitation and sunshine</td>
</tr>
<tr>
<td>Impa S.M. (2005)</td>
<td>Oryza sativa</td>
<td>India</td>
<td>Various</td>
<td>$\delta^{13}C$</td>
<td>$\delta^{18}C$ and WUE</td>
</tr>
<tr>
<td>Jedrysek et al. (1998)</td>
<td>Quercus sp.</td>
<td>Poland</td>
<td>Nitrocellulose</td>
<td>$\delta^{13}C, \delta^{2}H$</td>
<td>Correlation between $\delta^{13}C$ and precipitation, no correlation with $\delta^{18}C$</td>
</tr>
<tr>
<td>Keppler et al., (2007)</td>
<td>Various</td>
<td>Various</td>
<td>Lignin methoxyl groups</td>
<td>$\delta^{18}H$</td>
<td>Geographical origin of wood</td>
</tr>
<tr>
<td>Kitaoka and Matsumoto (1995)</td>
<td>Cryptomeria japonica</td>
<td>Japan</td>
<td>Cellulose</td>
<td>$\delta^{18}C$</td>
<td>Temperature</td>
</tr>
<tr>
<td>Krishnamurthy (1996)</td>
<td>Juniperus phoenica</td>
<td>Sinai peninsula</td>
<td>Wholewood</td>
<td>$\delta^{13}C$</td>
<td>Air $\delta^{13}C$ trend</td>
</tr>
<tr>
<td>Krishnamurthy and Epstein (1985)</td>
<td>Juniperus procera</td>
<td>Kenya</td>
<td>Nitrocellulose</td>
<td>$\delta^{18}H$</td>
<td>Water stress</td>
</tr>
<tr>
<td>Lawrence and White (1984)</td>
<td>Pinus strobus</td>
<td>America</td>
<td>Wholewood</td>
<td>$\delta^{18}H$</td>
<td>Precipitation</td>
</tr>
<tr>
<td>Leavitt (1993)</td>
<td>Pinus edulis</td>
<td>America</td>
<td>Wholewood</td>
<td>$\delta^{13}C$</td>
<td>Moisture stress singals</td>
</tr>
<tr>
<td>Leavitt and Lara (1994)</td>
<td>Fitzroya cupressoides</td>
<td>Chile</td>
<td>Holocellulose</td>
<td>$\delta^{13}C$</td>
<td>Anthropogenic effect in southern Hemisphere</td>
</tr>
<tr>
<td>Leavitt and Long (1986)</td>
<td>Juniperus sp.</td>
<td>America</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Temperature and precipitation</td>
</tr>
<tr>
<td>Libby and Pandolfi (1974)</td>
<td>Quercus petraea</td>
<td>Germany</td>
<td>Wholewood</td>
<td>$\delta^{18}O, \delta^{13}C, \delta^{2}H$</td>
<td>Winter temperature reconstruction</td>
</tr>
<tr>
<td>Libby et al. (1976)</td>
<td>Quercus petraea, Abies alba, Cryptomeria japonica</td>
<td>Germany, Japan</td>
<td>Wholewood</td>
<td>$\delta^{18}O, \delta^{13}C$</td>
<td>Temperature</td>
</tr>
<tr>
<td>Lipp and Trimborn (1991)</td>
<td>Picea abies, Abies alba</td>
<td>Germany</td>
<td>Cellulose</td>
<td>$\delta^{13}C, \delta^{2}H$</td>
<td>Temperature</td>
</tr>
<tr>
<td>Loader and Switsur (1996)</td>
<td>Pinus sylvestris</td>
<td>United Kingdom</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Temperature</td>
</tr>
<tr>
<td>McCarron and Pawellek (2001)</td>
<td>Pinus sylvestris</td>
<td>Finland</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Sunshine and temperature</td>
</tr>
<tr>
<td>McCormack et al. (1994)</td>
<td>Quercus robur, Quercus petraea</td>
<td>United Kingdom</td>
<td>Holocellulose</td>
<td>$\delta^{13}C$</td>
<td>Identified isotopic difference between land- and bog-grown oaks</td>
</tr>
<tr>
<td>Okada et al. (1995)</td>
<td>Chamaecyparis sp.</td>
<td>Japan</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>No direct external forcing identified</td>
</tr>
<tr>
<td>Pendall (2000)</td>
<td>Pinus edulis</td>
<td>USA</td>
<td>Cellulose</td>
<td>$\delta^{18}H$</td>
<td>RH; latewood preserve best signal than earlywood</td>
</tr>
<tr>
<td>Pollastrini et al. (2013)</td>
<td>Populus sp.</td>
<td>Italy</td>
<td>Wholewood</td>
<td>$\delta^{13}C, \delta^{16}C$</td>
<td>$\delta^{18}O, \delta^{13}C$ are affected by water stress</td>
</tr>
<tr>
<td>Ramesh et al. (1985)</td>
<td>Abies pindrow</td>
<td>India</td>
<td>Cellulose and nitrocellulose</td>
<td>$\delta^{18}O, \delta^{13}C, \delta^{2}H$</td>
<td>Identified common forcing between radii</td>
</tr>
<tr>
<td>Ramesh et al. (1986)</td>
<td>Abies pindrow</td>
<td>India</td>
<td>Cellulose and nitrocellulose</td>
<td>$\delta^{18}O, \delta^{13}C, \delta^{2}H$</td>
<td>$\delta^{13}C$ with RH and cloud; $\delta^{18}H$ with precipitation and temperature</td>
</tr>
<tr>
<td>Robertson et al. (1997)</td>
<td>Quercus robur</td>
<td>Finland</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Prec. $> \text{RH} > \text{Temperature}$</td>
</tr>
<tr>
<td>Saurer and Siegenthaler (1989)</td>
<td>Fagus sylvatica</td>
<td>Switzerland</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Temperature and precipitation</td>
</tr>
<tr>
<td>Saurer et al. (1995)</td>
<td>Fagus sylvatica</td>
<td>Switzerland</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Soil moisture, total precipitation</td>
</tr>
<tr>
<td>Saurer et al. (1998)</td>
<td>Fagus sylvatica</td>
<td>Switzerland</td>
<td>Cellulose</td>
<td>$\delta^{13}C, \delta^{18}O$</td>
<td>Temperature and precipitation</td>
</tr>
<tr>
<td>Saurer et al.</td>
<td>Larix sp., Picea</td>
<td>Eurasia</td>
<td>Wholewood</td>
<td>$\delta^{18}O$</td>
<td>Spatial analysis with</td>
</tr>
<tr>
<td>(2002)</td>
<td>sp., Pinus sp.</td>
<td>Controlled experiment</td>
<td>Wholewood</td>
<td>$\delta^{18}O,\delta^{13}C$</td>
<td>Relationship between stable isotopes and physiological mechanisms</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------------</td>
<td>-----------</td>
<td>-----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Schidegger et al. (2000)</td>
<td>Festuca rubra, Potentilla aurea, Achillea millefolium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schiegl (1974)</td>
<td>Picea abies</td>
<td>Germany</td>
<td>Wholewood</td>
<td>δ^2H</td>
<td>Summer temperature</td>
</tr>
<tr>
<td>Schleser et al. (1999)</td>
<td>Picea abies</td>
<td>Germany</td>
<td>Wholewood, cellulose</td>
<td>$\delta^{13}C$</td>
<td>Temperature</td>
</tr>
<tr>
<td>Sheu et al. (1996)</td>
<td>Abies kawakami</td>
<td>Taiwan</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Temperature</td>
</tr>
<tr>
<td>Simard et al., 2008</td>
<td>Pinus banksiana, Picea mariana, Abies balsamea</td>
<td>Canada</td>
<td>Cellulose</td>
<td>$\delta^{18}O, \delta^{13}C$</td>
<td>Identification of past defoliations and physiological change in field</td>
</tr>
<tr>
<td>Simard et al., (2012)</td>
<td>Abies balsamea</td>
<td>Canada, controlled experiment</td>
<td>Cellulose</td>
<td>$\delta^{18}O, \delta^{13}C$</td>
<td>Identification of past defoliations and physiological change in controlled experiment</td>
</tr>
<tr>
<td>Sonninen and Jungner (1995)</td>
<td>Pinus sylvestris</td>
<td>Finland</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Temperature</td>
</tr>
<tr>
<td>Stuiver and Braziunas (1987)</td>
<td>Various</td>
<td>America</td>
<td>Cellulose</td>
<td>$\delta^{18}O, \delta^1H$</td>
<td>δ^1C and δ^18O with temperature and RH</td>
</tr>
<tr>
<td>Switsur et al. (1994)</td>
<td>Quercus robur</td>
<td>United Kingdom</td>
<td>Cellulose</td>
<td>$\delta^{18}O, \delta^{13}C, \delta^1H$</td>
<td>$\delta^{18}O, \delta^{13}C$; δ^1H; $\delta^{18}O$ with $\delta^{18}O$ with temperature and RH</td>
</tr>
<tr>
<td>Switsur et al. (1996)</td>
<td>Quercus robur</td>
<td>United Kingdom</td>
<td>Cellulose</td>
<td>$\delta^{18}O, \delta^{13}C, \delta^1H$</td>
<td>$\delta^{18}O, \delta^{13}C$; δ^1H; $\delta^{18}O$ with $\delta^{18}O$ with temperature and RH</td>
</tr>
<tr>
<td>Tang et al. (1999)</td>
<td>Pinus longeva</td>
<td>California</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>WUE increases with CO_2</td>
</tr>
<tr>
<td>Tang et al. (2000)</td>
<td>Pseudotsuga menziesii</td>
<td>USA</td>
<td>Nitrocellulose</td>
<td>δ^2H</td>
<td>Source-water signal dominates, temperature signal is weak</td>
</tr>
<tr>
<td>Tans and Mook (1980)</td>
<td>Oak, Fagus sylvatica</td>
<td>Netherlands</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Mean summer temperature, mean annual temperature</td>
</tr>
<tr>
<td>Tardif et al. (2008)</td>
<td>Picea glauca</td>
<td>Canada</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Influence of climate</td>
</tr>
<tr>
<td>Treyde et al. (2001)</td>
<td>Picea abies</td>
<td>Swiss Alps</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Temperature, precipitation and RH</td>
</tr>
<tr>
<td>Waterhouse et al. (2000)</td>
<td>Pinus sylvestris</td>
<td>Russia</td>
<td>Cellulose</td>
<td>$\delta^{23}C$</td>
<td>Correlation with moisture stress</td>
</tr>
<tr>
<td>Wingate et al. (2007)</td>
<td>Picea sitchensis</td>
<td>United Kingdom</td>
<td>CO$_2$ gas exchange</td>
<td>$\delta^{13}C$</td>
<td>Variations in ^{13}C discrimination during CO$_2$ exchange</td>
</tr>
<tr>
<td>Yapp and Epstein (1982)</td>
<td>Various</td>
<td>America</td>
<td>Nitrocellulose</td>
<td>δ^2H</td>
<td>Mean annual temperature</td>
</tr>
<tr>
<td>Zimmermann et al. (1997)</td>
<td>Juniperus tibetica</td>
<td>Tibetan plateau</td>
<td>Cellulose</td>
<td>$\delta^{13}C$</td>
<td>Soil moisture stress</td>
</tr>
</tbody>
</table>

Table 1. A summary of paper focused on tree-ring isotope for environmental research (from McCarrol and Loader, 2004, updated to December 2013).
2 Tree-ring and stable isotopes as environmental signals

2.1 Comparison of tree rings and stable isotopes

Trees are wonderful, annually-resolved archives of tree history stretching back for thousands of years. Annual variability in width, density and stable isotope ratios in tree rings provides a record of climate and physiological signals (photosynthetic capacity and stomatal conductance) (Scheidegger et al., 2000; Simard et al., 2012, 2008).

The relationship between ring widths or stable isotope ratios and ecological signals may be quantified using regression-based techniques or “bootstrap” approaches based on multiple random resampling from the same data set (Cook, 1990). Although it is possible to extract high-resolution paleoclimatic data from ring width (Briffa et al., 1998), a number of limitations restrict their potential. One problem is known as the “segment length curse”: as trees grow, their ring widths tend to decline (Cook et al., 1995) and regression-based techniques, usually fitting a negative exponential curve, must be used to remove this trend. However, this helpful data treatment unfortunately also removes other data on low-frequency long-term changes in climate that are often of most importance. Another problem is that the correlation between ring widths and climate may not be very strong. Since individual trees in a stand are likely to respond in different ways to climate in a given year, the widths of the rings they form individually will vary greatly. Tree-ring widths and tree-ring densities in different stands may also differ greatly due to local microclimate conditions. To some extent, the problem of between-tree and between-stand variability may be overcome by using a large number of trees to remove noise and enhance the common signal. Naturally, the greater the variability, the greater the number of trees required.

On the other hand, using stable isotopes may avoid the necessity to statistically de-trend the isotope series, thus retaining high (year-to-year variations) and low (long-term variations) frequencies and removing the “segment length” effect. This is why fewer trees are required for carbon and oxygen stable isotope analyses than for classical tree-ring width analyses. Stable carbon isotope ratios also have the advantage that the physiological factors influencing their variation are reasonably well understood and relatively simple compared with the multiple factors influencing annual growth increment.

Variations in tree-ring isotope ratios have been interpreted in many different ways (Table 1): as inferred palaeoclimatic signals (temperature, RH and precipitation) or as stomatal...
conductance and photosynthetic capacity. None of the isotopes has a single controlling factor, so the dominant control will change according to tree species and ecological conditions (McCarroll and Loader, 2004).

2.2 A novel unexplored method

Scheidegger et al. (2000) developed a conceptual model based on measurements of δ\(^{18}\)O and δ\(^{13}\)C in organic matter, that provides insights into the long-term effects of environmental factors on CO\(_2\) and H\(_2\)O gas exchange. According to this model, simultaneous measurement of carbon and oxygen isotopes in tree rings allows estimates to be made of changes in stomatal conductance and photosynthetic rate during the tree life and under different ecological conditions (Fig. 2). This model may be helpful in investigating physiological responses under different climate conditions and during abiotic or biotic stress. It is well known that plants can modify their physiological processes in different ways in the course of a stress event (e.g. by altering water relations or photosynthetic capacity). These physiological responses are thought to be defensive mechanisms of resistance (Little et al., 2003). For example, previous studies have reported significant variations in photosynthetic rate and stomatal activity as a consequence of insect defoliation (Chen et al., 2001; Ozaki et al., 2004; Pataki et al., 1998; Quentin et al., 2011). Nevertheless, most research has focused on the physiological responses of plants during insect outbreak and, so far, much less attention has been given to adaptive mechanisms in plants infected by pathogenic fungi or defoliated by insects in the long-term.
Fig. 2 Theoretical development, the changes between δ^{13}C and δ^{18}O are shown by arrows. Relative humidity (rH) comes from δ^{18}O, CO$_2$ in the leaf intercellular spaces (c_i) from δ^{13}C (up-or downward arrows represent increasing or decreasing values, \approx indicates insignificant changes). For each scenario there are two possible cases, denoted as 1 and 2, with corresponding changes in average maximum net photosynthesis (A_{max}) and stomatal conductance (g_i). The model output is determined by the selection based on the rH change (from Schepetegger et al., 2000).

2.3 Potential of a multi-proxy approach

Extracting environmental signals from tree-ring widths or stable isotopes requires a full understanding of both isotope theory and of the ecophysiology of the sampled trees. It is often easy to find a good correlation between a tree-ring chronology and a climate parameter but it should be born in mind that correlation does not necessarily imply causation.

Since the dominant controls on δ^{13}C are photosynthetic rate and stomatal conductance, the environmental signal at a certain site will be linked to the relative strengths of these two factors. For example, at a dry site such as in the western Alps, the dominant control is stomatal conductance and the likely environmental signals are precipitation and air humidity (Gagen et al., 2004). On the other hand, where water is not a limiting factor, the dominant control may be photosynthetic rate, which may be regulated by either temperature or the amount of sunlight (McCarron and Loader, 2004). Where trees are growing under mild conditions, tree-ring widths and isotope ratios may not carry strong environmental signals.

Trees are a physical archive, and this allows for a multi-proxy approach (McCarron and Pawellwek, 2001) to dendroecology, including the measurement of stable isotopes, which improves the amount of environmental information that can be extracted from trees. Using
several proxies, some of the noise associated with each of the measures may be removed, enhancing the climate or physiological signal (Gori et al., 2013a, 2013b, 2013c; Simard et al., 2012, 2008; Scheidegger et al., 2000). The most important consideration is that the sources of error (noise) for each of the proxies are not the same.

In the south-eastern Alps, for example, a combination of eight different isotope chronologies from *Picea abies* allowed us to reduce non-climate noise and to reconstruct the past climate of this region (Gori et al., 2013a; see section 1). The potential of this approach was also tested in three other studies (sections 2,3,4) forming part of this thesis.

Using a combination of maximum latewood density and stable carbon isotope ratios, McCarrol and Pawellwek (2001) were able to identify dry summers, even in a region where trees are rarely moisture stressed (Fig. 3).

![Fig. 3 Regression between δ¹³C values and latewood density values, the residuals show the dry summers (from McCarrol and Pawellwek, 2001).](image)

2.4 **Influence of fungi and insects on tree rings and stable isotopes**

Dendrochronology is the science of dating annual growth layers (rings) in woody plants. Two sub-disciplines are dendroclimatolgy, which uses the information in tree rings to study anomalies in present and past climates, and dendroecology, which includes all branches of science involved in drawing environmental information from tree-ring sequences, e.g.:

- geomorphology (dendrogeomorphology)
- tectonics (dendrogeotectonics)
- glaciology (dendroglaciology)
- snow research (dendroniveology)
Recently, dendrochronology has moved into the realm of plant pests and tree-ring analyses can be used to reconstruct the temporal processes of diseases caused by pests (Schweingruber, 1996). Abrupt, periodic growth reductions in oaks in northern Germany were investigated dendrochronologically by Hartmann and Blank (1992), who reported the possible causes as budmoth and Pezicula cinnamomea. Other researchers have been able to reconstruct outbreaks over the past 300 years by analysing tree rings in *Picea englemannii* in Colorado’s Rocky Mountains (Veblen et al., 1991).

Growth reduction is common after a mass insect outbreak or during fungal infection, but tree-ring analyses are rarely carried out in this context (Schweingruber, 1996).

Recently, Simard et al. (2008; 2012) proposed using carbon and oxygen stable isotopes as indicators of spruce budworm outbreak (*Choristoneura fumiferana* Cem.), but no further studies have since been carried out.
3 Sampling, measurement and statistical treatments

3.1 Sampling strategies

When the aim is to enhance a climate signal on tree growth, it should be born in mind that the most useful trees are those growing under extreme conditions. As a rule, relatively isolated trees (i.e. without competition), potentially limited by the factor under investigation, are the material of choice (Ferrio, 2005). For example, when we need good inferences on precipitation, isolated trees in a dry stand located on a slope are the best choice.

3.2 Sampling resolution

Samples may be acquired by felling trees and removing a disk or by using increment borers (Fig.4). Early tree-ring isotope analyses used disks because a lot of wood material was needed, but as sample preparation techniques have become faster and mass spectrometers have improved, small samples have become feasible. The minimum number of trees required for ecology purposes necessarily depends on intra-site and intra-tree heterogeneity. In dendroclimatology, as a rule, 20 trees per site may be enough (Schweingruber, 1996), although Leavitt and Long (1984) have suggested that pooling four cores from four trees will yield an accurate absolute \(^{13}\)C value, a proposal that has been disputed (McCarrol and Pawellek, 1998).

3.3 Core preparation

Even in conifers, where most boundaries are clear to see on the unsurfaced core, there is a risk of overlooking very tiny rings or misidentifying false rings. For dendrochronology purposes, it is usually sufficient to prepare the cores with sandpaper to obtain a surface similar to a cut surface and thereby facilitating identification of indistinct ring boundaries (Fig. 4)
However, to prevent isotopic contamination, no lubricants, markers or sandpaper must be used during field sampling and dendrochronological measurement. A simple solution, proposed by Gärtner and Nievergelt (2010), to make the features of the rings clearly visible under magnification, is to use a sliding microtome blade (Fig. 5). Properly sliced surfaces have another advantage over sanded surfaces in that the vessels are left open and are not filled with sawdust (Fig. 6).
3.4 Cross-dating and de-trending of ring widths

Ring widths are the amount of wood formed in a given year. Comparing the ring widths of a tree with dated master chronology allows the exact year in which each tree ring was formed to be identified (cross-dating).
This is the basis of “dendrochronology”. Nevertheless, tree growth may also be affected by other, non-climatic, factors such as tree age (see section 2). For example, ring width may greatly increase after a neighbouring tree is cut. To some extent, this undesired noise should be statistically removed through standardisation. This involves fitting a curve to the tree-ring series, then dividing each ring-width value by the corresponding curve value. In an ideal tree, fitting an exponential curve would be enough, but in most cases a second detrending is performed through a cubic smoothing spline (Cook and Peters, 1981). The spline acts as a high-pass filter and is defined by a cut-off wavelength. In some cases, further detrending is performed using autoregressive models (Monserud, 1986). To enhance the climate signal, the series obtained from several trees at a given site may be averaged using a biweight robust mean estimation (Cook and Holmes, 1986). As already mentioned, the main problem with statistical treatments lies in the risk of removing low-frequency climate variability (Cook et al., 1995).

3.5 Sample grinding

After cross-dating, tree rings are usually separated using a razor. In order to obtain homogeneous wood samples, most researchers dry samples at 60°C then grind them (<0.1 mm) in a centrifugal mill. During a previous phase of this thesis, I found that cooling the samples in liquid nitrogen was the best way of obtaining a homogeneous sample (Gori Y., unpublished data).

