Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Liguori, Nicola (2008) New materials for the next generation of criogenic gravitational wave detectors. [Tesi di dottorato]

Full text disponibile come:

Documento PDF

Abstract (inglese)

The research work developed in the present PhD thesis deals with the measurement of mechanical dissipations at low temperature of silicon and silicon carbide, as candidate materials in the carrying out the sensitive mass of the next generation gravitational wave detector DUAL.
Measurements are performed at the ultra-cryogenic Test Facility
located in the same building that houses the gravitational waves detector AURIGA, at Legnaro National Laboratories (LNL), INFN, Padova, Italy. Few ultra-cryogenic measurements are performed at Low Temperature Laboratories, Physics Department, University of Trento, Italy, because in the meantime the LNL dilution refrigerator was under upgrading
for the next (2008) ultra-cryogenic run. Early the Ultra-
Cryogenic Transducer Test Facility was designed in order to measure the thermal noise of transduction and amplifcation chains for acoustic detectors of gravitational waves; it allowed to test the whole capacitive readout of the AURIGA detector (i.e. capacitive transducer + double stage SQUID amplifer + resonating LC matching line) in the same environment as it will be operating in the main detector. The writer participated actively to the upgrading phase in order to rearrange this
apparatus for mechanical dissipation measurements of interesting materials in samples of circular (disks) or rectangular (cantilevers) shape, as function of cryogenic and ultra-cryogenic temperature. TF has been provided for all the sensors required to perform these measurements, i.e. a piezoelectric actuator driven by high voltage amplifer, four readout and as much as charge lines for capacitive displacement sensors, a readout line for displacement measures to be performed by the optical lever method, four lines for thermometers sensitive also at low temperature, pressure sensors. Low losses clamping systems has been developed to be employed on samples of circular shapes (wafers or disks). In particular, a clamping system so called \nodal" has been developed. With this nodal suspension a thin disk is clamped on its centre by two spheres. Since for most normal modes the centre is at rest, nodal suspension should contribute in neglecting amount to total loss. This type of nodal suspension has been experimented at cryogenic temperatures in the two versions with and without glue on contact points. Such nodal suspension has been employed in loss angle measurements on inltrated and mono-crystalline ( polytypes 4H and 6H) silicon carbide disks. In particular, on mono-crystalline silicon, employing this suspension, very low loss angles has been measured (of the order of 10-8) and it was pointed out that above 40 K thermoelastic dissipation dominates. Mechanical loss measurements are performed by the so called \ring down" method (excitation and decay acquisition of the normal modes of the sample under investigation). A special capacitive displacement sensor has been designed and carried out in few prototypes for samples of dielectric material (not conductors). This sensor was carried out in two models, large and small area. It has been employed in loss angle measurements on silicon and mono-crystalline silicon carbide, reported in the present thesis. For instance, employing this sensor, the thermoelastic dissipation curve has been measured as function of temperature for a thin silicon wafer, as reported in the thesis. This sensor is still employed successfully for cryogenic measurements of mechanical dissipation. It could be evaluated the possibility that, if suitably optimized, this sensor could have a displacement sensitivity high enough to allow the measurement of thermal noise. This could be very useful, for instance in the case that DUAL detector should be carried out in a non conductor material. As concerning silicon carbide, mechanical dissipation measurements have been performed on different samples of different fabrication methods. Silicon carbide was investigated as sintered, inoltrated and 4H and 6H mono-crystalline polytypes. In the best case (6H-SiC) the measured loss angle results of the order of 10-7, unfortunately still too high to t the requirements of DUAL detector. However an improvement is awaited from thermal post processing on samples. Finally, in order to estimate if the whole mass of DUAL detector could be machined bonding together smaller silicon parts, the first measurement of mechanical dissipation as a function of temperature has been performed on a silicon wafer that was made by direct bonding technique starting from three thinner wafers. The result of these measurements is that the measured loss angle due to the (two) bonding layers is about 510-3, not far from the DUAL requirement (loss angle
of the order of 10-3.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Stella, Attilio
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > FISICA
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):criogenic gravitational wave detectors
Settori scientifico-disciplinari MIUR:Area 02 - Scienze fisiche > FIS/01 Fisica sperimentale
Struttura di riferimento:Dipartimenti > Dipartimento di Fisica "Galileo Galilei"
Codice ID:635
Depositato il:17 Ott 2008
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] L.Baggio et al., 3-Mode Detection for Widening the Bandwidth of Resonant Gravitational Wave Detectors, Physical Review Letters, 94, 241101 (2005). Cerca con Google

[2] Z.A. Allen et al., Physical Review Letters, 85, 5046 (2000). Cerca con Google

[3] P. Astone et al., Physical Review D 68, 022001, (2003) Cerca con Google

[4] L.Baggio et al., 3-Mode detection for widening the bandwidth of resonant gravitational wave detectors, Physical Review Letters, 2005 Cerca con Google

[5] M. Cerdonio et al., Physical Review Letters, 87, 031101 (2001) Cerca con Google

[6] T. Briant, M. Cerdonio et al., Physical Review D 67