3.6 Atmospheric CO₂ correction

Because fossil fuels are depleted in 13C, anthropogenic increases in CO₂ concentrations in the atmosphere have lowered the δ^{13}C values in air by about 1.5%. Since fractionation is an additive process, this trend is reflected in tree rings. Indeed, most of the tree-ring δ^{13}C series show this trend. A simple solution to remove this noise without weakening the climate signal has been proposed by Francey et al. (1999). They have compiled a high precision record of atmospheric δ^{13}C based on Antarctic ice cores which, for the purposes of correcting tree-ring data, can be summarised by two consecutive segments, one between 1850 and 1961 with an annual decline of 0.0044%, and one between 1962 and 1980 with a steeper annual decline of 0.0281% (Table 2).
<table>
<thead>
<tr>
<th>Year</th>
<th>$\delta^{13}C$</th>
<th>A</th>
<th>CO₂</th>
<th>Year</th>
<th>$\delta^{13}C$</th>
<th>A</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>1850</td>
<td>-0.64</td>
<td>0.01</td>
<td>285.2</td>
<td>1901</td>
<td>-0.64</td>
<td>0.24</td>
<td>297</td>
</tr>
<tr>
<td>1851</td>
<td>-0.62</td>
<td>0.01</td>
<td>285.5</td>
<td>1902</td>
<td>-0.64</td>
<td>0.24</td>
<td>297.3</td>
</tr>
<tr>
<td>1852</td>
<td>-0.62</td>
<td>0.02</td>
<td>285.4</td>
<td>1903</td>
<td>-0.65</td>
<td>0.25</td>
<td>297.6</td>
</tr>
<tr>
<td>1853</td>
<td>-0.63</td>
<td>0.03</td>
<td>285.5</td>
<td>1904</td>
<td>-0.65</td>
<td>0.25</td>
<td>297.9</td>
</tr>
<tr>
<td>1854</td>
<td>-0.63</td>
<td>0.03</td>
<td>285.6</td>
<td>1905</td>
<td>-0.66</td>
<td>0.26</td>
<td>298.2</td>
</tr>
<tr>
<td>1855</td>
<td>-0.63</td>
<td>0.03</td>
<td>285.7</td>
<td>1906</td>
<td>-0.66</td>
<td>0.26</td>
<td>298.5</td>
</tr>
<tr>
<td>1856</td>
<td>-0.64</td>
<td>0.04</td>
<td>285.8</td>
<td>1907</td>
<td>-0.66</td>
<td>0.26</td>
<td>298.9</td>
</tr>
<tr>
<td>1857</td>
<td>-0.64</td>
<td>0.04</td>
<td>285.9</td>
<td>1908</td>
<td>-0.67</td>
<td>0.27</td>
<td>299.2</td>
</tr>
<tr>
<td>1858</td>
<td>-0.65</td>
<td>0.05</td>
<td>286.0</td>
<td>1909</td>
<td>-0.67</td>
<td>0.27</td>
<td>299.6</td>
</tr>
<tr>
<td>1859</td>
<td>-0.65</td>
<td>0.05</td>
<td>286.2</td>
<td>1910</td>
<td>-0.68</td>
<td>0.28</td>
<td>300.2</td>
</tr>
<tr>
<td>1860</td>
<td>-0.66</td>
<td>0.06</td>
<td>286.3</td>
<td>1911</td>
<td>-0.68</td>
<td>0.28</td>
<td>300.2</td>
</tr>
<tr>
<td>1861</td>
<td>-0.66</td>
<td>0.06</td>
<td>286.5</td>
<td>1912</td>
<td>-0.69</td>
<td>0.29</td>
<td>300.3</td>
</tr>
<tr>
<td>1862</td>
<td>-0.67</td>
<td>0.07</td>
<td>286.6</td>
<td>1913</td>
<td>-0.69</td>
<td>0.29</td>
<td>300.9</td>
</tr>
<tr>
<td>1863</td>
<td>-0.67</td>
<td>0.07</td>
<td>286.8</td>
<td>1914</td>
<td>-0.70</td>
<td>0.3</td>
<td>301.2</td>
</tr>
<tr>
<td>1864</td>
<td>-0.67</td>
<td>0.07</td>
<td>287.0</td>
<td>1915</td>
<td>-0.70</td>
<td>0.3</td>
<td>301.5</td>
</tr>
<tr>
<td>1865</td>
<td>-0.68</td>
<td>0.08</td>
<td>287.2</td>
<td>1916</td>
<td>-0.70</td>
<td>0.3</td>
<td>301.8</td>
</tr>
<tr>
<td>1866</td>
<td>-0.68</td>
<td>0.08</td>
<td>287.4</td>
<td>1917</td>
<td>-0.71</td>
<td>0.31</td>
<td>302.2</td>
</tr>
<tr>
<td>1867</td>
<td>-0.69</td>
<td>0.09</td>
<td>287.6</td>
<td>1918</td>
<td>-0.71</td>
<td>0.31</td>
<td>302.5</td>
</tr>
<tr>
<td>1868</td>
<td>-0.69</td>
<td>0.09</td>
<td>287.8</td>
<td>1919</td>
<td>-0.72</td>
<td>0.32</td>
<td>302.9</td>
</tr>
<tr>
<td>1869</td>
<td>-0.70</td>
<td>0.1</td>
<td>288.0</td>
<td>1920</td>
<td>-0.72</td>
<td>0.32</td>
<td>303.2</td>
</tr>
<tr>
<td>1870</td>
<td>-0.70</td>
<td>0.1</td>
<td>288.2</td>
<td>1921</td>
<td>-0.73</td>
<td>0.33</td>
<td>303.5</td>
</tr>
<tr>
<td>1871</td>
<td>-0.71</td>
<td>0.11</td>
<td>288.4</td>
<td>1922</td>
<td>-0.73</td>
<td>0.33</td>
<td>303.9</td>
</tr>
<tr>
<td>1872</td>
<td>-0.71</td>
<td>0.11</td>
<td>288.7</td>
<td>1923</td>
<td>-0.74</td>
<td>0.34</td>
<td>304.2</td>
</tr>
<tr>
<td>1873</td>
<td>-0.72</td>
<td>0.11</td>
<td>289.0</td>
<td>1924</td>
<td>-0.74</td>
<td>0.34</td>
<td>304.6</td>
</tr>
<tr>
<td>1874</td>
<td>-0.72</td>
<td>0.12</td>
<td>289.1</td>
<td>1925</td>
<td>-0.74</td>
<td>0.34</td>
<td>304.9</td>
</tr>
<tr>
<td>1875</td>
<td>-0.72</td>
<td>0.12</td>
<td>289.4</td>
<td>1926</td>
<td>-0.75</td>
<td>0.35</td>
<td>305.2</td>
</tr>
<tr>
<td>1876</td>
<td>-0.73</td>
<td>0.13</td>
<td>289.7</td>
<td>1927</td>
<td>-0.75</td>
<td>0.35</td>
<td>305.6</td>
</tr>
<tr>
<td>1877</td>
<td>-0.73</td>
<td>0.13</td>
<td>289.9</td>
<td>1928</td>
<td>-0.76</td>
<td>0.36</td>
<td>305.9</td>
</tr>
<tr>
<td>1878</td>
<td>-0.74</td>
<td>0.14</td>
<td>290.2</td>
<td>1929</td>
<td>-0.76</td>
<td>0.36</td>
<td>306.2</td>
</tr>
<tr>
<td>1879</td>
<td>-0.74</td>
<td>0.14</td>
<td>290.5</td>
<td>1930</td>
<td>-0.77</td>
<td>0.37</td>
<td>306.5</td>
</tr>
<tr>
<td>1880</td>
<td>-0.75</td>
<td>0.15</td>
<td>290.8</td>
<td>1931</td>
<td>-0.77</td>
<td>0.37</td>
<td>306.8</td>
</tr>
<tr>
<td>1881</td>
<td>-0.75</td>
<td>0.15</td>
<td>291.1</td>
<td>1932</td>
<td>-0.78</td>
<td>0.38</td>
<td>307.1</td>
</tr>
<tr>
<td>1882</td>
<td>-0.75</td>
<td>0.15</td>
<td>291.4</td>
<td>1933</td>
<td>-0.78</td>
<td>0.38</td>
<td>307.4</td>
</tr>
<tr>
<td>1883</td>
<td>-0.76</td>
<td>0.16</td>
<td>291.7</td>
<td>1934</td>
<td>-0.78</td>
<td>0.38</td>
<td>307.7</td>
</tr>
<tr>
<td>1884</td>
<td>-0.76</td>
<td>0.16</td>
<td>292.0</td>
<td>1935</td>
<td>-0.79</td>
<td>0.39</td>
<td>308.0</td>
</tr>
<tr>
<td>1885</td>
<td>-0.77</td>
<td>0.17</td>
<td>292.3</td>
<td>1936</td>
<td>-0.79</td>
<td>0.39</td>
<td>308.3</td>
</tr>
<tr>
<td>1886</td>
<td>-0.77</td>
<td>0.17</td>
<td>292.6</td>
<td>1937</td>
<td>-0.80</td>
<td>0.4</td>
<td>308.5</td>
</tr>
<tr>
<td>1887</td>
<td>-0.78</td>
<td>0.18</td>
<td>292.9</td>
<td>1938</td>
<td>-0.80</td>
<td>0.4</td>
<td>308.8</td>
</tr>
<tr>
<td>1888</td>
<td>-0.78</td>
<td>0.18</td>
<td>293.2</td>
<td>1939</td>
<td>-0.81</td>
<td>0.41</td>
<td>309.1</td>
</tr>
<tr>
<td>1889</td>
<td>-0.79</td>
<td>0.18</td>
<td>293.5</td>
<td>1940</td>
<td>-0.81</td>
<td>0.41</td>
<td>309.3</td>
</tr>
<tr>
<td>1890</td>
<td>-0.79</td>
<td>0.19</td>
<td>293.7</td>
<td>1941</td>
<td>-0.82</td>
<td>0.42</td>
<td>309.5</td>
</tr>
<tr>
<td>1891</td>
<td>-0.79</td>
<td>0.19</td>
<td>294.0</td>
<td>1942</td>
<td>-0.82</td>
<td>0.42</td>
<td>309.8</td>
</tr>
<tr>
<td>1892</td>
<td>-0.80</td>
<td>0.2</td>
<td>294.3</td>
<td>1943</td>
<td>-0.82</td>
<td>0.42</td>
<td>310.0</td>
</tr>
<tr>
<td>1893</td>
<td>-0.80</td>
<td>0.2</td>
<td>294.6</td>
<td>1944</td>
<td>-0.83</td>
<td>0.43</td>
<td>310.2</td>
</tr>
<tr>
<td>1894</td>
<td>-0.81</td>
<td>0.21</td>
<td>294.9</td>
<td>1945</td>
<td>-0.83</td>
<td>0.43</td>
<td>310.5</td>
</tr>
<tr>
<td>1895</td>
<td>-0.81</td>
<td>0.21</td>
<td>295.2</td>
<td>1946</td>
<td>-0.84</td>
<td>0.44</td>
<td>310.8</td>
</tr>
<tr>
<td>1896</td>
<td>-0.82</td>
<td>0.22</td>
<td>295.5</td>
<td>1947</td>
<td>-0.84</td>
<td>0.44</td>
<td>311.1</td>
</tr>
<tr>
<td>1897</td>
<td>-0.82</td>
<td>0.22</td>
<td>295.8</td>
<td>1948</td>
<td>-0.85</td>
<td>0.45</td>
<td>311.3</td>
</tr>
<tr>
<td>1898</td>
<td>-0.83</td>
<td>0.22</td>
<td>296.1</td>
<td>1949</td>
<td>-0.85</td>
<td>0.45</td>
<td>311.7</td>
</tr>
<tr>
<td>1899</td>
<td>-0.83</td>
<td>0.23</td>
<td>296.4</td>
<td>1950</td>
<td>-0.86</td>
<td>0.46</td>
<td>312.0</td>
</tr>
<tr>
<td>1900</td>
<td>-0.83</td>
<td>0.23</td>
<td>296.7</td>
<td>1951</td>
<td>-0.86</td>
<td>0.46</td>
<td>312.4</td>
</tr>
</tbody>
</table>

Table 2. Annual values for the $\delta^{13}C$ of the atmospheric CO₂ and the correction factor to quote tree-ring $\delta^{13}C$ values relative to a pre-industrial value of -6.4% (McCarrol and Loader, 2004).
4 *Heterobasidion annosum*: ecology, symptoms and damage in infected forests

Heterobasidion annosum (Fr.) Bref. sensu lato, which causes root and butt rot and tree mortality, is regarded as one of the most destructive diseases of conifers in northern boreal conifer forests, particularly in weakening root systems and increasing the risk of windfall (Woodward et al., 1998). Economic losses attributable to *Heterobasidion* infection in Europe only as wood decay agent were estimated at 800 million euros per year (Woodward et al., 1998). These losses take several forms:

- Wood decay of the lower part of the inner stem of living trees (normally for 2-5 meters, but can reach also 12-15 meters), usually without external symptoms (at least in *Picea abies*), it is assessed in field only at harvesting time.
- Potential growth loss caused by chronic root infection that interferes with the plant physiology.
- Increasing windfall susceptibility for weakening the root system, especially in case of moderate storms with heavy snowing.
- Indirect costs (increased logging costs for forest planning disturbance, diagnosis, application of control measures, research).

In 1978, Korhonen (1978) divided *H. annosum* sensu lato into two intersterility groups (proto-species) according to main host preference, spruce or pine. Subsequently, Capretti et al., (1990) added a third group with a preference for silver fir. The three intersterility groups eventually received species status and were named *H. annosum* sensu stricto, *H. parviporum* and *H. abietinum*, with preferences respectively for pine species, Norway spruce and silver fir (Niemelä and Korhonen, 1998).

For Norway spruce external symptoms of *H. annosum* s.l. root rot are often hidden and with not clearly characteristic traits, hardly distinguishable from those caused by other root diseases. Some older Norway spruces display reduced crown density with yellowish foliage and resin exudation during the last stage of infection. However, other root pathogens, such as honey fungus (*Armillaria* spp.), may cause similar symptoms. The last stage of decline may last for up to ten years before a tree dies, and during this phase the crown becomes rounded and very transparent and the root system may be reduced by up to two-thirds.
Presence of *H. annosum* may be confirmed by the presence of the imperfect state, *Spinipnger meineckellus* (A.J. Olson) Stalpers, according to the methods described by Stalpers (1978).

During the first stage of infection, a stain may be observed on the butt of felled trees, varying in colour according to the host tree species. Incipient decay is normally pale pink, developing into a light brown spongy decay to then become a white pocket rot with black flecks in its advanced stage.

4.1 Ecological requirements of Heterobasidion annosum

H. annosum grows in a wide range of temperatures according to isolate. Mycelial growth take place above 0-2°C, with an optimum of 22-28°C; growth stops above 32-37°C and under 0-2°C, depending on the strain (Korhonen and Stenlid, 1998; La Porta et al., 2008). The temperature range for the production and germination of basidiospores and conidiospores is similar to that for mycelia growth: 22-28°C (Asiegbu et al., 2005).

The pH range for growth of *H. annosum* varies according to isolate with different isolates varying considerably in their reaction to pH. The optimum is between 4 and 5.7, depending on the strain (Korhonen and Stenlid, 1998).

In the Alpine region, *H. annosum* is particularly harmful to *P. abies*. Several researchers have reported that the pathogen is more active in conifer reforestation on former agricultural or pasture land, where the soil mycoflora do not inhibit its growth.

4.2 Reduced standing timber volume caused by Heterobasidion annosum

While the most evident detrimental effect of *H. annosum* s.l. is decay of the lower part of the inner stem and subsequent depreciation for timber use, this pathogen also causes indirect volume reduction as a consequence of physiological disorder. The three main mechanisms causing growth loss brought about by root rot are: i) death of most major roots, ii) reduced ability of trees to take up water and nutrients (Cherubini et al., 2002; Benz-Hellgren and Stenlid, 1995; Joseph et al.,1998), and iii) the formation of a reaction zone (Benz-Hellgren and Stenlid, 1995; Hietala et al., 2009; Oliva et al., 2010), an energy-costly defence mechanism whereby necrotic tissue is enriched with antifungal phenolic extractives (Shain, 1979).
The impact of root disease is manifested on two principal levels: the first is the readily observable and quantifiable rot columns, while the second, indirect volume reduction, is more difficult to identify and quantify (Manion, 1991).

Periodic growth reduction was observed in infected *P. abies* by Bendz-Hellgren and Stenlid (1995), who reported volume increment losses of 23% due to *H. annosum* infection 17 years after initial thinning. However, they detected no increment loss at a second location 8 years after initial thinning, highlighting the need for long-term studies of these effects. They hypothesized that about 50% of the periodic increment reductions in decayed trees could be due to resources being allocated to building the reaction zone in order to compartmentalize the decay column, instead of being invested in secondary growth.
5 Cephalcia arvensis ecology and outbreak

The web-spinning sawfly Cephalcia Panzer (Hymenoptera, Pamphiliidae) is a monophagous defoliator of the Picea genus and endemic to the spruce range in Eurasia (Battisti et al. 2000). Some species of the genus Cephalcia have caused intense defoliation in Picea abies Karst. in European forests (Fig. 7). These species are characterized by long periods of latency and eruptive outbreaks (Eichhorn, 1990).

During the 1980s, two areas of the Venetian Pre-Alps were dramatically infested by Cephalcia arvensis Panzer and over 200 ha of forest were killed (Fig. 8). Cephalcia arvensis outbreaks had been previously reported in spruce forests in Sweden (Trägårdh, 1939), Denmark (Boas, 1934) and Czechoslovakia, always in mature plantations. However, C. arvensis had never before been reported as a spruce pest in Italy (Battisti and Stergule, 1988). As it is well-known, this region is at the southern edge of the area of natural distribution of Norway spruce, where climatic conditions tend to be less favourable, giving rise to long vegetative periods and frequent drought stresses (Schmidt-Vogt, 1977). Nonetheless, foresters have used spruce in reforestation programmes in these areas because of its high productivity. There are a few conflicting hypotheses regarding the possible causes of these outbreaks, with climatic and pedological factors seeming to predominate (Marchisio et al., 1994). Schwenke (1963) proposed that the increase in needle sugar levels resulting from drought stress may have contributed to the exceptional outbreak in southern Germany. In fact, drought could facilitate insect growth by modifying the chemical composition of leaves. In the case of Cephalcia alpina (=fallenii Dalman) in Central Europe, pollution has also been shown to be a factor contributing to the outbreak (Capecki, 1982; Martinek, 1987). It is not easy to identify which environmental factor could have triggered these intense outbreaks, which are likely to have resulted from the interaction of various factors, both biological (e.g. insect growth and tree resistance) and abiotic (e.g. climate variability and soil characteristics).
Fig. 7. Outbreak areas of *Cephalcia arvensis* in Europe (red circles) and natural range of the Norway spruce (*Picea abies*) according to Schmidt-Vogt (1977). Adapted from Marchisio et al. (1994).

Fig. 8 Norway spruce stand in the Cansiglio plateau during the *Cephalcia arvensis* outbreak (Battisti A., photo credits).
6 Climate change and forest pests

Climate change could alter the geographical range of pests and hosts (Lonsdale and Gibbs, 1996) and modify host resistance (Desprez-Loustau et al., 2006). Some authors have suggested that one outcome of climate warming could be changes in the occurrence and intensity of tree diseases (Linares et al. 2010; Fischlin et al., 2007; La Porta et al., 1997; La Porta et al., 2008). An increase in summer droughts would probably favour diseases caused by *Heterobasidion* spp. or other facultative biotrophic pathogens and increase tree mortality (Linares et al., 2010; Henry et al., 2009).

It has been shown that warmer temperatures correlate strongly with the incidence rate of *Heterobasidion* spp. (Thor et al., 2005; Mattila and Nuutinen, 2007). Moreover, the combined effect of warmer temperatures and drought conditions predispose conifers to *Heterobasidion* attack by reducing the trees’ endogenous defence mechanisms (Gori et al., 2013 b,c; La Porta et al., 2008; Lindberg and Johansson, 1992). On the other hand, increased temperatures can also benefit the *Heterobasidion* antagonist *Phlebiopsis gigantean* (Fr.) Jülich, where this fungus is used as a control method (Thor et al., 1997).

It has been claimed that climate change (rises in temperature and CO₂ levels) is responsible for the northward and upward expansion of the range of several insect species of northern temperate forests (Battisti, 2006). In the case of *Cephalcia arvensis*, it seems likely that increases in temperature in June and July 1983-85 was the major factor in prompting the outbreaks (Battisti, 2006; Marchisio et al., 1994).

Accordingly, further investigation into the effects of the interactions of environmental factors and pests on forest trees will be necessary in order to throw light on these complex mechanisms (Desprez-Loustau et al., 2006).
Objectives
As already stated in the general introduction, the overall objective of this thesis is to investigate the impact of pests on tree growth and tree physiological responses over the long term by means of tree-ring and stable isotope analyses. Due to the interdisciplinary nature of this work, I have grouped the objectives into four different topics, each of which was developed in a separate paper with its own introduction and conclusions, thus making exposition clearer.

The outline of this thesis, as reported in the sections which follow, is summarised below:

<table>
<thead>
<tr>
<th>Method and overall goal:</th>
<th>Questions to be answered:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eight different stable isotope ratio analyses of Picea abies (Preliminary study).</td>
<td>1.1 Is wood component extraction necessary for climate reconstruction from P. abies?</td>
</tr>
<tr>
<td>Title of the paper: Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of Picea abies as climate proxies.</td>
<td>1.2 What is the best wood component?</td>
</tr>
<tr>
<td>Aim: to develop a model able to accurately estimate environmental proxies from stable isotope ratios in Picea abies tree rings.</td>
<td>1.3 What environmental information does each proxy contain?</td>
</tr>
<tr>
<td>2. Dendroecological analyses. Tree-ring analysis of Picea abies affected by Heterobasidion parviporum.</td>
<td>1.4 Does combining proxies improve the model?</td>
</tr>
<tr>
<td>Title of the paper: Fungal root pathogen (Heterobasidion parviporum) increases drought stress in Norway spruce stand at low elevation in the Alps.</td>
<td>2.1 Do climatic conditions influence fungal behaviour?</td>
</tr>
<tr>
<td>Aim: to gain insights into plant-pathogen interactions under different climate conditions</td>
<td>2.2 How long can a tree survive after a fungal attack?</td>
</tr>
<tr>
<td>3. Isotope analyses. Carbon and oxygen isotope analyses of Picea abies affected by Heterobasidion parviporum.</td>
<td>2.3 Is dendrochronology helpful in dating the onset of fungal attack?</td>
</tr>
<tr>
<td>Title of the paper: Tree-ring isotope analyses of Norway spruce suffering from long-term infection by the pathogenic white-rot fungus Heterobasidion parviporum.</td>
<td>2.4 To what extent is growth reduction due to the prolonged presence of the fungus in the wood?</td>
</tr>
<tr>
<td>Aim: to gain insights into the physiological responses of infected trees.</td>
<td></td>
</tr>
<tr>
<td>4. Dendroecological and isotope analyses. Tree-ring and stable isotope analyses of Picea abies defoliated by Cephalica</td>
<td>3.1 Can isotopic signals identify the physiological responses of long-term fungal infection?</td>
</tr>
<tr>
<td></td>
<td>3.2 What physiological mechanisms can be altered by a fungal attack?</td>
</tr>
<tr>
<td></td>
<td>4.1 Does defoliation caused by the insect give rise to physiological compensation? Do any of the physiological</td>
</tr>
</tbody>
</table>
arvensis.

Title of the paper: Tree rings and stable isotopes reveal the short- and long-term effects of insect defoliation of Norway spruce (*Picea abies*).

Aim: to gain insights into the physiological responses of defoliated trees.

adaptation processes persist after defoliation and full recovery of the tree? Can isotopic signals identify physiological responses during defoliation?

4.2 Can isotopic signals explain the high growth rate of *Cephalaria* populations in the infested area?

4.4 Can isotopic signals date the onset of insect defoliation better than tree-ring width chronologies?
List of original papers

This doctoral thesis is based on the following four articles:

III. Gori Yuri, La Porta Nicola, Camin Federica (2013). Tree-ring isotope analysis of Norway spruce suffering from long-term infection by the pathogenic white-rot fungus *Heterobasidion parviporum*. Forest Pathology. DOI: 10.1111/efp.12089

I was primarily responsible for planning the study, designing and carrying out the experiments, analysing the data and writing the papers. Laboratory work for papers I and II was carried out together with Anne Verstege (WSL, Birmensdorf, Switzerland), and for paper IV with Dr. Raffaella Dibona (Centre for Studies of the Alpine Environment, San Vito di Cadore, Italy) and Anna Rova. Stable isotope measurements were made together with Luca Ziller (FEM-IASMA, S. Michele all’Adige, Italy). Other co-authors of the papers contributed mainly by providing valuable comments on the manuscripts.
Section 1

Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxyl groups of *Picea abies* as climate proxies.

Rapid Communications in Mass Spectrometry 2013.

27, 265-275
Carbon, hydrogen and oxygen stable isotope ratios of whole wood, cellulose and lignin methoxy groups of *Picea abies* as climate proxies

Y. Gori¹*, R. Wehrens¹, M. Greule², F. Keppler², L. Ziller¹, N. La Porta¹ and F. Camin¹

¹IASMA Research and Innovation Centre – Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy
²Max Planck Institute for Chemistry, Department of Atmospheric Chemistry, Hahn-Meitner-Weg 1, DE 55128 Mainz, Germany

Rationale: Carbon, hydrogen and oxygen (C, H and O) stable isotope ratios of whole wood and components are commonly used as paleoclimatic proxies. In this work we consider eight different proxies in order to discover the most suitable wood component and stable isotope ratio to provide the strongest climate signal in *Picea abies* in a southeastern Alpine region (Trentino, Italy).

Methods: δ¹³C, δ¹⁸O and δD values in whole wood and cellulose, and δ¹³C and δD values in lignin methoxy groups were measured. Analysis was performed using an Isotopic Ratio Mass Spectrometer coupled with an Elemental Analyser for measuring δ¹³C/δ¹²C and a Pyrolyser for measuring δ²H/δ¹H and δ¹⁸O/δ¹⁶O. The data were evaluated by Principal Component Analysis, and a simple Pearson’s correlation between different isotope content and climatic features, and multiple linear regression were performed to evaluate the data.

Results: Each stable isotope ratio in cellulose and lignin methoxy differs significantly from the same stable isotope ratio in whole wood, the values being higher in cellulose and lignin except for the lignin δD values. Significant correlations were found between the wood and the cellulose fractions for each isotope ratio. Overall, the highest correlations with temperature were found with the δ¹⁸O and δD values in whole wood, whereas no significant correlations were found between isotope proxies and precipitation.

Conclusions: δ¹⁸O and δD values in whole wood provide the best temperature signals in *Picea abies* in the northern Italian study area. Extraction of cellulose and lignin and analysis of other isotopic ratios do not seem to be necessary.

Copyright © 2012 John Wiley & Sons, Ltd.
extraction to be necessary only for some tree species, since stable isotope ratios differ according to site features and tree species.

A further problem with cellulose is that some of the hydrogen atoms undergo exchange with xylem water and then with the atmosphere. Most investigations have therefore focused on nitrocellulose, which contains only non-exchangeable hydrogen, although the extraction and preparation method is even more time-consuming and labour-intensive. The development of any new methods to simplify sample preparation would therefore be of great help.

Recently, it was suggested that stable hydrogen isotope values of lignin methoxyl groups in tree rings might be a source of climate information and could serve as a paleoclimate proxy.\(^{[25]}\) Conspicuous \(\delta^2\)H depletion of wood methoxyl groups relative to source water has been observed with a uniform isotopic fractionation (mean \(-216 \pm 19\)\%) recorded with respect to meteoric water over a range of \(\delta^2\)H values from +20 to \(-110\)\%, indicating that the methoxyl groups reflect the isotopic values of the meteoric source water of woody plants. Lignin methoxyl groups are considered to be stable, i.e. the hydrogen atoms of the methoxyl moiety do not exchange with those of plant water during metabolic reactions in the plant. Thus, the initial \(\delta^2\)H value of the methoxyl groups of lignin in woody tissue at formation is retained throughout the lifetime of the tree and in preserved tissue.\(^{[25-27]}\)

The main aim of this study is to develop a simple model to accurately estimate climate proxy information from \textit{Picea abies} (L.) Karst. in the south-eastern Alps. We used a series of \(\delta^{13}\)C, \(\delta^{15}\)O and \(\delta^2\)H values of bulk wood and two wood constituents (cellulose and methoxyl groups of lignin) in order to find the most suitable combination of wood component and stable isotope ratio for obtaining the strongest climate signal. The originality of our study lies mainly in the simultaneous analysis of eight different proxies in ten trees at three different sites with annual resolution. We consider this multi-proxy to be a powerful technique for extracting climatic information from tree-ring isotope chronologies.\(^{[25]}\)

Our main questions are:

1. Is wood component extraction necessary for climate reconstruction from \textit{P. abies} in the south-eastern Alps and, if so, what is the best wood component?
2. How strong are the various climate proxy signals?
3. Can the proxies be combined to build a better model for estimating climate?

EXPERIMENTAL

Samples, field sampling and dendrochronological methods

Field sampling was carried out on mature Norway spruce stands at three different elevations in the south-eastern Alps: Baselga (900 m.a.s.l.; 46°44′8″N, 11°53′E), Val Maggiore (1300 m.a.s.l.; 46°17′32″N, 11°36′49″E) and Cerms (1900 m.a.s.l.; 46°15′0″N, 11°29′43″E).

The climate features are typical of the southern alpine region with cold winters, mild summers and frequent precipitation mostly concentrated in the summer months (June to September). The climate is cold temperate\(^{[57]}\) and the vegetation season depends on elevation and date of snow melt, varying between 120 days (at the Cerms stand) and 150 days (at the Baselga stand).

All the sites are located on slopes ranging from 30% to 50%, have a northern aspect, and are within a distance of 25 km from each other (Fig. 1). The bedrock is porphyric granite, partially covered with morainic material and podzolic soils. The three stands are dense and homogeneous. All the forests within which they lie are characterised by several large, even-aged, homogeneous group of trees.

A total of ten mature \textit{P. abies} trees were selected at each site. Care was taken to select only dominant trees growing in similar light and soil moisture conditions in plots measuring 100 m \(\times\) 100 m. Four cores were extracted at 90° from each other using a 0.5 cm diameter Pessler increment borer; the pith was reached in at least one of the four cores. To prevent isotopic contamination, no lubricants, markers or sandpaper were used during field sampling and dendrochronological measurements.

The cores of all trees were prepared with a core-microtome\(^{[28]}\) and standard dendrochronological methods were used to cross date.\(^{[56]}\) Ring-width measurements on each core were made to the nearest 0.01 mm using LINTAB measuring equipment (Frank Rinn, Heidelberg, Germany). Raw Tree-Ring-Widths (TRW) of all curves were plotted, cross-dated visually and then cross-dated statistically by: (a) Gleichläufigkeit, i.e. the percentage agreement in the signs of first-differences of two time series; and (b) a t-test, which determines the degree of correlation between the curves. Cross-dating quality was checked using the COFECHA programme\(^{[29]}\) as a standard dendrochronological protocol for quality control.

Average tree ages at the sites were over 100 years at Baselga, 150 years in Val Maggiore and 230 years at Cerms.

Sample preparation

After being dated, all the cores were prepared for isotopic analysis. Although some authors argue that latewood gives the strongest climatic signal,\(^{[30,31]}\) others have found good signals using the whole tree ring, especially with conifer.\(^{[19,32,33,38]}\) As the \textit{P. abies} growing at Cerms presented very narrow rings with indistinguishable latewood bands, whole annual ring was used for all wood samples. Annual rings from each core were carefully separated with a razor under a binocular microscope at the early and late-wood border. To minimise the juvenile effect observed in young trees,\(^{[34,35]}\) only rings formed during the mature growth phase were analysed (e.g. after 60 years at the high elevation site at Cerms, after 40 years at medium elevation in Val Maggiore, and after 30 years at low elevation at Baselga).\(^{[36]}\)

Since isotopic signals vary around the circumference of the tree, we pooled the ring samples from the four radii.\(^{[37]}\) Finally, all rings from a given year at each site (ten sampled trees per site) were pooled to reduce isotope variability between trees.\(^{[38]}\) Care was taken to use the same dry weight in order to prevent the isotopic value being biased by the relative mass contribution of the tree rings (larger tree rings affect isotope values more than small ones).\(^{[39]}\) Overall, we separated 150 tree rings at Cerms (from 1860 to 2009), 110 in Val Maggiore (from 1900 to 2009) and 75 at Baselga (from 1935 to 2009).
Dried samples of whole wood were ground (<0.1 mm) in a centrifugal mill (ZM200, Retsch® Hann, Germany) and all wood samples were split into three subsamples. The first group of subsamples did not undergo any treatment (whole wood); the second was used for cellulose extraction, and the third for lignin methoxyl group extraction. Cellulose was extracted according to a modified method described by Loader and co-authors. In brief, the samples were washed twice in 5% NaOH solution for 2 h at 60°C in order to remove fats, oils, resins and hemicellulose. In the second step, the lignin was removed with a 7% NaClO₂ solution for a minimum of 36 h at 60°C. Since this solution is only reactive for about 10 h, it was changed and refilled daily as necessary. After each treatment the samples were washed three times with boiling distilled water and dried for 48 h at 60°C.

No further preparation was needed to measure the stable carbon and hydrogen isotope values of the lignin methoxyl groups. The dried and ground wood samples were analysed directly using the HL method as described below and by Keppler et al. and Greule et al. Isotope analysis

Overall, we analysed eight isotopic proxies for each sample: δ¹³C, δ¹⁸O and δ²H values in whole wood, δ¹³C, δ¹⁸O and δ²H values in cellulose and δ¹³C and δ²H values in lignin methoxyl groups. No analysis of δ²H values in lignin methoxyl groups for the years 1900–1932 in Val Maggiore was performed due to the small amount of wood material. Sub-samples of 0.3–0.35 mg of cellulose and whole wood were weighed and placed in tin capsules for δ¹³C analysis and in silver capsules for δ¹⁸O and δ²H analysis. All the samples were then oven-dried (80°C) to remove water vapour, and stored in a desiccator until analysis. The analysis was performed using Isotope Ratio Mass Spectrometry (IRMS) with a Finnigan DELTA XP isotope ratio mass spectrometer (Thermo Scientific, Bremen, Germany) coupled with an Elemental Analyser (Flash EA1112, Thermo Scientific) to measure δ¹³C/δ¹²C ratios, and a Pyrolyser (Finnigan™ TC/EA, High-Temperature Conversion Elemental Analyser, Thermo Scientific) to measure δ²H/δ¹H and δ¹⁸O/δ¹⁶O ratios. To separate the gases, the EA was fitted with a Porapack QS GC column (3 m; 6 x 4 mm, o.d./i.d.) and the Pyrolyser with a molecular sieve 5 Å (0.6 m) GC column. The devices were interfaced with the isotope ratio mass spectrometer through a dilutor (ConFlo III, Thermo Scientific) to dose the sample and reference gases, and fitted with an autosampler (Finnigan AS 200, Thermo Scientific). An appropriate cover on the pyrolyser autosampler allowed continuous flushing with nitrogen to guarantee dryness of the samples during measurement.

For δ¹³C/δ¹²C measurements, the tin capsules were inserted into the EA where they were quantitatively burnt to CO₂ and H₂O (H₂O removed using a Mg(ClO₄)₂ filter in the presence of O₂ and CuO). The CO₂ was flushed into the mass spectrometer through the ConFlo III device, where the content of the different isotopomers (m/z 44 and 45) was determined. For δ¹⁸O/δ¹⁶O and δ²H/δ¹H analysis, the capsules were dropped into the pyrolyser tube where at a temperature of 1450°C the oxygen and hydrogen atoms of the sample were quantitatively converted into CO and H₂, respectively, at a temperature of 1450°C, then flushed into the mass spectrometer. The isotope ratio mass spectrometer first measured
\(^2\text{H}/\text{H}\) and then, following the magnet jump, \(^{18}\text{O}/^{16}\text{O}\). The \(H_3\) factor, which allows correction of the contribution of \([\text{H}_3\text{O}^+]\) to the \(m/2 \pm 3\) signal,\(^{40}\) was checked and found to be lower than 9. The isotope ratio values are expressed in \(\delta^{18}\text{O} = \left({R_{\text{sample}} - R_{\text{standard}} } / R_{\text{standard}} \right) \times 1000\), where \(R\) is the ratio between the heavier isotope and the lighter one) against international standards (Vienna-Pee Dee Belemnite (V-PDB) for \(\delta^{13}\text{C}\) values, and Vienna-Standard Mean Ocean Water (V-SMOW) for \(\delta^2\text{H}\) and \(\delta^{18}\text{O}\) values). To calculate the \(\delta^{18}\text{O}\) values, working in-house standards for proteins were used calibrated against international reference materials: L-glutamic acid USGS 40 (IAEA – International Atomic Energy Agency, Vienna, Austria), fuel oil NBS-22 (IAEA), and sugar IAEA-CH-6 (IAEA) for \(^{13}\text{C}/^{12}\text{C}\); and benzoic acid (IAEA-601) for \(^{18}\text{O}/^{16}\text{O}\) in casein.

The \(^2\text{H}/\text{H}\) values of whole wood and cellulose were corrected against an internal standard with an assigned value of \(\delta^2\text{H} = (-113\text{‰})\), according to the comparative equilibration technique.\(^{41}\)

The hydrogen and carbon isotope signatures of lignin methoxyl groups were measured using CH\(_3\)I released following treatment of the dried and ground wood samples with \(\text{HCl}\), as previously described by Greule and co-authors (for \(\delta^2\text{H}\) measurements, see\(^{15}\)) for \(\delta^{13}\text{C}\) measurements, see\(^{15})).\)

In brief, hydriodic acid (0.5 mL, 35-58%) was added to the sample in a crimp glass vial (1.5 mL). The vials were sealed with crimp caps containing PTFE-lined butyl rubber septa (thickness 0.9 mm) and incubated for 30 min at 130°C. After being heated, the vials were allowed to equilibrate at room-temperature (22 ± 0.5°C, air-conditioned room) for at least 30 min before a headspace sample (10–90 \(\mu\)L) was removed and directly injected into the gas chromatography–combustion/thermal conversion–isotope ratio mass spectrometry (GC-C/TC-IRMS) system.

To determine the \(\delta^{13}\text{C}\) and \(\delta^2\text{H}\) values we used an HP 6890N gas chromatograph (Agilent, Santa Clara, CA, USA) equipped with an A2005 autosampler (CTC Analytics, Zwingen, Switzerland), coupled to a Delta\(^{2\text{XL}}\) iso-13C isotope ratio mass spectrometer (ThermoQuest Finnigan, Bremen, Germany) via an oxidation reactor (for \(\delta^{13}\text{C}\) values) [ceramic tube (Al\(_2\text{O}_3\)], length 320 mm, 0.5 mm i.d., with Cu/ Ni/Pt wires inside (activated by oxygen), reactor temperature 960°C] or via a pyrolysis reactor (for \(\delta^2\text{H}\) values) [ceramic tube (Al\(_2\text{O}_3\)], length 320 mm, 0.5 mm i.d., reactor temperature 1450°C] and a GC Combustion III interface (ThermoQuest Finnigan). The gas chromatograph was fitted with a ZB-5 ms capillary column (Phenomenex, Torrance, CA, USA) (30 m \(\times\) 0.25 mm i.d., \(d_i\) 1.0 mm). The GC conditions for \(\delta^{13}\text{C}\) analysis were: split injection (split ratio 10:1), injector temperature 200°C, initial oven temperature at 30°C for 3.8 min, ramp at 30°C/min to 100°C. The carrier gas was helium at a flow rate of 1.8 mL/min.

The GC conditions for \(\delta^2\text{H}\) analysis were as follows: split injection (split ratio 4:1), injector temperature 200°C, initial oven temperature 30°C for 7 min, ramp at 40°C/min to 120°C with helium carrier gas at a constant flow rate of 0.6 mL/min. All the \(\delta^{13}\text{C}\) and \(\delta^2\text{H}\) values were normalised relative to V-PDB or V-SMOW using a CH\(_3\)I standard. The \(\delta^{13}\text{C}\) value of CH\(_3\)I was calibrated against international reference substances (IAEA-CH-6, IAEA-CH-7, NBS-22) using an offline elemental analyser (EA)/IRMS system (Isotolved Analytical Ltd., Sandbach, UK). The calibrated \(\delta^{13}\text{C}\) value vs. V-PDB for CH\(_3\)I was \(-69.27 \pm 0.05\text{‰}\) (n = 15, 1σ).

The \(\delta^2\text{H}\) value of CH\(_3\)I was also calibrated against international reference substances (IA-IRO02, IAEA-CH-7, NBS-22) using the EA/IRMS system described above. The calibrated \(\delta^2\text{H}\) value vs. V-SMOW was \(-179.0 \pm 2.9\text{‰}\) (n = 15, 1σ).\(^{24}\)

\(\delta^2\text{H}\) was measured after every fourth sample injection. The analytical precision (1 standard deviation) was <0.2‰ for \(\delta^{13}\text{C}\) values, 0.4‰ for \(\delta^{18}\text{O}\) values, and <2‰ for \(\delta^2\text{H}\) values.

Atmospheric CO2 correction

Because fossil fuels are depleted in \(^{13}\text{C}\), anthropogenic increases in CO2 concentrations in the atmosphere have lowered the \(\delta^{13}\text{C}\) values of air by about 1.5‰. Since fractionation is an additive process, this trend is reflected in most of the tree-ring \(\delta^{13}\text{C}\) series. The motive behind adjusting data for climate research is to remove this noise without weakening the climate signal, since these trends are unrelated to past climates.\(^4\)

In our study, all the tree-ring \(\delta^{13}\text{C}\) series measurements were corrected to preindustrial atmospheric \(\delta^{13}\text{C}\) values by simple addition using data provided by Franscy et al.\(^{42}\)

Since we pooled the tree rings formed during the mature growth phase, no other data treatment was necessary.\(^{54,55}\)

Meteorological data

Meteorological data were supplied by two weather stations located near the sites: (a) Paneveggio weather station: 1415 m a.s.l., 46° 18'33.7"N, 11°44'50.7"E, about 5 km from the Val Maggiore stand and 15 km from the Cermis stand; and (b) Trento Laste weather station: 312 m a.s.l.: 46°04'19.2"N, 11°08'47.9"E, about 6 km from the Baselga stand\(^{40}\) (Fig. 1).

Homogenised and corrected climate data from 1958 onwards for temperature and precipitation obtained from these two weather stations\(^{43}\) were used to remove undesired effects (e.g. long-term error or changes in metering practices) and to increase the strength of the climate signal.

Finally, to check for potential climatic divergence we compared the homogenised temperature data from the two weather stations with the high-resolution MODIS LST (Moderate Resolution Imaging Spectroradiometer Land Surface Temperature). MODIS LST data have been collected since 2002 and have been further developed by Neteler.\(^{14,45}\)

This dataset provides very accurate daily minimum and maximum temperatures in a GIS (Geographic Information System) format with a high resolution of 200 pixels. Since the recorded temperature data were consistent between the two datasets (r = 0.80 at Cermis; r = 0.83 at Val Maggiore; r = 0.79 at Baselga; p < 0.05) we assumed the homogenised temperatures from the two weather stations to be representative of our three stands.

For the study, we used mean monthly, seasonal (winter: 21 December to 20 March; spring: 21 March to 20 June; summer: 21 June to 20 September; autumn: 21 September to 20 December) and annual temperature and precipitation at each site during the 1958-2009 period.

During the study period, the mean annual precipitation was 1196 mm at the Paneveggio weather station and 931 mm at Trento Laste, while the mean annual temperatures were 6°C and 12°C, respectively. The coolest and warmest months were January and July, with mean minimum temperatures of

268
C, H and O stable isotopes of tree rings as climate proxies

−7°C and −3°C at the Paneveglio and Trento Late weather stations, respectively, and mean maximum temperatures of 25°C and 29°C.

Statistical analysis

Descriptive statistics and stable isotope time series were carried out for all the data: Cermis from 1860 to 2009; Val Maggiore from 1900 to 2009 (except for the δ²H values of the lignin methoxyl group); and Baselga from 1936 to 2009. The Pearson’s correlation coefficient (Cermis from 1860 to 2009; Val Maggiore from 1933 to 2009; and Baselga from 1936 to 2009) was calculated and used as the basis for exploring the relationships between the stable isotope chronologies.

The reliability of the isotopic parameters as climate proxies was only tested against the 1958–2009 period. Principal component analysis (PCA) was performed as a clustering technique to identify isotope values with similar patterns and to determine whether and how isotope values from the same wood component are related. PCA was performed on mean-centred and autoscaled data.

A simple Pearson’s correlation coefficient was calculated to determine the relationships between the isotope chronologies and climatic features, taking mean monthly, seasonal and annual temperatures and precipitation into account.

Multiple linear regression models were used to predict mean annual temperature. Six different models were built to discover which wood component (whole wood, cellulose, lignin methoxyl groups) best explains climate variation. Model parameters were the three isotope chronologies (δ¹³C, δ¹⁸O and δ²H values) and the three different wood components. The models were: (1) the full model, with all eight isotope proxies in all three wood components (Model_WL_C); (2) a model excluding cellulose, with five isotope proxies in whole wood and lignin methoxyl fraction (Model_WL); (3) a model excluding lignin methoxyl with six isotope proxies in whole wood and cellulose fraction (Model_WL_C); (4) only the three isotope proxies in whole wood (Model_W); (5) only the three isotope proxies in cellulose fraction (Model_C); and (6) only the two isotope proxies in lignin methoxyl (Model_L). An ANOVA (analysis of variance) was performed to compare Model_WL_C with the other simpler models (i.e. Model_WL, Model_WL_C, Model_W, Model_C and Model_L) in order to identify the simplest efficient model.

Finally, in order to obtain the minimal adequate model, a further simplification was made by reducing the isotopic variable from the selected models by means of step-wise variable selection (p < 0.01). All statistical analyses were carried out with the R 2.11.0 programme.[46]

RESULTS AND DISCUSSION

Stable isotope chronologies

The time series of each isotope parameter for each of the three sites are shown in Fig. 2. The ANOVA showed that, for each isotope, the mean stable isotope ratio in extracted cellulose and lignin methoxyl groups differed significantly (p < 0.001) from that in whole wood. With the exception of the most recent period at Baselga, the δ¹³C values in extracted cellulose (δ¹³C_C) and lignin methoxyl (δ¹³C_L) were higher than the values in whole wood (δ¹³C_W). On average, the δ¹³C values for whole wood were about 1.4% lower than those for cellulose at all three sites. Similar results have been reported by other authors.[16,47]
The δ¹⁸O values in cellulose (δ¹⁸Oₓ) were always higher than those reported for whole wood (δ¹⁸O𝑤), by an average of 3.9‰ at Cermis, 4.0‰ in Val Maggiore and 3.5‰ at Basella. These results are consistent with the differences ranging from ca. 3%[19] to 5.21‰[19], reported by other researchers.[8]

The δ²H values in lignin methoxyl (δ²Hₓ) are always lower than in wood (δ²H𝑤) and cellulose (δ²Hₓ), the mean values begin at −300‰ at Cermis and Basella and −308‰ in Val Maggiore. The highest values are found for cellulose fraction (δ²Hₓ). These findings are consistent with previous results, where the δ²Hₓ values ranged from −3.25‰ to −1.53‰, and the δ²H𝑤 values from 141‰ to −29‰.[23]

The differences between the stable isotope values for cellulose and lignin and those in whole wood are a consequence of the isotopic fractionations involved in the pathways that lead to their biosynthesis.[23,48,69]

The relationship between the stable isotope ratio of each bioelement in whole wood and in the two subfractions across the three sites was explored by means of the Pearson’s correlation coefficient. Table 1 summarises these results. The strongest correlations are between whole wood and the cellulose fraction for each isotope ratio.

In agreement with previous studies,[7,8,39,47,50,51,58] we found that the δ¹³C values in whole wood were highly positively correlated with the δ¹³C values in the cellulose fraction, suggesting similar sources of variability for these proxies. The δ¹⁸O values in lignin methoxyl groups correlate to a lesser extent with δ¹³C values in cellulose and δ²H values in whole wood.

For the stable oxygen isotope ratios, the δ¹⁸O𝑤 and δ¹⁸Oₓ values were highly (p < 0.001) correlated in Val Maggiore (r = 0.75) and at Basella (0.78) but less so at Cermis (r = 0.67), the correlation coefficients being much higher than those found by other authors.[7,8,90] Our results agree with data published by Barbou and co-authors[19] and Sidorova and co-authors.[58] They reported a significant positive relationship between Pinus and Quercus[59] (r = 0.89, p < 0.001) and Larix cajanderi Mayr.[58] (0.63, p < 0.05, during the 1940–2004 period), suggesting that similar climatic information is stored in these different wood components.

The coefficients of correlation between the δ²Hₓ and δ²H𝑤 values were always positive, and higher than those calculated for δ²Hₓ values: the r values ranged from 0.66 (Val Maggiore, p < 0.001) to 0.88 (Basella, p < 0.001).

Relationship between climate data and stable isotope values

To obtain a general insight into the explanatory variables, a PCA analysis was performed on data from the stable isotope series within the common period (1958–2009). The loading

Table 1. Correlation matrix of the eight proxies at each site. Isotope chronologies were: 1860–2009 at Cermis, 1933–2009 in Val Maggiore, 1936–2009 at Basella

<table>
<thead>
<tr>
<th></th>
<th>δ¹³C_C</th>
<th>δ¹³C_W</th>
<th>δ¹³C_L</th>
<th>δ¹⁸O_W</th>
<th>δ¹⁸O_C</th>
<th>δ²H_C</th>
<th>δ²H_L</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERMIS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C_W</td>
<td>0.91***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C_L</td>
<td>0.72***</td>
<td>0.78***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹⁸O_C</td>
<td>0.28***</td>
<td>0.28***</td>
<td>0.22**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ²H_C</td>
<td>0.41***</td>
<td>0.38***</td>
<td>0.40***</td>
<td>0.67***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ²H_L</td>
<td>0.12</td>
<td>−0.10</td>
<td>−0.15</td>
<td>0.43***</td>
<td>0.32***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ²H_W</td>
<td>0.30***</td>
<td>0.25***</td>
<td>0.32***</td>
<td>0.18</td>
<td>0.38***</td>
<td>0.49***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.23**</td>
<td>0.22**</td>
<td>0.17</td>
<td>0.44***</td>
<td>0.13</td>
<td>0.70***</td>
<td>0.38***</td>
</tr>
<tr>
<td>VAL MAGGIORE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C_W</td>
<td>0.88***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C_L</td>
<td>0.57***</td>
<td>0.50***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹⁸O_C</td>
<td>0.19</td>
<td>0.18</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ²H_C</td>
<td>0.21</td>
<td>0.12</td>
<td>0.27*</td>
<td>0.11</td>
<td>0.03</td>
<td>0.38***</td>
<td></td>
</tr>
<tr>
<td>δ²H_L</td>
<td>−0.27*</td>
<td>−0.47***</td>
<td>0.11</td>
<td>0.03</td>
<td>0.38***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ²H_W</td>
<td>−0.03</td>
<td>−0.06</td>
<td>−0.05</td>
<td>0.23</td>
<td>0.28*</td>
<td>0.39***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.24</td>
<td>−0.41</td>
<td>0.11</td>
<td>0.20</td>
<td>0.53***</td>
<td>0.66***</td>
<td>0.42***</td>
</tr>
<tr>
<td>BASELGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C_W</td>
<td>0.83***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹³C_L</td>
<td>0.24**</td>
<td>0.48***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ¹⁸O_C</td>
<td>0.39***</td>
<td>0.49***</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ²H_C</td>
<td>0.61***</td>
<td>0.65***</td>
<td>0.22</td>
<td>0.78***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ²H_L</td>
<td>0.63***</td>
<td>0.47***</td>
<td>−0.29*</td>
<td>0.38***</td>
<td>0.55***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>δ²H_W</td>
<td>0.38**</td>
<td>0.30*</td>
<td>0.00</td>
<td>0.35**</td>
<td>0.48***</td>
<td>0.62***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.55***</td>
<td>0.35**</td>
<td>−0.36**</td>
<td>0.42***</td>
<td>0.53***</td>
<td>0.86***</td>
<td>0.58***</td>
</tr>
</tbody>
</table>

* p < 0.05; ** p < 0.01; *** p < 0.001

δ¹³C_W: carbon isotope values in whole wood; δ¹³C_C: carbon isotope values in cellulose; δ¹³C_L: carbon isotope values in lignin methoxyl groups; δ¹⁸O_W: oxygen isotope values in whole wood; δ¹⁸O_C: oxygen isotope values in cellulose; δ²H_W: hydrogen isotope values in whole wood; δ²H_C: hydrogen isotope values in cellulose; δ²H_L: hydrogen isotope values in lignin methoxyl groups.
plot is given in Fig. 3: the variance explained by the first principal component is 39.2% (PC 1), while the second principal component (PC 2) accounts for 29.6% of the variance. The $\delta^{18}O$, $\delta^{13}C$ and $\delta^{2}H$ values of the various wood components clustered together; within each isotope series, cellulose and whole wood have the closest relationship. These findings agree with the good relationship found between the $\delta^{13}C$ and $\delta^{18}O$ values in different wood components for the complete time series (Table 1). The stable isotope values in lignin methoxyl are less highly correlated with the other components and therefore appear to be influenced by different environmental and biochemical factors.

In order to test their reliability as climate proxies, each stable isotope value of each component was separately correlated to the mean temperature and precipitation at each site. We accepted only a significance level of $p < 0.01$. The mean annual and mean seasonal climate variables are shown as predictors. For precipitation, we report only the mean annual precipitation at Cermis because we found no correlations ($p < 0.01$) in the other cases. The coefficients of correlation between climate variables and isotope series are given in Table 2. Looking at the results from the three sites, we can see that the correlation is significant ($p < 0.01$) for all the proxies, with the exception of the $\delta^{18}O$ and $\delta^{2}H$ series. The strongest correlation was obtained using the $\delta^{2}H$ value as a predictor for annual temperature ($p < 0.001$). Significant relationships were also found between the $\delta^{18}O$ and $\delta^{18}O$ series and various seasonal temperatures. The $\delta^{18}O$ series are related only to mean annual and mean seasonal temperature in Val Maggiore and to mean annual temperature at Baselga, but the correlation coefficients are always lower than those of the $\delta^{18}O$ series with the same climate proxies.

The $\delta^{13}C$ series are only negatively correlated with annual and some seasonal temperatures at Baselga. We do not have an explanation for this but it should be borne in mind that stable isotope values of different wood fractions depend not only on the species, but also on climatic features at the stand

![Figure 3: Biplot of the PCA analysis reporting the isotope proxies in whole wood ($\delta^{13}C_w$, $\delta^{18}O_w$, $\delta^{2}H_w$ values), cellulose ($\delta^{13}C_c$, $\delta^{18}O_c$, $\delta^{2}H_c$ values) and lignin methoxyl groups ($\delta^{13}C_l$, $\delta^{2}H_l$ values) for the period 1958-2009.](image)

Table 2. Coefficients of correlation between isotope proxies and climate features for the three sites with respect to the 1958-2009 period

<table>
<thead>
<tr>
<th>Site</th>
<th>C.F.</th>
<th>Period*</th>
<th>$\delta^{13}C_w$</th>
<th>$\delta^{13}C_c$</th>
<th>$\delta^{18}O_w$</th>
<th>$\delta^{18}O_c$</th>
<th>$\delta^{2}H_w$</th>
<th>$\delta^{2}H_c$</th>
<th>$\delta^{2}H_l$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CERMIS</td>
<td>t</td>
<td>ANNUAL</td>
<td>0.57***</td>
<td>0.69***</td>
<td>0.36**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WINTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPRING</td>
<td>0.48***</td>
<td>0.46***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUMMER</td>
<td>0.38**</td>
<td>0.49**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>p</td>
<td>AUTUMN</td>
<td>-0.37**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAL MAGGIOR E</td>
<td>t</td>
<td>ANNUAL</td>
<td>0.60***</td>
<td>0.57***</td>
<td>0.62***</td>
<td>0.45***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WINTER</td>
<td></td>
<td>0.37***</td>
<td>0.43***</td>
<td>0.47***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPRING</td>
<td>0.45***</td>
<td>0.42***</td>
<td>0.54***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUMMER</td>
<td>0.53***</td>
<td>0.44***</td>
<td>0.39***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BASELGA</td>
<td>t</td>
<td>ANNUAL</td>
<td>-0.61***</td>
<td>0.43***</td>
<td>0.37**</td>
<td>0.75***</td>
<td>0.69***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WINTER</td>
<td></td>
<td></td>
<td>0.52***</td>
<td>0.45***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPRING</td>
<td>-0.61***</td>
<td>0.47***</td>
<td>0.40***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SUMMER</td>
<td>0.38**</td>
<td>0.59***</td>
<td>0.59***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AUTUMN</td>
<td>-0.48**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Average daily temperatures and precipitation were used for the periods: 21 December to 20 March (winter), 21 March to 20 June (spring), 21 June to 20 September (summer), 21 September to 20 December (autumn).
level and on the geographical origin of the wood[19,23]. Contrary to what would be expected from previous reports[4,6], we found no significant correlations between stable isotope ratios and precipitation (p < 0.01), except for the δ13C values and mean annual precipitation at Cermis (−0.37, p < 0.01), but it is not strong enough to suggest precipitation as a primary control. This is consistent with the findings of Warren et al.[50] who demonstrated that δ13C values are highly correlated with precipitation only at dry sites. It should be remembered that the δ13C values in tree rings are not directly linked with precipitation but are instead influenced by those environmental factors which affect plant physiological processes (e.g. stomatal conductance and the rate of photosynthesis), with stomatal conductance having the greatest influence.[4] We therefore focused on temperature as the primary environmental/climatic factor affecting the stable isotope values of tree rings in this region.

Although correlations vary in strength between sites, the patterns are quite similar, suggesting the absence of a strong influence at stand level. Overall, the highest correlations between temperature and the eight stable isotope series/components were found for the δ18O\textsubscript{w} and δ13C\textsubscript{w} values, suggesting that these two parameters are a suitable source of climate information. The δ18O\textsubscript{w} values are related to mean annual temperature and mean winter, spring and summer temperatures, while the δ18O\textsubscript{w} values exhibit a similar correlation only during the growing season (spring and summer). Even if the variability in δ18H values is controlled by the same factors influencing the δ18O values,[4,52] and is mainly determined by the isotopic composition of the soil water and by leaf water, it appears that other fractionation effects are also involved. Although hydrogen isotope behaviour has been modelled,[52] very few data are available for this proxy[4] and further studies are required.

To enhance the common climate signal and reduce non-climate noise,[4] a multi-proxy approach was taken which made use of multiple linear regression models using the eight isotopic chronologies as variables. In order to define the best wood component for climate reconstruction in this region, six models were built using either isotope proxies in single wood components or in combinations of different wood components. Only mean annual temperature was used as a variable since this parameter exhibited the strongest correlations with the stable isotope data. The results are reported in Table 3. Each multivariate model was assessed using all the normal procedures, including checks on the homoscedasticity of the residuals, and leverages. In all cases, assumptions of linear regression were met. Scatter graphs (Fig. 4) show the relationship between the predicted mean annual temperature and the measured mean annual temperature for the three sites.

| Table 3. R2 values of the multiple linear regression. Mean annual temperature was used as a predictor variable at the three sites |
|---|---|---|---|---|---|---|
| Site | Model\textsubscript{WLC} | Model\textsubscript{WL} | Model\textsubscript{WC} | Model\textsubscript{W} | Model\textsubscript{C} | Model\textsubscript{L} |
| CERMIS | 0.54*** | 0.53*** | 0.54*** | 0.50*** | 0.16** | not at p < 0.05 |
| VAL MAGGIORE | 0.42*** | 0.42*** | 0.42*** | 0.42*** | 0.33*** | not at p < 0.05 |
| BASELGA | 0.71*** | 0.74*** | 0.57*** | 0.55*** | 0.50*** | 0.38*** |

*p < 0.01; **p < 0.001

Each model was run with δ13C, δ18O and δ18H values in the various wood components.

- **Model\textsubscript{WLC}**: full model with 3 kinds of wood components (whole wood, cellulose and lignin methoxyl groups);
- **Model\textsubscript{WL}**: two wood components (whole wood and lignin methoxyl groups);
- **Model\textsubscript{WC}**: two wood components (whole wood and cellulose);
- **Model\textsubscript{W}**: single wood component (whole wood);
- **Model\textsubscript{C}**: single wood component (cellulose);
- **Model\textsubscript{L}**: single wood component (lignin methoxyl groups).

Figure 4. Scatter graphs of the predicted mean annual temperature vs measured mean annual temperature of Minimal Adequate Model at Cermis (a), Val Maggiore (b), and Basela (c). The equation for the line of the best fit is computed from a multiple linear regression. R2 and MSE are reported for each plot.
As reported in a previous study[13] we found that a multi-proxy approach enhanced the climate signal. McCracken and co-authors[13] state that the key to this lies in combining independent proxies or proxies that are not very similar. This leads to an improved estimate of climate signal since the proxies are not subject to similar sources of ‘error’. In our study, we improved the effective correlation by combining the proxies, but the best result was obtained at the Basela stand (Table 3). It is worth noting that this stand yields the best predictive model when both wood and lignin methoxyl groups are used (the R^2 value rises from 0.55 to 0.74). Therefore, combining these proxies improves temperature prediction.

The best temperature prediction was found at Basela: both Model\textsubscript{WLC} and Model\textsubscript{WL} have an R^2 of 0.77 ($p < 0.001$). At each site, both Model\textsubscript{WL.C} and the simpler Model\textsubscript{WL} have the same adjusted R^2 value and, in Val Maggiore, the simplest Model\textsubscript{WL} has the same adjusted R^2 as Model\textsubscript{WL.C}. When single wood components are examined, Model\textsubscript{WL} is found to have higher R^2 values than those of the combined wood fractions.

In order to more efficiently test the difference between the models, an ANOVA was performed to compare Model\textsubscript{WLC} with the other similar models. The results of the ANOVA are shown in Table 4 and they clearly show the absence of differences between Model\textsubscript{WLC} and Model\textsubscript{WL} at any site ($p < 0.001$). The simpler Model\textsubscript{WL} could therefore save two degrees of freedom without being significantly worse than the more complex model. Moreover, the simplest Model\textsubscript{WL} does not differ from Model\textsubscript{WLC} in Val Maggiore or at Cermis, while Model\textsubscript{L} and Model\textsubscript{C} always differed significantly from Model\textsubscript{WLC} ($p < 0.05$) at all three sites. Therefore, we selected Model\textsubscript{WL} at Cermis and in Val Maggiore, and Model\textsubscript{WLC} at Basela, as adequate models to predict mean annual temperature.

The selected models were further simplified in order to obtain minimal adequate models. The results are reported in Table 5. An ANOVA confirmed that model simplification was completely justified at Cermis and in Val Maggiore, where it was possible to build the minimal adequate model using only the δ^{18}H\textsubscript{W} and δ^{18}O\textsubscript{W} series for both sites. On the other hand, only the δ^{13}C\textsubscript{W} series was not significant at Basela, and the minimal adequate model had four proxies (δ^{18}O\textsubscript{W}; δ^{18}H\textsubscript{W}; δ^{13}C\textsubscript{L}; and δ^{2}H\textsubscript{L} values).

CONCLUSIONS

We can conclude from our results that the stable isotope ratios in whole wood samples preserve the best temperature signal and that it is not necessary to include cellulose, at least as far as temperature reconstruction with *P. abies* in the south-eastern Alpine study area is concerned.

Our findings appear to disagree with those of many other studies which report that the stable isotope values of cellulose (mainly for δ^{13}O) yield the best temperature information.[7,9,39]

For lignin methoxyl groups, only the δ^{13}C values (and only at the low altitude site) turned out to improve temperature prediction, although it has been suggested that the δ^{2}H values of lignin methoxyl groups could be used as a paleoclimate indicator.

<table>
<thead>
<tr>
<th>Table 4. ANOVA comparing the full model (Model\textsubscript{WLC}) with the simpler models in the three study areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
</tr>
<tr>
<td>CERMIS</td>
</tr>
<tr>
<td>VAL MAGGIORE</td>
</tr>
<tr>
<td>BASELGA</td>
</tr>
</tbody>
</table>

* $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$

Each model was run with δ^{13}C, δ^{18}O and δ^{2}H values in the various wood components.

Model\textsubscript{WLC}: full model with three kinds of wood components (whole wood, cellulose and lignin methoxyl groups);

Model\textsubscript{WL}: two wood components (whole wood and lignin methoxyl groups);

Model\textsubscript{WL.C}: two wood components (whole wood and cellulose);

Model\textsubscript{WL}: single wood component (whole wood);

Model\textsubscript{L}: single wood component (cellulose);

Model\textsubscript{C}: single wood component (lignin methoxyl groups).

<table>
<thead>
<tr>
<th>Table 5. Minimal Adequate Model for the study areas after removing any non-significant explanatory variables from the linear regression.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site</td>
</tr>
<tr>
<td>CERMIS</td>
</tr>
<tr>
<td>VAL MAGGIORE</td>
</tr>
<tr>
<td>BASELGA</td>
</tr>
</tbody>
</table>

The ANOVA shows the p values between the selected models (Model\textsubscript{WL} for Cermis and Val Maggiore, Model\textsubscript{WLC} for Basela). The p-value threshold was 0.01.
proxy. One possible explanation for the different results might be that our study was carried out in a cold temperate region where precipitation is not an environmental constraint, whereas most previously published studies were carried out in Mediterranean areas where precipitation is a limiting factor. Our trees may therefore have responded in a different way to the climate variables and we are aware that our results may not be reproducible in other regions with different climatic conditions.

With respect to isotope proxies, δ13C values in wood have the highest correlations with seasonal and mean annual temperatures, δ18O values correlate highly only with mean annual temperature, and δ13C values in lignin methoxyl groups correlate with mean annual temperature at the lower altitude location.

Proxy selection allowed us to find the best-fit model to predict mean annual temperature: combining the δ18O and δ13C values in whole wood we obtained the minimal adequate model to reconstruct mean annual temperature at two of the three sites, while at the other site the δ13C and δ18O values of lignin methoxyl groups are also necessary. The current results will be useful in the selection of appropriate wood components and stable isotope proxies for future palaeoclimate isotopic research. Moreover, our simplified model saves a considerable amount of time given that extraction of lignin methoxyl groups is simpler and faster than cellulose extraction.

Further studies are required to improve our knowledge of the complex mechanisms of fractionation, especially where the physiological processes determining the origin of isotope signatures in the different wood components are concerned, as has already been pointed out.34,9

Acknowledgements

This study was partly supported and co-funded by the Fondazione CARITÒ – Cassa di Risparmio di Trento e Rovereto – as part of the ISOCCHANGE project. F. Keppler and M. Greule were supported by the German Science Foundation (KE 884/6-1). The authors wish to thank Magdalena Nötzli (WSL, Birmensdorf, Germany) for valuable laboratory assistance, Anne Verstege (WSL, Birmensdorf) for assistance with measuring, Tessa Say for revision of the English text, and the Magnifica Comunità di Fiemme for allowing us to sample the trees. We would also like to thank Emanuele Cecel, Annalisa Piazzini and Luca Delucchi (FEM, S. Michele all’Adige) for their suggestions concerning the meteorological analysis. The authors wish to thank two anonymous reviewers for their insightful and helpful comments on a previous version of the manuscript.

REFERENCES

C, H and O stable isotopes of tree rings as climate proxies

Section 2

Fungal root pathogen (*Heterobasidion parviporum*) increases drought stress in Norway spruce stand at low elevation in the Alps.

European Journal of Forest Research 2013. 132, 4:607-619
Fungal root pathogen (*Heterobasidion parviporum*) increases drought stress in Norway spruce stand at low elevation in the Alps

Yuri Gori · Paolo Cherubini · Federica Camin · Nicola La Porta

Received: 10 August 2012 / Revised: 16 January 2013 / Accepted: 20 March 2013 / Published online: 23 April 2013 © Springer-Verlag Berlin Heidelberg 2013

Abstract Tree-ring patterns of *Picea abies* (L.) Karst. both unaffected and affected by *Heterobasidion parviporum* were analysed in three mature stands located at different elevations in the Eastern Alps. The main objectives were (1) to clarify the role of climatic conditions on infected trees; (2) to estimate indirect volume losses due to the prolonged presence of the fungus within the wood. The low elevation site showed the highest growth decline in the last decade, whereas all infected trees at medium and high elevation showed a slow growth decline over many decades. We hypothesise that infection could be dated over 80 years at the highest site. Fungal attack made *P. abies* more susceptible to drought stress at low elevation site. Both infected and healthy *P. abies* at medium and high elevation showed similar climate-growth relationships, suggesting that the same driving environmental factors influence their growth. At low elevation, *H. parviporum* was seemingly more aggressive, causing a more rapid decline, decreasing the ability of host trees to cope with drought and, in some cases, inducing cambial activity to stop. *P. abies* at higher elevation, however, exhibited a very slow decline and no sign of increasing water stress since the influence of climate on tree growth was the same for both infected and healthy trees.

Keywords Dendroecology · Drought stress · Climate-growth relationship · Fungal infection · Growth reduction · PDSI

Introduction

Heterobasidion annosum (Fr.) Bref. *sensu lato* causes root and butt rot and tree mortality, and is regarded as the most economically serious threat to northern boreal conifer forests, being particularly dangerous in weakening root systems and increasing the risk of windfall (Woodward et al. 1998).

Since 1978, *H. annosum* has been divided into two intersterility groups (ISG) by Korhonen (1978) according to the main host preference, spruce and pine. Later, Capretti (Capretti et al. 1990) added a third one specialised for Silver fir. Finally, the three ISG received the status of species and were called *H. annosum s.s.*, *H. parviporum* and *H. abietinum* specialised, respectively, for pine species, Norway spruce and Silver fir (Niemela and Korhonen 1998).

Some authors report that its distribution depends largely on stand type and history, forest composition and soil properties (Korhonen and Stenlid 1998). All these pathogens cause significant economic losses in different ways: increasing tree mortality, increasing susceptibility to windthrow, decreasing wood quality as a result of wood decay and indirect loss caused by growth reduction. Up to now, economic losses have often been underestimated as they are usually limited to the assessment of the decay of the lower part of the inner stem and its consequential estimation in terms of loss of wood volume, while indirect losses such as growth reduction have often been overlooked. Benz-Hellgren and Stenlid (1995) demonstrated

Communicated by R. Matyssek.

Y. Gori (✉) · F. Camin · N. La Porta
FEM-IASMA Edmund Mach Foundation, Via E. Mach 1, 38010 San Michele all’ Adige, Italy
e-mail: yuri.gori@fmach.it

P. Cherubini
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland
that Norway spruce infected by *H. annosum* for 17 years accumulated, on average, 23 % less volume over the last 5 years. Oliva et al. (2010), in a research carried out in Sweden, found a 12.5 % losses per year in terms of volume in Norway spruce with reaction zones infected for more than 13 years. Moreover, stands affected by *H. annosum* are more likely to suffer from windthrow (Korhonen and Stenlid 1998; Stenlid and Johansson 1987) and are more susceptible to bark beetle (*Scolytus spp., Ips spp.*) (Schmitt et al. 2000).

Three main mechanisms can be involved in growth losses by root rot: death of most major roots, reduced ability of trees to take up water and nutrients (Cherubini et al. 2002; Benz-Hellgren and Stenlid 1995; Joseph et al. 1998) and the formation of a reaction zone (Benz-Hellgren and Stenlid 1995; Hietala et al. 2009; Oliva et al. 2010), a energy costly defence which consists of necrotic tissue enriched with antifungal phenolic extractives (Shain 1979).

Many climate change models predict increased drought throughout Europe with a likely substantial alteration in the structure and functioning of terrestrial ecosystems. Climate change could alter the incidence and geographical range of pathogens and hosts (Lonsdale and Gibbs 1996) therefore modifying host resistance and resulting in changes in the physiology of tree–pathogen interactions (Desprez-Loustau et al. 2006). Some investigators have even suggested that a significant outcome of climate change could be changes in the occurrence and intensity of tree diseases (Linares et al. 2010; Fischlin et al. 2007; La Porta et al. 1997; La Porta et al. 2008). An increase in summer droughts would probably favour diseases caused by *Heterobasidion* spp. or other facultative biotrophic pathogens and enhance tree mortality (Linares et al. 2010; Henry et al. 2009). As the host defence responses are strongly influenced by the climate, understanding the influences of the infection to abiotic stresses, such as a drought stress, will be of increasing importance. To date, however, despite several studies have investigated interactive effects of environmental factors and fungi on forest trees in controlled environment or plantation, not enough has been done to evaluate these effects under natural condition (Desprez-Loustau et al. 2006).

Dendrochronology has proven to be a valuable tool for analysing tree growth history for various purposes, not the least of which is better understanding of the effects of environment on disease incidence (Cherubini et al. 2002; Manion 1991; Kozlowski 1969; Kozlowski et al. 1991; Pedersen and McCune 2002). The combination of increasing air temperature and occurrence of summer drought at warmer sites, usually located at the lowest elevations, could decrease host resistance and trigger a widespread increase in tree mortality caused by *H. parviporum* (Puddu et al. 2003; La Porta et al. 2008). To test this hypothesis, we evaluated the effect of diseases at different elevations by analysing the tree-ring growth patterns of three *Picea abies* (L.) Karst. mature stands infected by *H. parviporum*. Specifically, the objectives were as follows: (1) to analyse the climate–growth at different elevations in infected and not infected trees; (2) to estimate the indirect volume losses due to the prolonged presence of the fungus within the wood.

Materials and methods

Study site and climate data

Three Norway spruce (*Picea abies* (L.) Karst.) mature stands infected by *H. parviporum* were selected in the Eastern Alps: Baselga, a low elevation site (‘LOW’); Val Maggiore, a medium elevation site (‘MED’) and Cermis, a high elevation site (‘HIGH’). All the sites were located within a distance of 25 km from each other (Fig. 1).

The LOW stand is located at an elevation ranging from 850 to 900 m a.s.l. (46° 4’ 48”N, 11° 3’ 3”E), with 30–50 % slopes and northerly exposure. The prevailing geological substrate is limestone and marly limestone. The soil is a brown forest soil, deep and clay-rich, with litter rich in nutrients. The forest is an old plantation of Norway spruce (about 80 years old) but the abundant regeneration of this specie confers a natural like aspect to the stand. The site is classified as *Adenostylo glabrae-Abietetum* (Weber et al. 2000).

The stand is dominated by mature *P. abies* (over 80 %) with sporadic European larch (*Larix decidua* Mill.) and beech (*Fagus sylvatica* L.). The forest is homogeneous. The growth rate of the trees is 8 m³/ha/year, with a mean diameter at breast height of around 40 cm and 254 stems/ha.

The other two stands, MED and HIGH, are situated in the Fiemme Valley at an elevation of around 1,300 m a.s.l. (46° 17’ 32”N, 11° 3’ 6’’E; MED) and 1,900 a.s.l. (46° 15’ 0”N, 11° 29’ 43”E; HIGH). The distance between the areas is 10 km. The slopes range from moderately inclined to steep (25–50 %) and are north-facing, and the bedrock is porphyric partially covered by morainic material, with podzol soils. Both sites are quite close to forest roads and are mainly composed of mature *P. abies*. These stands are dense and more heterogeneous than LOW stand. The MED stand has a regular and continuous canopy, and the mean diameter at breast height is around 40 cm. At HIGH, the stand structure is more heterogeneous and the forest is less productive than in the MED. At MED stand, the vegetation is classified as *Piceetum montanum myrtilletosum*, with sporadic *Abies alba* (less than 10 %) while HIGH is a typical pure subalpine Norway spruce forest classified as *Rhodoreo-Vaccinietum cembretosum* (Weber et al. 2000).
All the forests are characterised by several large, even-aged groups of trees, resulting in stands that can be considered to be uneven-aged as a whole. Silvicultural treatments were similar at all the sites, with pre-commercial thinning occurring on average every 20 years at LOW and every 30–40 years at the other sites.

The climatic features are typical of the south-eastern Alpine region, with cold winters, mild summers and precipitation mostly concentrated during the summer months (June to September). Mean annual precipitation at the two meteorological stations was 1,196 mm (Paneveggio weather station: 1,415 m a.s.l.; 46° 18’ 33”N, 11° 44’ 50”E, about 5 km from MED and 15 km from HIGH) and 931 mm (Trento Laste weather station: 312 m a.s.l.; 46° 04’ 19”N, 11° 08’ 8”E, about 6 km from LOW stand) at its maximum in summer; mean annual temperature is 6 °C at Paneveggio and 12 °C at Trento Laste, while the coolest and warmest months are, respectively, January and July.

For dendroclimatic analysis, we used two alpine-wide meteorological datasets: (a) the HISTALP database (Auer et al. 2007) of monthly homogenised instrumental temperature and precipitation measurement and (b) the gridded self-calibrating Palmer Drought Severity Index (scPDSI) for the greater alpine region developed by the Climatic Research Unit of the University of East Anglia in Norwich, United Kingdom (van der Schrier et al. 2007a, b). The scPDSI uses monthly surface air temperature and precipitation data to generate a relative measure of water contained in the soil and therefore represents the water available for vegetation (Palmer 1965).

Sampling and pathological analysis

In October 2009, 10 healthy P. abies (control, ‘CON’) and 10 infected P. abies (infected, ‘INF’) were selected at the three sites located at different elevation. We took care to sample only the dominant trees, to reduce the influence of competition on ring-width growth, thus reflecting the growth dynamics of the whole stand with more precision (Cook and Kairiukstis 1990). Two cores, at 180° from each other, were extracted with a 0.5-cm-diameter Pressler increment borer from each of the 60 trees (10 + 10 at 3 sites), perpendicular to the slope direction to avoid possible wood compression and minimise stem eccentricity.

At all sites, trees were previously classified as CON or INF on the basis of wood samples taken from the roots and at stump height, 20–30 cm above ground as described by Dobbertin et al. (2001). Only trees with a rotten surface over 80 % were selected. We selected only individuals with a rot surface covering almost the whole stump by means of 4 radial cores taken at 90° from each other at stump level. Since tree-ring width at different heights below the crown base commonly shares the same pattern (LeBlanc 1990; van der Maaten-Thuinissen and Bouriaud 2012), CON cores were taken at breast height in standing trees while INF cores were taken on felled trees, where the wood was not rotten (between 2 and 4 m height). Decayed wood piece samples taken from each INF were flame-sterilised and incubated at 20–22 °C in a dark humid chamber. After 15 days, wood samples were inoculated onto Benomyl streptomycin malt agar dishes for two weeks.
following Maloy’s protocol, (1974). The occurrence of *Heterobasidion* was confirmed by the presence of the imperfect state *Spiniger meineckellii* (A.J. Olson) Stalpers, according to the methods described by Stalpers (1978). Confirmation of *Heterobasidion* as the cause of decay in each sample tree was done with the aid of the Buller phenomenon (Korhonen 1978) in which each field isolate was pairing with at least three tester strains representing *H. annosum*, *H. parviporum* and *H. abietinum*.

Isolation methods and mating tests were described by Dai et al. (2003). In compatible pairing, the homokaryotic tester strain turns to heterokaryotic; this was indicated by the appearance of clamp connections and by a change in the mycelial morphology of the tester. To avoid uncertainty about the rot root pathogen, trees that had signs of rot that could not be attributed to by *H. parviporum* were excluded.

Ring-width measurement and dendroecological analyses

The cores of each tree were prepared with a core microtome (Gartner and Nievergelt 2010) to make the ring’s features clearly visible under magnification. Ring-width measurement was taken to the nearest 0.01 mm on each core, using the time series analysis programme (TSAP) measurement equipment, coupled to a Leica MS5 stereoscope (Frank Rinn, Heidelberg, Germany). The raw tree-ring widths (TRW) of each curve were plotted, cross-dated visually and then cross-dated statistically using the *Gleichläufigkeit*, which is the percentage agreement in the signs of first difference of two time series. Cross-dating quality was checked using the COFECHA program version 6.06 (Holmes 1983) as a standard dendrochronological protocol for quality control.

Once cross-dating had been verified, the original measurement time series were detrended to remove the decreasing trend and long-term noise caused by *H. parviporum*. Data-adaptive power transformation (PT) was first applied to each raw TRW series (Cook and Peters 1997). The purpose of PT is to stabilise the variance (the ratio between growth rate and inter-annual variance) in heteroscedastic TRW series (Helama et al. 2004). These transformed records were then detrended with a 32-year smoothing spline with 50% frequency cut-off using the ARSTAN program version 4.1 (Cook and Holmes 1984; Grissino-Mayer et al. 1996). Flexible cubic spline curves are more suitable for removing both the long-term trend and the effect of localised disturbance events. The indexed series of both CON and INF trees within each site were averaged using a bi-weight robust mean (Cook 1985); their variance was stabilised using mean correction as in Frank et al. (2007); and the record was truncated at a minimum replication of five series. In this way, we obtained two indexed chronologies (one for both INF and CON trees) at each site. The analysis was performed using R statistical software with ‘dplR’ (Dendrochronology Programme Library in R) and ‘Mass’ packages (Bunn et al. 2008; Venables et al. 2010).

The periods obtained were 1829–2009 at HIGH, 1916–2009 at MED and 1937–2009 at the LOW stand. To compare different chronologies with each other, we considered only the common period 1937–2009.

Several descriptive statistics were calculated for each CON and INF standardised chronology: (a) mean sensitivity measures the relative difference in width between consecutive rings (Fritts 1976); (b) standard deviation indicates the variability of measurements of all the TRWs; (c) the first order of serial autocorrelation, to detect eventual persistence, retained after standardisation and (d) Interseries correlation to measure the strength of the common signal in the chronology and check for chronology quality.

High values of both standard deviation and mean sensitivity indicate the presence of considerable high-frequency variance and are indicative of more climatically responsive chronologies (Fritts 1976).

To assess suppressions (growth reduction) in INF, a running calculation of per cent growth change for a 4-year period was applied to each raw ring width and mean ring-width master chronology. This ‘suppression index’ was progressively shifted by 1 year and calculated as (A1-A2)/A2 where A1 equals average growth over the prior 4 years and A2 equals average growth over the subsequent four years (Schweingruber et al. 1990). In this way, we also detected abrupt growth reduction when the average ring width of the four rings was at least 40 % smaller than the previous one.

Pointers years were used as additional ecological indicators recording the reactions of trees to environmental factors limiting radial growth (Schweingruber 1996). A given year was defined as a pointer, when more than 80 % of at least 10 trees reacted with a growth increase (positive pointer years) or decrease (negative pointer years) compared to the previous year (Schweingruber et al. 1990). All calculations of pointer years were performed on tree-ring width using the WEISER program (Gonzalez 2001). The hypothesis analysed in this study was that drier years would have a more pronounced effect on INF tree growth, in comparison with CON trees, because root pathogens would limit water availability, as the supply capacity of decayed root xylem is limited (Joseph et al. 1998; Korhonen and Stenlid 1998).

In order to estimate volume losses caused by *H. parviporum* at each site, the mean cumulative basal area (e.g. the average cross-sectional area produced by trees at each year) was also calculated from each raw ring-width master chronology. As the distribution was not normal (R statistical software), we applied a Wilcoxon rank sum test to test the growth difference between CON and INF.
Tree-growth climate relationship

To test the differences in climate-growth response between INF and CON trees, we used the six indexed master chronologies (e.g. two indexed chronologies at each site, one for both CON and INF). We used correlation function analysis (Fritts 1976) for a common period (1937–2009), comparing each CON and INF tree-ring index with the gridded monthly temperature and precipitation anomalies from the HISTALP dataset (Auer et al. 2007) and the gridded scPDSI. Monthly analysis was performed using eight independent climate variables sequenced from January to August in the year of growth.

To test stationarity and any change of the correlation function over time, we also computed a moving correlation function with the software package DENDROCLIM2002 (Biondi and Waikul 2004). For this purpose, a 48-year interval, which was progressively shifted by 1 year over time, was used to compute the correlation coefficients over the common period (Biondi 1997, 2000) for the same variables used in correlation function analysis.

Pearson correlation coefficients were calculated in both analyses using the bootstrapping method, with 1,000 iterations. Each correlation coefficient was considered significant if the mean value was at least twice the standard deviation of its 1,000 replications (Guiot 1991). Since the moving correlation function was calculated on non-independent intervals, the significance of the correlation coefficient was assessed by means of the Bonferroni correction method. This is an adjustment made on confidential levels when multiple statistical tests are evaluated simultaneously (Snedecor and Cochran 1989).

Results

Ring-width chronologies

Raw ring-width master chronologies for each CON and INF at each site are shown in Fig. 2.

The highest Gleichläufigkeit (GLK) values relative to INF series were found at HIGH, with a mean value of 79 %, while at LOW-INF and MED-INF lower values were found, respectively, 70 % and 68 %, although still very high and statistically significant. Cross-dating was verified by COFECHA and no dating errors were identified. After cross-dating, it was found that at LOW, five out of 10 INF trees had ceased cambial activity before sampling (one in 2004, 2005, 2006 and two in 2008), although these trees still had green needles at the time of sampling in 2009, whereas all trees at MED and HIGH still produce new tree rings.

The highest interseries correlation was found at HIGH and the lowest at LOW (Table 1). The highest mean sensitivity, measurement of the relative change in ring width from 1 year to the next in a given series, was found at LOW. At all the sites, the mean sensitivity was higher in INF. The highest autocorrelation values were found at each INF series.

Abrupt growth reduction

At each site, all the series infected by H. parviporum showed a decreasing growth trend and clear abrupt growth reductions (Fig. 3). Furthermore, growth reduction increased over time. To test the hypothesis that the differences in radial growth between INF and CON were significant, we performed a Wilcoxon rank sum test. Mean LOW-INF ring width was significantly lower (p < 0.05)
Table 1 Descriptive statistics of the infected and healthy Norway spruce tree-ring chronologies

<table>
<thead>
<tr>
<th>Site code</th>
<th>Altitude (m)</th>
<th>Chronology code</th>
<th>Number of trees</th>
<th>Age</th>
<th>Chrono time span</th>
<th>Mean ring width (mm)</th>
<th>SD</th>
<th>Interseries correlation</th>
<th>MS*</th>
<th>ACf</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOW</td>
<td>850</td>
<td>LOW-CON</td>
<td>10</td>
<td>73 ± 3/80</td>
<td>1937–2009 (72)</td>
<td>2.936</td>
<td>1.14</td>
<td>0.446</td>
<td>0.183</td>
<td>0.805</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LOW-INF</td>
<td>10</td>
<td>70 ± 3/75</td>
<td>1937–2009 (72)</td>
<td>2.673</td>
<td>1.51</td>
<td>0.447</td>
<td>0.185</td>
<td>0.910</td>
</tr>
<tr>
<td>MED</td>
<td>1,300</td>
<td>MED-CON</td>
<td>10</td>
<td>97 ± 11/115</td>
<td>1914–2009 (95)</td>
<td>2.746</td>
<td>0.97</td>
<td>0.467</td>
<td>0.115</td>
<td>0.877</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MED-INF</td>
<td>10</td>
<td>94 ± 8/110</td>
<td>1916–2009 (93)</td>
<td>2.140</td>
<td>1.23</td>
<td>0.420</td>
<td>0.129</td>
<td>0.955</td>
</tr>
<tr>
<td>HIGH</td>
<td>1,900</td>
<td>HIGH-CON</td>
<td>10</td>
<td>183 ± 21/231</td>
<td>1827–2009 (182)</td>
<td>1.372</td>
<td>0.46</td>
<td>0.638</td>
<td>0.135</td>
<td>0.844</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HIGH-INF</td>
<td>10</td>
<td>184 ± 29/231</td>
<td>1829–2009 (180)</td>
<td>1.099</td>
<td>0.51</td>
<td>0.568</td>
<td>0.136</td>
<td>0.911</td>
</tr>
</tbody>
</table>

* Each tree was cored radially from opposite sides
b Mean values ± SD/maximum
c Standard deviation of mean ring width
d Mean correlation between each detrended time series and the detrended site master chronologies, COFECHA output
e Mean sensitivity computed on the raw tree-ring series, COFECHA output
f First-order serial autocorrelation computed on the raw tree-ring series, COFECHA output

Fig. 3 Growth reduction index of infected trees (grey line) and healthy trees (black line) for a LOW, b MED and c HIGH, for the common period from 1937 to 2009. The growth reduction index was calculated for each mean chronology as a running calculation of per cent growth change between the average width of four rings with the average width of the four previous rings. Values from 0 to 0.4 indicate a moderate reduction, values above 0.4 a substantial reduction. Bars show the number of abrupt growth reductions for healthy and infected trees. The ordinate axis on the left indicates the suppression index and the second ordinate axis on the right side shows the number of abrupt growth reductions.

than LOW-CON after 1984, while INF ring-width chronologies at MED and HIGH were significantly lower after 1974 and 1925, respectively.

Abrupt growth reductions and suppression index analysis, between the INF and CON of each tree, showed other differences in growth between sites (Fig. 2). Each INF
master chronology displayed periods of growth reduction which were not specific to the sites and which could be interpreted on the basis of the weakening caused by fungi. Both INF and CON showed fewer abrupt growth reductions in their juvenile period in every stand, but the intensity and frequency of abrupt growth reductions changed with time. LOW-INF had the highest suppression index and the largest number of abrupt growth reductions (10 periods with at least one tree showing a suppression period) while MED-INF showed five of these periods and HIGH-INF only two. The abrupt growth reductions frequency increased with increasing tree age for all INF trees at LOW (Fig. 3). For each of these trees, a substantial reduction was found in the last decade.

Point years

Analysis of negative pointer year (narrow rings) series showed that dry conditions were the main environmental factor limiting tree-ring growth for LOW-INF (1 year in LOW-CON, 4 years in LOW-INF). All four pointer years (1950, 1970, 1976 and 1991) noticed in LOW-INF occurred in dry growing seasons (Table 2). At MED and HIGH, no relationship was found between pointer years and extreme climatic events. At these sites, limiting factors may be both drought and cold conditions and it is more difficult to ascertain clearly the cause of pointer years.

Basal area

In order to assess the loss of productivity caused by *H. parviporum*, the mean cumulative basal area was also calculated from each raw ring-width series (Figs. 4, 5).

Table 2 Pointer years (1937–2009) in the radial growth of Norway spruce at LOW stand: ± indicate positive and negative pointer years

<table>
<thead>
<tr>
<th>Years</th>
<th>LOW-CON</th>
<th>LOW-INF</th>
<th>May–August precipitation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1944</td>
<td>+</td>
<td></td>
<td>–4.5</td>
</tr>
<tr>
<td>1948</td>
<td>+</td>
<td></td>
<td>+26.7</td>
</tr>
<tr>
<td>1950</td>
<td>–</td>
<td></td>
<td>–36.8</td>
</tr>
<tr>
<td>1953</td>
<td>+</td>
<td>+</td>
<td>+3.0</td>
</tr>
<tr>
<td>1968</td>
<td>+</td>
<td></td>
<td>+30.2</td>
</tr>
<tr>
<td>1970</td>
<td>–</td>
<td></td>
<td>–9.5</td>
</tr>
<tr>
<td>1976</td>
<td>–</td>
<td></td>
<td>–14.5</td>
</tr>
<tr>
<td>1978</td>
<td>+</td>
<td></td>
<td>–2.0</td>
</tr>
<tr>
<td>1987</td>
<td>+</td>
<td></td>
<td>+26.2</td>
</tr>
<tr>
<td>1991</td>
<td>–</td>
<td></td>
<td>–25.0</td>
</tr>
<tr>
<td>1992</td>
<td>–</td>
<td>+</td>
<td>–1.8</td>
</tr>
<tr>
<td>2002</td>
<td>+</td>
<td></td>
<td>+46.0</td>
</tr>
</tbody>
</table>

May–August mean precipitation is shown as deviation from 1900 to 2009 mean.

Using the Wilcoxon test, we found that INF grew significantly less than CON for all series, but these differences started in different years. In 2009, significant mean cumulative basal area differences between INF and CON were observed at LOW (30.2%; 0.45% per year at \(p < 0.05 \)), MED (38.7%; 0.42% per year at \(p < 0.001 \)) and HIGH (36.9%; 0.20% per year at \(p < 0.001 \)). These significant differences started in 2000, 1966 and 1973, respectively, at LOW, MED and HIGH. Furthermore, the most relevant mean cumulative basal area loss was found over the last 10 years (Fig. 5; Table 3).

Taken together, these results confirm the highest growth reductions in INF. Interestingly, these stress signals are more evident at LOW-INF.

The influence of climate on tree growth

To clarify the role of climatic conditions, we analysed the relationships between monthly temperature, precipitation...
negative correlation with precipitation in June and a positive influence of summer temperatures with both June and July temperatures. Monthly scPDSI seemed to be a more important factor for tree-ring growth than temperature and precipitation at LOW and MED while at HIGH, the dominant climatic factors controlling tree-ring widths were temperature and precipitation in July.

INF at low elevation was more sensitive to January precipitation and arid conditions in summer than CON trees. In contrast, at both medium and high elevation sites, no significant correlation function differences between CON and INF trees were found.

The stationarity and consistency of climate–growth relationships over time were further analysed using the Pearson correlation coefficient for running windows of 48 years, progressively shifted by 1 year. While climate–growth relationships changed throughout the life of the trees, with a synchronous pattern for both INF and CON at MED and HIGH (Fig. 6), significant differences were found at LOW (Figs. 6, 7).

At LOW, the relationship between INF tree growth and monthly mean scPDSI is higher than CON trees, with a long-term increase in correlation coefficient values from February to May and more stationary or decreasing values in the other months (Fig. 7). INF showed stronger correlation coefficient values in June and July scPDSI over time with stationary responses. On the contrary, the correlation coefficient values of CON were always lower and not significant. The relationship with summer temperature decreased (i.e. lower negative correlation coefficient was found). In addition to this decrease, precipitation in June and July became less correlated with growth. Significant differences in correlation coefficient values were noticed for January precipitation, in particular synchronous variations were found for both CON and INF at LOW, with an increasing positive trend, although INF trees showed higher values.

Discussion

Our findings reflect a stress signal in INF trees, which seems to be more sensitive to climatic variability.

Our results show a strong relationship between *H. parviforum* infection and growth reductions in *P. abies* at each site, confirming the results of several other studies (Arvidson 1975; Bloomberg and Hall 1986; Benz-Hellgren and Stenlid 1995; Oliva et al. 2010).

A significant basal area reduction for all INF trees at each site was observed (Figs. 4, 5). However, different results were found at the three stands. The mean ring-width chronologies of INF were significantly lower than CON only during the last 25 years at LOW (10 years considering the
mean cumulative basal area), while MED-INF and HIGH-INF showed a gradual decline in growth from 1974 and 1925, respectively. Even though the onset of infection cannot be exactly dated for each tree, it seems clear that the infection has been present in the trees at higher elevations for a considerably longer period than in the trees at low elevation. Most likely, INF trees at HIGH became infected since 1925 reporting longest infection for *H. parviporum*. Moreover, all sampled trees were dominant and codominant and since we found the same tree-ring-width patterns before decline, we assumed that the trees had always been dominant during their lifetime and therefore concluded that the effects of competition on growth patterns were negligible.

The higher first order of serial correlation at each INF series over all sites strongly suggests that INF trees not only use stored reserves more than CON trees, but they also profit less when growing conditions are most favourable.

As shown by tree-ring-width analysis, INF trees at LOW and MED were bigger than CON trees (Fig. 2) in the juvenile period. A similar phenomenon, with infected trees having faster growth rates than healthy trees early in their development, has been observed in several other studies, either with *Heterobasidion* sp. (Benz-Hellgren and Stenlid 1995; Oliva et al. 2008; Oliva et al. 2010) or other root diseases, including *Phellinus weirii* (Bloomberg and Reynolds 1985), *Armillaria ostoyae* (Bloomberg and
Morrison (1989) and Inonotus tomentosus (Lewis 1997). As suggested by Lewis (1997), dominant trees, having larger root systems, are more likely to be colonized by root pathogens. On the contrary, we did not find this phenomenon at HIGH, because here INF and CON had similar trends in their juvenile development. The results from HIGH may be related to lower competition for resources among trees and a lower juvenile growth rate than at the other two stands.

This paper focuses on tree-ring chronologies to study the long-term effects of fungal attack in different environmental conditions. In terms of basal area, assuming this to be one of the best indicators of volume, MED-INF showed the highest growth reduction, in as much as cumulative basal area was 38.7% lower than CON trees, while values for LOW and HIGH were 30.2 and 36.9%, respectively (Table 3). However, considering only the last 10 years, probably at a more advanced stage of infection, LOW-INF showed the highest losses, as mean cumulative basal area was 86% lower than in CON tree. This trend could reflect behavioural variability and different tree-pathogen interactions. A final rapid decline during the last 10 years could indicate more aggressive behaviour of the fungus at the warmer and drier LOW site than at the other two sites. MED and HIGH showed a slow decline over many decades, reflecting long-term stress and a likely weak pathogen behaviour. Tsanova (1974) reported that damage tends to be smaller at higher elevations due to low temperature. In central Europe, the severity of the disease decreases above 600-700 m (Korhonen and Stenlid 1998). However, the long-term effects of root rot disease on tree growth in southern Europe are not satisfactorily documented in the literature (Oliva et al. 2008).

Furthermore, at the time of sampling in 2009 at LOW, five out of 10 INF trees had ceased cambial activity (one in 2004, 2005 and 2006, and two in 2008). These findings are in agreement with Cherubini et al. (2002), who found a difference (1–31 years) between the year of cessation of cambial activity and the year of cessation of photosynthetic activity. Even though there is no clear evidence, the presence of advanced rot surface (even 90% in some cases) suggests that the tree, to assure water supply, could use systems other than xylem, such as air humidity (Cherubini et al. 2002).

The mean cumulative basal area losses of 30–38% observed in our trees are higher than in earlier investigations. Arvidson (1975) estimated volume losses of 14% in one Norway spruce stand located in Sweden affected by Heterobasidion spp. Benz-Hellgren and Stenlid (1995) reported average volume losses of 23% due to H. annosum infection. Moreover, Kimberley et al. (2002) reported volume losses of 21% for Armillaria root disease on Pinus radiata. We argue that these differences may be induced by sampling methods, as we selected only heavily rotted trees including those where cambial activity had ceased, while infected trees in these previous studies were not seriously rotted.

From a methodological point of view, our results demonstrate that abrupt growth reductions are good indicators of fungal attack, as reported by other authors (Cherubini et al. 2002; Schweingruber et al. 1990). Moreover, pointer years (Table 2) show tree reaction to past dry conditions for INF at LOW. Indeed, each pointer year detected in INF at LOW occurred in dry growing season, highlighting that
drought was the main environmental factor limiting tree growth. This was shown by correlation functions between tree-ring width and climate variables (Fig. 6). Positive relationships with the scPDSI of the growing season (from May to August) in INF trees at LOW confirm a strong water stress signal in these trees. Our results show that dry conditions occurring at low elevation play a key role in trees that are already stressed by fungal infection. We hypothesise that water deficit in trees infected by *H. parvivorum* and possible different allocation patterns (e.g. reaction zone) could induce stronger growth reduction at low elevation than at upper elevations. Due to a shallow root system (Puhe 2003), *P. abies* is often reported to be particularly sensitive to soil water-deficit conditions in summer, especially at lower elevations (Battipaglia et al. 2009; Levanic et al. 2009), because at lower elevation drought is more frequent. At the LOW site, representing the lowest elevation limit for *P. abies* in this region, fungal infection may have further limited the ability of trees to withstand water stress, causing their rapid mortality. Furthermore, an increase in mortality induced by *H. parvivorum* at warmer sites is well known (La Porta et al. 2008; Korhonen and Stenlid 1998; Puddu et al. 2003; Sánchez et al. 2005; Scherm and Chakraborty 1999). Similar results have been confirmed by several authors. In the Balkan mountains, both *H. parvivorum* and *H. abietinum* showed an higher infection for Picea abies and Abies alba at lower and warmer sites (La Porta et al. 1998).

An increasing sensitivity to summer drought in infected trees has been reported by Linares et al. (2010) for Abies pinsapo affected by *H. abietinum* at low elevation stands in Mediterranean mountains in Spain. They concluded that drought is likely to be an inciting factor causing growth reduction and a sharp rise in the mortality of trees that are already stressed by root rot damage. However, Waldboth and Oberhuber (2009) observed an inverse relationship between summer mean temperature and the radial growth of *Castanea sativa* affected by Cryphonectria parasitica, suggesting that fungal infection increases the susceptibility of *C. sativa* to drought stress. On the contrary, at the MED and HIGH stands, both INF and CON trees showed the same climate correlation patterns, suggesting that favourable climatic factors and suitable site conditions for *P. abies* would increase the host’s ability to tolerate infection and colonization (Korhonen and Stenlid 1998).

Moreover, moving correlation functions were used to provide a more detailed and dynamic perspective of climate signals over time (Fig. 7). As expected, INF trees at the LOW stand showed a strong stepwise increase in sensitivity to the scPDSI, especially in the early growing season, while the MED and HIGH forests showed similar patterns for both CON and INF trees. This confirms that fungal attack makes *P. abies* more susceptible to drought stress in dry Alpine valleys. Furthermore, a consistent negative relationship between mean temperature in June and July and radial growth was found in INF trees at LOW. Since high temperature increases evaporation rates, we hypothesise that *P. abies* could maintain lower stomatal conductance to reduce water loss. This also slows down plant photosynthesis, respiration and growth.

On the other hand, we point out that trees with *H. parvivorum* at MED and HIGH showed a slow long-term decline.

Conclusions

Our tree-ring results and the climate correlation analyses highlight different growth patterns in INF *P. abies* depending on the different environmental site conditions. In our study, *P. abies* affected by *H. parvivorum* showed a slow decline in growth over many decades at medium and high elevation, whereas at lower elevation trees infected by *H. parvivorum* showed a final rapid decline and stopped cambial activity, some years before the sampling.

Our results show that the INF stand at LOW had a reduced ability to withstand soil water deficit. Instead, at MED and HIGH, the ability to overcome drought stress was the same for both infected and uninfected trees. These findings indicate that the infection at low elevations makes trees more susceptible to drought stress. We suggest that this higher tolerance of Norway spruce to the fungus at higher elevations could be likely related to suboptimal growth conditions for the pathogen (such as a shorter growing season, lower temperature and a higher water availability) rather than genetic differences in host tree tolerance. It should be borne in mind that optimum growth of *H. parvivorum* takes place in thermally isolated tissues and at temperatures above 20°C. Even though we need further investigations, we speculate that, given the predicted increase in air temperature in the next decades, *H. parvivorum* could be more aggressive even at higher and colder sites. We understand that the considerable differences in the climatic sensitivity of INF trees observed at LOW may be caused by interactive effects. Contrasting and synergic environmental factors influence tree-ring growth; therefore, the question of whether drought stress acts as a predisposing or contributing stress factor in INF trees is still open. Accordingly, to evaluate these complex mechanisms, future ecophysiological studies integrated with dendrochronological analyses would be of assistance.

Even though the time of infection can be hypothesised but not measured with any precision, we assume that infection has been present at higher elevation for a considerably long period reported, never shown for *H. parvivorum* (ca. 80 years).
From a management point of view, our results contribute to improve control methods, silvicultural treatments could include thinning to enhance water availability, and promoting the presence of native broad-leaved trees that are relatively less susceptible (such as some deciduous trees of the genera Quercus, Carpinus, Ostrya and Acer). Since thinning operations could also increase the risk of stump infection, urea treatment or other chemical and biological control are therefore recommended.

In conclusion, our study demonstrates that tree-ring data are useful tools for assessing tree health, host resistance and physiological changes in the pathogen-host system. However, we are aware that history of tree disease cannot be fully reconstructed, for example, the onset of infection can only be estimate.

Acknowledgments This study was supported and co-funded by the Fondazione CARITRO—Cassa di Risparmio di Trento e Rovereto with the project ISOCHANGE. The authors wish to thank Magdalena Nötzli and Anne Vergeste (WSL, Bern, Switzerland) for valuable laboratory assistance, Luca Ziller (FEM-IASMA, S. Michele s/Adige, Italy), Vivienne Frankell for correcting the English text and the ‘Magnifica Comunità di Fiemme’ for allowing us to sample the trees. The authors wish to thank two anonymous reviewers for their insightful and helpful comments on a previous version of the manuscript.

References
Dai Y, Vainio E, Hantula J et al. (2003) Investigations on Heterobasidion annosum s. lat. in central and eastern Asia with the aid of mating tests and DNA fingerprinting. For Pathol 33:269-286. doi:10.1016/S0015-7538(03)00325-0
Gonzalez IG (2001) WEISER: a computer program to identify event and pointer years in dendrochronological series. Dendrochronologia 19:239-244
Kozlowski TT (1969) Tree physiology and forest pests. J For 67:118–123
Snedecor GW, Cochran WG (1989) Statistical methods, 8th edn. Iowa State University
Section 3

Tree-ring isotope analysis of Norway spruce suffering from long-term infection by the pathogenic white-rot fungus *Heterobasidion parviporum*.

Forest Pathology 2013. DOI: 10.1111/efp.12089
SHORT COMMUNICATION

Tree-ring isotope analysis of Norway spruce suffering from long-term infection by the pathogenic white-rot fungus Heterobasidion parviporum

By Y. Gori1,2, N. La Porta1 and F. Camin1

1IASMA Research and Innovation Centre - Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all’Adige, Italy;
2E-mail: yuri.gori@fmach.it (for correspondence)

Summary

We report for the first time a tree-ring isotopic analysis on host trees infected with Heterobasidion parviporum. By measuring carbon and oxygen stable isotope ratios in tree rings over ca. 150 years of forest growth, we obtained evidence that stomatal conductance increases in Picea abies affected by H. parviporum. We put forward this approach as a novel way of providing an insight into plant-pathogen relationships during tree life.

1 Introduction

Since first being described, biology and ecology of Heterobasidion spp. have received considerable attention, but much less attention has been paid to the physiological responses of host plants infected by Heterobasidion spp. as well as other root pathogens.

Host plants can modify their physiological processes in different ways (e.g. by altering water relations or photosynthetic capacity), responses which are thought to be defensive mechanisms of resistance (Little et al. 2003). For example, previous studies have reported significant variations in photosynthetic rate and stomatal activity as a consequence of insect defoliation (Little et al. 2003). Indeed, most research has focussed on the physiological responses of plants during insect outbreak, and so far, very few studies have looked at the adaptive mechanisms of plants infected by fungi at the ecosystem level (Little et al. 2003). We expected the physiological responses of trees infected with fungi to be similar to insect outbreaks in terms of photosynthetic activity and stomatal regulation, but we did not know which mechanism would be altered (i.e. stomatal conductance or photosynthetic activity) and whether different environmental conditions would affect responses.

The link between physiological responses and isotope discrimination is well known (see McCarroll and Loader 2004 for a review). According to the Scheidegger’s qualitative model, simultaneous measurement of carbon and oxygen isotopes in tree rings allows us to estimate changes in stomatal conductance and photosynthetic rate during the tree life and under different ecological conditions (Scheidegger et al. 2000).

This study examines the variations in carbon and oxygen isotope values in the tree rings of healthy and H. parviporum-infected Norway spruce (Picea abies (L) Karst.) in three stands at different elevations in a south-eastern Alpine region (Trentino, Italy). Our hypothesis was that presence of the fungus would trigger physiological alterations in infected trees.

2 Methods

Two cores per tree of 10 healthy (control) and 10 infected P. abies were collected in October 2009 from three stands at different altitudes. Cores were taken at 3 m above stump level to avoid rotten wood, and all trees were alive at sampling time. The stands were located at: Baselga, a low-altitude stand (850 m asl; 46°44’48”N, 11°3’3”E), Val Maggiore, a medium-altitude stand (1300 m asl; 46°17’32”N, 11°36’49”E) and Cermis, a high-altitude stand (1900 m asl; 46°15’0”N, 11°29’43”E). All the stands were located within an area having a 25 km radius in the eastern Alps (Trentino, Italy). All were evenly aged stands of predominantly Norway spruce with a northerly exposure and managed under similar silvicultural systems. Trees were classified as control or infected on the basis of a previous study and only heavily rotten trees (trees with rot covering at least 80% of the entire surface of the stump 20-30 cm above ground) were selected as infected samples. A more detailed description of the sites and the pathological analysis is given in Gori et al. (2013a).

Each core was prepared according to standard dendrochronological procedures (Phipps 1985). Wood samples were ground according to Lamuer et al. (2009). The δ^{13}C and δ^{18}O analyses were performed using isotope ratio mass spectrometry (IRMS) according to the procedure described in Gori et al. (2013b). All δ^{13}C series measurements were corrected to pre-industrial atmospheric δ^{13}C values.

Agreement between series was assessed with the $\text{Gleichl"aufigkeit (GLK)}$ statistic, a measure of high-frequency coherence between series.

Finally, an ANOVA (analysis of variance) was performed to assess whether there was a significant pathogen effect on the δ^{13}C and δ^{18}O values.

Received: 28.6.2013; accepted: 5.11.2013; editor: S. Woodward
3 Results and discussion

The periods dated by dendrochronological analysis were 1960–2005 at Baselga, 1920–2005 at Val Maggiore and 1860–2005 at Cermis. The time series of δ¹³C and δ¹⁸O and tree-ring width values at each site are given in Fig. 1. The high degree of synchronicity (GLK values ≥70%, Fig. 1) between the isotope series of control and infected trees suggests that environmental factors affect plant physiological processes (e.g. stomatal conductance and the rate of photosynthesis) irrespective of the presence of fungal infection. The GLK of δ¹³C and δ¹⁸O series revealed a high degree of synchronicity between control and infected trees in each stand with values ranging from 70% to 92% (p < 0.01, Fig. 1). Nevertheless, with the exception of the first period, δ¹³C and δ¹⁸O values at Baselga (after 1984) and Val Maggiore (after 1950) were always lower in infected trees than in controls (Fig. 1) (p < 0.001), while during the first period, the δ¹³C and δ¹⁸O chronologies in infected and control trees have comparable mean values (p < 0.001).

The ANOVA for Cermis, on the other hand, showed that the mean stable isotope ratios of both isotope series did not differ significantly between infected and control trees.

Stable isotope analysis was successfully used to investigate physiological mechanisms. Analyses of both δ¹³C and δ¹⁸O suggest different physiological responses in infected and control trees in stands at low and medium elevations.

According to the conceptual model of Scheidegger et al. (2000), a depletion in δ¹³C and δ¹⁸O values is expected to result in stomatal opening. It can therefore be assumed that infection in the trees at Baselga and Val Maggiore increased stomatal conductance, which should not be surprising. *H. annosum* s.l. causes the death of most major roots, and as a consequence, fungal infection may have restricted the trees' capacity to take up water from the soil; increased stomatal conductance could be a compensatory mechanism to improve water uptake. Moreover, an increase in stomatal conductance could compensate for the reduced foliage commonly found in infected trees.

We found a significant relationship between tree-ring δ¹³C and δ¹⁸O and fungal infection at two of the three sites, but it remains unclear why infected and control trees at Cermis (the high-altitude stand) exhibited similar isotope patterns. According to Scheidegger's model (Scheidegger et al. 2000), a similar tree-ring isotope signature may be explained by similar stomatal regulation. One explanation, therefore, could be that suboptimal growth conditions at a higher elevation (i.e. a shorter growing season, lower temperatures and higher water availability) make the fungus less aggressive. In a previous study (Gori et al. 2013a), we reported very gradual tree-ring reduction over many decades in Norway spruce infected with *H. parvorum* at a high elevation. While there was a clear temporal correlation between the decrease in δ¹³C and δ¹⁸O values and the reduction in tree-ring width in infected trees at Baselga and Val Maggiore, no such correlation was found at the high-altitude stand (Fig. 1). We hypothesize that stomatal conductance in infected trees at high altitude has remained unchanged, despite the prolonged presence of the fungus having caused a gradual reduction in growth over many decades. These findings are consistent with the higher tolerance of Norway spruce to the fungus at high elevations (Gori et al. 2013a).

Other studies have reported that damage tends to be less severe at higher elevations due to low temperatures (Korhonen and Stenlid 1998). However, stomatal regulation of trees infected with *H. annosum* s.l. is not documented in the literature, and our isotope analysis confirms weak pathogen behaviour at high elevation.

We are aware that our assumption is no doubt a simplification as many other factors could influence stomatal response; nevertheless, the increase in stomatal conductance at low elevations confirms the hypothesis that fungal infection makes Norway spruce more susceptible to water availability in these environments (Gori et al. 2013a).
Isotope analysis of infected Norway spruce

Acknowledgements
This study was supported and co-funded by the Fondazione CARITRO (Cassa di Risparmio di Trento e Rovereto) with the project ISO-CHANGE. The authors wish to thank Anne Verstege (WSL, Birmensdorf, Swiss) for assistance with measuring, Tessa Say for revision of the English text and the Magnifica Comunità di Fiemme for allowing us to sample the trees.

References
Section 4

Tree rings and stable isotopes reveal the short- and long-term effects of insect defoliation on Norway spruce (*Picea abies*).

Tree rings and stable isotopes reveal the short- and long-term effects of insect defoliation on Norway spruce (*Picea abies*)

Yuri Gori¹, Federica Camin¹, Nicola La Porta¹, Marco Carrer², Andrea Battisti³

¹FEM-IASMA Edmund Mach Foundation, Via E. Mach, 1, 38010 San Michele all’Adige, Italy; ²Università degli Studi di Padova, Dip. TeSAF, Treeline Ecology Research Unit, Agripolis, I-35020 Legnaro Italy; ³Università degli Studi di Padova, Dip. DAFNAE, Agripolis, I-35020 Legnaro Italy.

Corresponding author. E-mail: yuri.gori@fmach.it

Abstract

This paper focuses on carbon and oxygen stable isotopes in conjunction with tree-ring chronologies to investigate the short- and long-term effects of *Cephalcia arvensis* defoliation on *Picea abies*. We found massive growth loss and significantly different carbon and oxygen stable isotope patterns associated with insect feeding; while carbon isotope values increased, oxygen isotope values decreased in the defoliated trees. We hypothesized that a period of severe drought in the outbreak area before the insect attack may have caused the trees to mobilise reserves, which made trees more susceptible to *Cephalcia* attack as a result of increased soluble sugars and amino acids concomitant with the direct effect of high temperature and dry weather on the insect populations. Moreover, the carbon and oxygen isotope patterns could be explained by both an increase in photosynthetic rate and a resort to starch reserves following insect feeding. Overall, these findings contribute to our understanding of how trees respond to insect attack.
Key-words: Dendroecology, Farquhar model, insect defoliation, isotope analysis, photosynthetic capacity, web-spinning sawfly.

Introduction

Heavy defoliation is one of the main disturbances affecting forest ecosystems. Insect feeding usually brings about an abrupt reduction in tree growth during the outbreak, which can severely diminish forest productivity. Moreover, defoliation may provoke a variety of physiological responses in a wide range of plants (Chen et al., 2001; Ozaki et al., 2004a; Pataki et al., 1998; Quentin et al., 2011), yet, although the impact of insect feeding in terms of biomass loss has been extensively studied (Kozlowski, 1969; Kulman, 1971; Mayfield et al., 2005; Simard et al., 2012; VanderKlein and Reich, 2000), less attention has been paid to physiological responses.

As a consequence of insect defoliation, host plants can change their physiology by altering water relations, and modifying photosynthate allocation and photosynthetic capacity (Kozlowski, 1969). However, conflicting interpretations are often put forward, mainly as a result of the different functional groups of insects and host tree species investigated (Barbosa and Wagner, 1988; Trumble et al., 1993). While many studies have highlighted an increase in photosynthetic activity as a compensatory mechanism during insect feeding, other researches have focussed on contrasting responses in stomatal activity (Chen et al., 2001; Lavigne et al., 2001; Little et al., 2003; VanderKlein and Reich, 1999). Some authors have observed that the response of stomata varies according to past stress, suggesting that stomatal behaviour may be dependent on previous conditions (Hinckley et al., 1978; Pill et al., 1978; Schulte et al., 1987). However, it is important to point out that an adaptive mechanism of this sort cannot be generalized, as stomatal behaviour is the result of a complex interaction between environmental and
genetic factors (Larcher, 1995) and is often species-specific (Mansfield and Davies, 1981).

Compensation against herbivory was reported in older trees (*Pinus sylvestris* L. *nevadensis*) under full sunlight availability (Hóðar et al., 2008) and in herbaceous plants (*Solidago altissima*) grown under high-resource treatments (Wise and Abrahamson, 2008).

While most studies have dealt with gas-exchange and physiological responses during the few years of the outbreak, much less attention has been given to adaptive mechanisms in the long-term. For example, it is well known that an increase in photosynthetic activity may offset biomass loss and the metabolic cost of producing defensive chemicals, which requires large amounts of carbohydrates (Kozlowski, 1969; Kozlowski et al., 1991; Waring and Pitman, 1985), although it is still unclear whether this adaptive mechanism persists after defoliation and full recovery of the tree. A comprehensive study to assess the long-term effects of defoliation on plant physiology is therefore required to resolve these issues.

Physiological changes (e.g. changes in stomatal conductance and photosynthetic rate) are known to result in differences in carbon and oxygen isotope discriminations (Farquhar et al., 1982; Scheidegger et al., 2000; Voncaemmerer and Farquhar, 1984). For example, an increase in the carbon isotope value (δ13C) may be the result of either a decrease in stomatal conductance or an increase in photosynthetic rate, whereas a decrease in the oxygen isotope value (δ18O) may coincide with an increase in stomatal conductance (McCarroll and Loader, 2004; Scheidegger et al., 2000). Although the link between stable isotopes and physiological responses is well known, few studies have been carried out on the impact of defoliation on stable isotope composition. Leavitt and Long (1986),
for example, found an increase in δ^{13}C values in tree rings during the period of most severe defoliation of *Abies concolor* and *Pseudotsuga menziesii* by the spruce budworm *Choristoneura fumiferana* (Clem.).

Tree-ring analysis has proven to be a suitable tool for measuring growth reduction and as an indicator of past environmental stress or insect attack (Schweingruber, 1996; Swetnam et al., 1985). In addition, dendrochronology and stable isotopes in tree rings can be used to analyse tree history at an annual resolution, making them suitable for assessing tree reaction in the long-term (Gori et al., 2013a; McCarroll and Loader, 2004). The web-spinning sawfly *Cephalcia arvensis* is a monophagous defoliator of the *Picea* genus and endemic to the spruce range in Eurasia, where a few outbreaks have been recorded (Battisti et al. 2000). In one case, between 1986 and 1992 in the Southern Alps, hundreds of hectares of mature stands of Norway spruce (*Picea abies* (L.) Karst.) were severely defoliated, although some of the trees were salvage harvested (Marchisio et al., 1994). Total loss of needle biomass was recorded in 1988-1989 at the core of the outbreak area, but the population has returned to latent phase since 1992 (Battisti et al., 2000).

We combined tree-ring and C and O stable isotope analyses of Norway spruce trees, defoliated and non-defoliated by *C. arvensis*, to study the impact of defoliation on tree growth in the long-term. Given that defoliation was triggered by exceptional water deficit in the trees in the most productive stands of the forest (Marchisio et al. 1994) and growth was not affected at the beginning of the outbreak, we hypothesized that trees reacted to the stress by maintaining high metabolic activity. We examined the characteristics of these changes by measuring tree rings and assessing the yearly variability of C and O stable isotopes in the wood. In addition, we used the same approach to investigate the
possibility that defoliation triggers a compensatory mechanism in the uneaten needles, which persist for a few years.

Materials and methods

Study site

The study was carried out on the Cansiglio plateau, about 30 km east of the town of Belluno, Italy (Fig. 1). It is part of the Venetian Pre-Alps and is located at an elevation ranging from 900 to 1200 m. The prevailing geological substrate is limestone and the soil is deep and rich in clay on the flat part of the plateau, the site of the core of the outbreak, while it is shallow and less fertile on the surrounding slopes (Marchisio et al. 1994). The forest stand was a mature plantation of Norway spruce (about 90 years old) with sporadic European silver fir (*Abies alba*) and beech (*Fagus sylvatica*), and was dense (602-624 trees/ha) and fairly homogeneous characterized by about the same silvicultural parameters (Marchisio et al. 1994).

Mean annual precipitation at the Cansiglio meteorological station of is 1700 mm (1960-2003) with maximum rainfall in June and November; mean annual temperature is 5.1°C for the same period, the coolest month being January and the warmest July.

The outbreak was detected in 1986 at Tramezzere (Fig. 1). It then expanded to the east (Camesega sites) in 1987-88, but was over by 1992 as a result of control methods and an increase in natural mortality (Battisti et al. 2000). The areas surrounding the outbreak have been carefully surveyed since detection and no evidence of high population density has been found.

Field sampling

Field sampling was carried out on mature Norway spruce trees located inside and outside the outbreak area. In October 2004, ten trees were selected at each of 21 randomly
selected sites, 13 unaffected (control) and 8 previously defoliated (Fig. 1). Care was taken to select only mature spruce trees with similar stem diameters, growing in similar light conditions and with no visible mechanical damage. Two increment cores were extracted at 180° from each other at breast height using a Pressler increment borer. Two of the 21 sites (control site 19, previously defoliated site 22) were selected for isotope analysis (Fig. 1). No lubricants, markers or other materials were used during field sampling at these 2 sites in order to prevent isotopic contamination.

Ring-width measurement

Each core was prepared in the laboratory following standard dendrochronological procedures (Phipps, 1985). The increment cores were air dried, mounted on grooved wooden mounts, then sanded with progressively finer grade abrasive paper until optimal surface resolution allowed annual rings to be detected under magnification. Care was taken to avoid contamination of the samples from the two sites (i.e. 19 and 22) selected for isotopic analysis (Fig. 1) by preparing each core with a core-microtome (Gaertner and Nievergelt, 2010) to make the features of the rings clearly visible under magnification. Ring width on each core was measured to the nearest 0.001 mm using a linear table coupled to a Leica MS5 stereoscope and then assigned to calendar year. Tree-ring widths of each curve were plotted, cross-dated visually, then statistically checked for cross-dating and measurement errors using the COFECHA computer program (Holmes, 1983) as a standard dendrochronological protocol for quality control.

In order to remove the effect of decreasing ring width with age, each tree-ring series was first standardized by fitting a negative exponential curve to the measured data series and by dividing observed values by expected values. These dimensionless indices were then processed with a second standardization to emphasize inter-annual high-frequency
variations by fitting a spline function with 50% frequency response of 35 years to each
tree-ring series and calculating the indices as the observed versus the expected ratios.
Flexible cubic spline curves are very effective at removing both the long-term trend and
the effect of localized disturbance events, which are always present in the tree’s history,
while conserving inter-annual frequency variations (Cook and Peters, 1997).
Standardization and mean tree-ring chronologies were calculated using the ARSTAN
program (Cook and Holmes, 1984), which was specifically developed for processing
tree-ring series from closed-canopy forests. Mean tree-ring chronologies for each site
were computed by (1) averaging the two standardized ring-width series for each tree to
obtain a tree chronology, and (2) averaging all the tree chronologies within a site for
each of the 21 sites using a biweight robust mean.
Several statistical analyses were carried out to determine the key features of each site
chronology: a) mean sensitivity (MS), a measure of the relative change in ring width
from one year to the next in a given series calculated over the whole tree-ring series
(Fritts, 1976); b) standard deviation (SD): MS and SD are used to assess high-frequency
variation in the series; c) first order of serial autocorrelation (AC), a measure of the
previous year's influence on the current year's growth, typically varying from 0.300 to
0.800, which is useful for detecting potential persistence before and after standardisation;
d) mean interseries correlation (rbar), a measure of the strength of the signal (typically
the climate signal) common to all sampled trees at the site; and e) the expressed
population signal (EPS) (Wigley et al., 1984), a measure of the correlation between the
mean chronology derived from the samples and the population from which they were
extracted, which allows the degree of variation in year-by-year growth of trees at the
same site to be estimated. EPS indicates to what extent the sample size is representative
of a theoretically infinite population. Higher rbar values indicate greater synchronization in the annual growth patterns among sampled trees, while EPS is commonly adopted as a criterion for assessing chronology reliability. An EPS value above 0.85 is widely recognized in dendrochronological studies as indicating that the mean growth series is well replicated (Wigley et al., 1984).

Radial-growth reduction

In order to estimate the reduction in growth induced by defoliation, the effects of common environmental factors on defoliated and control chronologies were removed using the procedure described by Swetnam et al. (1985):

\[
PRI = \frac{SD(D)}{SD(C)} \times [\text{index}(C) - \text{mean}(C)]
\]

\[
CI = \text{index}(D) - PRI
\]

The procedure allows residuals from the control chronology (C) to be scaled to the same variance as the defoliated chronology (D). The scaled residuals are known as the Predicted Residual Indices (PRI). Finally, corrected indices (CI) were obtained by subtracting PRI from the D index.

Isotope analysis

After dating, all the cores taken from sites 19 (control) and 22 (previously defoliated) were prepared for isotopic analysis. As the trees which had been defoliated during the outbreak presented very narrow tree rings with indistinguishable latewood, all the samples were whole annual tree-rings (Gori et al., 2013b; Hill et al., 1995; Naurzbaev et al., 2002; Schleser et al., 1999). Annual rings from the period 1975-2003 were split with a razor under a binocular microscope, and those from the two radii were pooled to reduce isotope variability around the circumference of the tree (Leavitt and Long, 1984). Finally, all rings from a given year from the same site (ten trees per site) were pooled.
Wood samples of annual rings were assumed to be homogeneous. In fact, isotopic composition varies considerably within a single year due to different isotopic signatures over the season (Laumer et al., 2009; Loader et al., 2003; Verheyden et al., 2004). In order to obtain wood samples that were as homogeneous as possible, coarse wood samples were ground according to the method described by Laumer et al. (2009). Firstly, they were twice cooled (-196°C) in liquid nitrogen in order to convert them to a highly brittle state. In a second step, each cooled sample was placed in an iron cylinder (25 ml) with a 10 mm grinding ball and pulverized by radial oscillation (1800 Hz min⁻¹) for 4 minutes using a freezer-mill (CryoMill, Retsch®, Hann, Germany). Liquid nitrogen circulated through the system to keep the temperature at -196°C. The procedure was repeated twice to obtain a final sample size of between 5 and 20 μm.

Samples of about 0.30±0.5 mg of the dried, ground wood were placed in tin capsules for δ¹³C analysis and in silver capsules for δ¹⁸O analysis. All samples were then oven dried (80°C) to remove water vapour, then stored in a desiccator until analysis.

For carbon isotopic analysis, the tin capsules were placed in an Elemental Analyser (Flash EA™ 1112, Thermo Scientific) to convert the contents to CO₂ and H₂O (H₂O removed using a Mg(ClO₄)₂ filter). The CO₂ was flushed into the Isotopic Ratio Mass Spectrometer (Finnigan DELTA XP, Thermo Scientific, Bremen, Germany) via the ConFlo III device (Conflo III, Thermo Scientific), where the content of the different isotopomers (m/z 44 and 45) was determined.

For oxygen isotopic analysis, the samples in the silver capsules were converted to CO and H₂ at a temperature of 1450°C using a Pyrolyser (Finnigan™ TC/EA, High Temperature Conversion Elemental Analyser, Thermo Scientific), then flushed into the IRMS.
Values are reported in $\delta^\%$ relative to the Vienna PeeDee Belemnite (VPDB) standard for $\delta^{13}\text{C}$ and the Vienna Standard Mean Ocean Water (VSMOW) for $\delta^{18}\text{O}$ according to the equation:

$$\delta^\% = \left[\frac{(R_{\text{sample}} - R_{\text{standard}})}{R_{\text{standard}}} \right] \times 1000$$

where $\delta^\%$ is the isotope value of interest and R is the ratio between the heavier isotope and the lighter one.

Analytical precision (1 standard deviation) was 0.2 $\%$ for $\delta^{13}\text{C}$ and 0.4 for $\delta^{18}\text{O}$.

Statistical analyses

Principal component analysis (PCA) was performed as a clustering and dimension-reducing technique to identify site chronologies with similar patterns and to check for differences between control and defoliated trees in tree-growth patterns. PCA was performed using mean-centred and autoscaled data on the correlation matrix of the 21 (13 control and 8 defoliated) standardized site chronologies. We distinguished three different periods: a) before the *C. arvensis* outbreak (1965-1985); b) the outbreak (1986-1991); c) post-outbreak (1992-2003).

In order to check whether radial growth reduction persisted after defoliation and to assess full tree recovery, a year by year ANOVA (analysis of variance) was performed on the defoliated and control sites. In addition, a simple Pearson’s correlation coefficient was calculated to determine the relationships between the control and defoliated chronologies during the three above-mentioned periods.

The relationship between the isotope values of control and defoliated trees was investigated by t-test.

Results

Tree-ring analysis

Tree-ring chronologies showed there to be a large difference in tree growth between infested and uninfested trees, as shown in Table 1. Some rings were missing from two of
the eight defoliated site chronologies (sites 1 and 4) during the outbreak period, but none was missing from the control site chronologies. The chronologies of the defoliated trees had the highest mean sensitivity, the highest first-order of serial autocorrelation, and the highest mean interseries correlation. All site chronologies exceeded the minimum EPS value of 0.85: defoliated tree-ring chronologies had a value of 0.98, controls 0.97. Defoliated and control series had comparable standard deviations, and their mean ring widths were 3 and 3.6 mm, respectively.

Growth patterns were similar in control and defoliated trees during the period 1965 to 1986. In 1987 (the second year after onset of defoliation) tree growth of the defoliated trees began to drop below that of control trees (Fig. 2), the mean radial growth loss being 8%. During the heaviest defoliation period (1988-1990), radial growth loss amounted to 65% (Table 2), but there was a slight recovery in growth from 1992. It is remarkable that after full recovery (1992-1993), defoliated trees grew by 20-34% more than control trees over the following 7 years (1994-2000).

The year by year ANOVA confirms that growth was higher in defoliated trees (p<0.05) for several years following the outbreak.

The principal component analysis (PCA) shows no distinct groups appearing prior to defoliation (Fig. 3a), while there is a clear-cut discrimination between two clusters during defoliation (Fig. 3b). It is worth noting that the separation into two clusters persists after defoliation (Fig. 3c) and full recovery of tree growth, although it is less clear-cut.

Following the outbreak, dispersion on both PCs was greater for defoliated sites than for the control stands.

Isotope analysis
Tree-ring carbon and oxygen isotope values have similar patterns and a high degree of synchronicity during the period before defoliation (Fig. 4b, c). However, while δ^{13}C and δ^{18}O values of defoliated and control trees do not differ significantly during the period prior to defoliation ($p<0.001$), defoliated trees had higher δ^{13}C values and lower δ^{18}O values ($p<0.01$) both during and after the outbreak.

In 1985 (one year before the outbreak) the δ^{13}C values in defoliated trees started to increase, reaching their peak in 1987. Surprisingly, 13C enrichment in defoliated trees began two years prior (1985) to any noticeable reduction in radial growth (Fig. 4), whereas the year it reached its peak, 1987, coincided with the onset of a slight reduction in radial growth. Of note is the finding that 18O depletion reached its peak (-22.8‰) in 1989 coinciding with the year of highest growth loss, while the values in defoliated trees were close to those in control trees in 1990, two years earlier than complete growth recovery in 1992.

During the first three years of the outbreak (1986-1988), δ^{18}O values in defoliated trees decreased to a minimum of 21.9‰ in 1988. In addition, 18O depletion started one year ahead of growth reduction, whereas 18O enrichment started one year before growth recovery.

We point out that both the δ^{13}C and the δ^{18}O values seem to precede tree-ring trends by one (oxygen series) or two years (carbon series).

Discussion

Carbon and oxygen stable isotope ratios and tree-ring analyses were carried out in order to evaluate the short- and long-term effects of heavy defoliation on a Norway spruce stand.
We found a time lag between substantial growth reduction and the reported onset of defoliation, which occurred in 1986. A delay between the appearance of the insect and the presence of narrow tree-rings is rather common. In this study, we found that a slight reduction in tree-ring growth in defoliated chronologies occurred during the second consecutive year of heavy defoliation.

Comparable radial growth losses in association with other conifer-feeding sawflies of the same taxonomic group have also been found. The pine false webworm (*Acantholyda erythrocephala* (L.)) caused radial growth reduction of 40% to 70% in white pine (*Pinus strobus* L.) stands after 2 years of heavy defoliation (Mayfield et al., 2005), while the larch web-spinning sawfly (*Cephalcia lariciphila*) caused a reduction in radial growth of 67% in the same year as defoliation (Vejpustková and Holuša, 2006). The difference is probably due to the leaf type of the host plant, with deciduous species responding more quickly than evergreens.

Plants under stress rely on reserves stored in the roots or stem functioning as a resilience mechanism (Kozlowski et al., 1991; Lopez et al., 2009). In our study, full needle loss was observed during peak insect feeding activity in 1988, when plants maintained slight radial growth despite the absence of photosynthetic biomass. Yet we found missing rings in only two of the eight affected sites in 1989, i.e. during the second year of complete defoliation. This is consistent with expectations (Waring and Pitman, 1985), as the defoliated trees had probably been using their reserves during the outbreak. As stem diameter growth has lower priority than the formation of new shoots and roots and the production of protective chemicals (Mayfield et al., 2005; Waring and Pitman, 1985), fewer reserves are expended on new ring formation. This appears to be what happened in 1989 when we found maximum growth loss and missing rings, suggesting that fewer
reserves were available for xylem production as they were most likely directed to new shoot and root formation (Waring and Pitman, 1985).

Although severe defoliation was observed over at least six consecutive years, all defoliated site chronologies showed recovery to control chronology values in 1992, when the C. arvensis populations returned to latent phase, after which there was a resumption in normal radial growth, as shown in table 2.

Moreover, the annual growth of defoliated trees was significantly greater than control trees after the outbreak (Tab. 2). This was confirmed by the PCA analysis (Fig. 3), which revealed no growth differences between the sites prior to outbreak (Fig. 3a), whereas there is a clear-cut discrimination between defoliated and control sites during the outbreak (Fig. 3b), which persists even after defoliation (Fig. 3c). Since climatic conditions were the same at both the control and the defoliated sites (Marchisio et al., 1994), other factors probably caused the growth differences after the outbreak period. It is well known that, when damaged by insects, several plant species increase the photosynthetic rate in the remaining foliage as a compensatory mechanism (Barry and Pinkard, 2013; Chen et al., 2001; Ozaki et al., 2004a; Quentin et al., 2011; Trumble et al., 1993; VanderKlein and Reich, 1999). In our study, an increase in photosynthetic rate could have been triggered by the onset of C. arvensis feeding, and, even though gas-exchange measurements would be needed to confirm this, the persistence of two different groups even after the outbreak suggests that a change in plant physiology of this sort persisted at the defoliated sites after feeding (Trumble et al., 1993), a hypothesis that is supported by the stable isotope analysis.

There was a clear increase in the δ13C values at the defoliated sites from 1985, i.e. one year before any visible damage by C. arvensis. On the other hand, the δ18O values at the
defoliated sites depleted to their minimum in 1988, when total needle loss was recorded, then increased to close to control values as the outbreak gradually came to an end. Nevertheless, lower \(\delta^{18}O \) values persisted after the outbreak at damaged sites (Fig. 4c). In light of the large body of evidence supporting a relationship between stable isotopes and physiological change reported in the literature (Scheidegger et al., 2000), we offer here a plausible interpretation of our results.

According to the Farquhar model (Farquhar et al., 1982), an increase in \(\delta^{13}C \) in plants can be the result of either 1) reduced stomatal conductance, 2) increased photosynthetic capacity, or 3) a change in both. In Scheidegger’s conceptual model (Scheidegger et al., 2000), the inverse relationship between stomatal opening and \(\delta^{18}O \) values can be used to identify the most likely case among the three aforementioned possibilities. The pattern of increased \(\delta^{13}C \) values and decreased \(\delta^{18}O \) values before the outbreak occurred (two years for carbon and one year for oxygen) does not seem to be related to defoliation but instead to the severe water deficit which affected the trees between 1983 and 1985, especially in the outbreak area owing to the nature of the soil (Marchisio et al. 1994). During the dry period, the trees in the outbreak area may have mobilized their starch reserves in order to increase osmotic potential and prevent water loss. It is, in fact, well-known that starch reserves have a richer carbon isotopic composition than tree-ring wood (Brugnoli et al., 1988; Helle and Schleser, 2004; Le Roux et al., 2001). The resulting combination of higher soluble sugars and amino acids concomitant with the direct effect of high temperatures and dry weather on the insect populations (Marchisio et al. 1994; Ozaki et al., 2004b) may have contributed to the outbreak.

Once the outbreak had started, the increase in \(\delta^{13}C \) values and decrease in \(\delta^{18}O \) values continued and persisted after defoliation. According to Scheidegger’s model...
(Scheidegger et al., 2000) “the most likely case” is that the trees increased their photosynthetic capacity.

It is clear, however, that our interpretation is something of a simplification and we are aware that no gas-exchange measurements were made in this study. Nevertheless, 13C enrichment occurred simultaneously with an increase in radial growth at the onset of the outbreak, and continued after defoliation during the period 1994-2000 (Fig. 4), supporting the hypothesis that the increase in photosynthetic rate induced by insect activity persists even after defoliation. Photosynthetic upregulation following defoliation is thought to be related to carboxylation efficiency and ribulose-1,5-bisphosphate (RuBP) regeneration capacity (Layne and Flore, 1995; von Caemmerer and Farquhar, 1984). Simard et al. (2008) reported 13C enrichment in *Abies balsama* and *Picea mariana* following defoliation by the spruce budworm *Choristoneura fumiferana*. However, they found no differences in δ^{18}O values during and after the outbreak and concluded that enriched 13C could be explained by both an increase in photosynthetic rate and a resort to starch reserves during severe defoliation.

Overall, the results of our isotope and tree-ring analyses suggest tree growth to have been affected by a combination of weather and associated insect-induced defoliation.

Conclusions

Several studies have found a clear reduction in growth between one and four years after the onset of insect-induced defoliation (Krause et al., 2003; Mayfield et al., 2005; Simard et al., 2008). In our study, we found a significant reduction in growth only from the second year onwards. The carbon isotope results indicate that in the drought period before the outbreak (1983-1985) starch reserves may have been mobilised making the trees more susceptible to *Cephalcia* attack in 1986. Tree-ring and stable isotope patterns

84
also suggest that defoliation may have triggered an increase in photosynthetic capacity. Moreover, carbon and oxygen isotope values confirm the onset of insect attack as 1986, i.e. two years before a noticeable reduction in growth. In agreement with Simard et al. (2008), we conclude that carbon and oxygen isotope values are a more immediate indicator of the onset of defoliation than tree-ring width. Our findings represent a significant contribution to the understanding of how trees respond to severe defoliation and point the way to future research focused on long-term investigation of plant-physiology and plant-insect interactions.

References

Acknowledgements

This study was supported and co-funded by the ISOCHANGE project, and by the University of Padova grant 60%. The authors wish to thank Luca Ziller (FEM, San Michele all’Adige) for valuable laboratory assistance, Anna Rova (Università degli Studi di Padova) for the collection of data in Cansiglio, and Tessa Say for revision of the English text.
Table 1. Descriptive statistics of defoliated and non-defoliated tree-ring chronologies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defoliated P. abies</th>
<th>Non-defoliated P. abies (control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronology time span</td>
<td>1901-2003 (103)</td>
<td>1903-2003 (100)</td>
</tr>
<tr>
<td>No. of trees/No. of cores</td>
<td>80/160</td>
<td>130/260</td>
</tr>
<tr>
<td>Mean ring width (mm)</td>
<td>3.00</td>
<td>3.62</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.15</td>
<td>1.26</td>
</tr>
<tr>
<td>Mean sensitivity (MS)</td>
<td>0.20</td>
<td>0.17</td>
</tr>
<tr>
<td>First-order of serial autocorrelation (AC)</td>
<td>0.61</td>
<td>0.42</td>
</tr>
<tr>
<td>Mean interseries correlation (rbar)</td>
<td>0.83</td>
<td>0.74</td>
</tr>
<tr>
<td>Expressed population signal (EPS)</td>
<td>0.98</td>
<td>0.97</td>
</tr>
<tr>
<td>No. of missing rings</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

Mean ring width and standard deviation were computed on the raw tree-ring chronologies.
MS, AC, rbar and EPS were computed on the indexed tree-ring chronologies.
Table 2. ANOVA comparing the 8 defoliated chronologies with the 13 control chronologies. Years with significant growth differences are shown (p<0.05).

<table>
<thead>
<tr>
<th>Year</th>
<th>ANOVA test</th>
<th>MRW Def.*</th>
<th>MRW Con. †</th>
<th>Growth differences between control and defoliated chronologies (%)‡</th>
</tr>
</thead>
<tbody>
<tr>
<td>1978</td>
<td>*</td>
<td>1.024</td>
<td>0.929</td>
<td>9</td>
</tr>
<tr>
<td>1984</td>
<td>**</td>
<td>1.191</td>
<td>1.029</td>
<td>14</td>
</tr>
<tr>
<td>1985</td>
<td>***</td>
<td>1.104</td>
<td>0.979</td>
<td>12</td>
</tr>
<tr>
<td>1986</td>
<td>*</td>
<td>1.089</td>
<td>0.974</td>
<td>15</td>
</tr>
<tr>
<td>1988</td>
<td>***</td>
<td>0.545</td>
<td>0.823</td>
<td>-8</td>
</tr>
<tr>
<td>1989</td>
<td>***</td>
<td>0.304</td>
<td>0.964</td>
<td>-65</td>
</tr>
<tr>
<td>1990</td>
<td>***</td>
<td>0.366</td>
<td>0.972</td>
<td>-56</td>
</tr>
<tr>
<td>1991</td>
<td>***</td>
<td>0.602</td>
<td>0.946</td>
<td>-30</td>
</tr>
<tr>
<td>1994</td>
<td>*</td>
<td>1.056</td>
<td>0.921</td>
<td>19</td>
</tr>
<tr>
<td>1995</td>
<td>*</td>
<td>0.967</td>
<td>0.812</td>
<td>34</td>
</tr>
<tr>
<td>1996</td>
<td>*</td>
<td>1.079</td>
<td>0.941</td>
<td>15</td>
</tr>
<tr>
<td>1997</td>
<td>**</td>
<td>1.262</td>
<td>1.112</td>
<td>22</td>
</tr>
<tr>
<td>1998</td>
<td>*</td>
<td>1.162</td>
<td>1.062</td>
<td>2</td>
</tr>
</tbody>
</table>

* p<0.05; ** p<0.01; *** p<0.001

*Mean ring width of the 8 defoliated site chronologies.
† Mean ring width of the 13 control site chronologies.
‡Radial growth differences after Swetnam et al. (1985) correction are reported.
Fig. 1 Location of the study sites. Grey dots, defoliated sites; black dots, control sites. The circle indicates the outbreak area. Sites 19 and 22 were selected for isotopic analysis.

Fig. 2 Tree-ring indices of *Picea abies* for the period 1965-2003. Defoliated chronology, grey line; control chronology, dotted line. The shaded area indicates the outbreak period.
Fig. 3 Scatter plots of weighting coefficients for the first two principal components for the periods 1965-1985 (a), 1986-1992 (b), 1993-2003 (c). Grey dots, defoliated stand chronologies; black dots, control stand chronologies.
Fig. 4 Tree-ring indices (a), carbon (b) and oxygen (c) isotope values of control (black line) and defoliated trees (grey line) during the period 1975-2003. Tree-ring indices are reported as in Fig. 2. The shaded area indicates the outbreak period.
General conclusions
I combined tree-ring and stable isotope analyses of Norway spruce (Picea abies (L.) Karst.) to investigate the impact of a white-rot fungus and a defoliating insect on tree growth and physiological responses in the long term.

Climatic signals from stable isotope ratios

I analyzed eight different isotope proxies in different wood components (δ¹³C, δ¹⁸O and δ²H in whole wood, cellulose and lignin methoxyl groups) in order to discover the best proxy to provide the strongest climate signal at different elevations and climate conditions. Except for the highest site, no correlation was found (p<0.01) with precipitation (Table 2; section 1). This is consistent with the findings of other researchers, who showed δ¹³C values to be closely related with precipitation only at very dry sites. I found that stable isotope values in whole wood samples preserve the best climatic signal (Table 3; section 1). Combining the stable isotope ratios of whole wood and cellulose doesn’t improve climate prediction, so it is not necessary to extract cellulose (Table 4; section 1). These results appear to disagree with those of many other researches which report that δ¹⁸O values of cellulose yield the best climate signal. Finally, I found that lignin methoxyl groups are not closely related with climate (Table 5; section 1). This results are useful for selecting the appropriate wood components for palaeoclimatological research. This saves a considerable amount of time, but the model may, of course, be applied only in the case of temperature reconstruction with Norway spruce in the south-eastern Alps.

Stable isotope dendrochronologies in infected trees

Tree-ring patterns and stable isotope chronologies of Picea abies affected by Heterobasidion parviporum were analysed in three mature stands located at different elevations (Fig. 1; section 2). The aim was to clarify the role of climatic conditions on infected trees. I found evidence that infection by H. parviporum at low elevations makes trees more susceptible to drought stress (Fig. 6-7; section 2). Moreover, infection at the lowest site (Baselga, 900 m asl) resulted in a final rapid decline, indicating lower tolerance of Norway spruce to the fungus. Conversely, infected stands at high elevations showed a slow decline over many decades, reflecting long-term stress and likely weak pathogen behaviour (Fig 2;
section 2). Finally, infected stands at low elevations showed the greatest growth reduction during the last 10 years, reporting a final growth loss of 86%, while infected stands at high elevations reported a growth reduction of 68% (Table 3; section 2). The higher tolerance of Norway spruce to the fungus at highest elevations could be related to suboptimal growth conditions for this pathogen. While, at low elevations, the more aggressive behaviour of the fungus could be due to optimal ecological factors such as: long growing season and high temperature. In fact, optimal growth conditions of *H. parviporum* takes place at temperature above 20°C and these climate conditions are typical for low elevation in the southern Alps.

Stable isotope analyses were successfully used to investigate physiological mechanisms. Analyses of both δ^{13}C and δ^{18}O suggest physiological responses caused by fungal infection at low and medium elevations. With respect to isotope theory, stomatal conductance increases in *Picea abies* affected by *H. parviporum* at low and medium elevations (Fig. 1; section 3). On the other hand, despite the prolonged presence of the fungus, stomatal conductance seems remained unchanged in infected trees at high altitude. These results are consistent with the higher tolerance of Norway spruce to the fungus at high elevations and confirm that fungal infection makes Norway spruce more susceptible to water availability at low elevation.

Although the onset of the fungal attack may be only hypothesised, it seem likely that infection had been present at a higher elevation for about 80 years; such a long period has never before been reported in the literature for *H. parviporum*.

Stable isotope dendrochronologies in defoliated trees

Tree-ring patterns and stable isotope chronologies of *P. abies* defoliated by *Cephalcia arvensis* were analysed to investigate the short- and long-term effects of an heavy defoliation. By tree-ring analysis I found a clear growth reduction only in the second year after the onset of insect-induced defoliation. Stable isotope ratios indicate that in the drought period before the outbreak (1983-1985) starch reserves may have been mobilised making the trees more susceptible to *Cephalcia* attack in 1986. Moreover, the combination of tree-ring and stable isotope patterns suggest that defoliation may have triggered an increase in photosynthetic capacity and confirm the onset of insect attack as 1986, i.e. two years before a
noticeable reduction in growth. These results provide a significant contribution to the understanding of how trees respond to severe defoliation and point the way to future research focused on long-term investigation of plant physiology and plant-insect interactions.

As an overall conclusion, I give a substantial contribution to demonstrated that by combining tree-ring and stable isotope analyses it is possible to reconstruct the history of stressed trees, at least with respect to the physiological processes involved during and after *H. parviporum* infection and *C. arvensis* defoliation. Moreover, I found that a combination of tree-ring and stable isotope patterns may be helpful in estimating the onset of infection or insect attack. Finally, I should point out that some of the hypotheses I have put forward in this research may only be confirmed by physiological analyses (e.g. gas-exchange and stomatal conductance measurements, RuBisCo activity, chlorophyll fluorescence), which, I hope, could be specific topics for future research.

103

De Micco V. 2007. Variations of wood anatomy and δ^{13}C within-tree rings of coastal Pinus pinaster showing intra-annual density fluctuations. IAWA Journal, 28, 61-74

Guerrieri et al. 2009. Impact of different nitrogen emission sources on tree physiology as assessed by a triple stable isotope approach. Atmospheric Environment. 43, 410-418

Ulla Mattila, T.N. Assessing the Incidence of Butt Rot in Norway Spruce in Southern Finland.

Acknowledgements
First of all I thank prof. Andrea Battisti, dr. Federica Camin and dr. Nicola La Porta for the valuable comments to the manuscripts and for the great support during these years.

I wish to thank Magdalena Nötzli and Anne Verstege (WSL, Birmensdorf, Switzerland) for their assistance with measuring and dr. Paolo Cherubini who allowed me to work in a wonderful “dendroLAB”, thank for the great support and help during my staying at Zurich.

I have to thank the great dr. Ari Hietala (Norwegian Forest and Landscape Institute, Ås, Norway), thank for the kind hospitality in the beautiful Ås (Norway).

I would like to thank dr. Ron Wehrens (FEM, S. Michele all’Adige, Italy) for a valuable help in statistical analysis, prof. Marco Carrer (Padova University) and dr. Patrick Fonti (WSL, Birmensdorf, Switzerland) for the course in Dendrochronology.

Andrea Bertagnolli, Giorgio Behaman and Rino Braito (Magnifica Comunità di Fiemme, Italy) for allowing me to sample the trees.

Emanuele Eccel, Annalisa Piauzzi and Luca Delucchi (FEM, S. Michele all’Adige, Italy) for their suggestions concerning the meteorological analysis. Luca Ziller (FEM, S. Michele all’Adige, Italy) for valuable laboratory assistance.

I really thank my colleagues and friends for their support and, above all, for their companionship.

...and,

"tantissimi baci alle mie ragazze Martina e Caterina!"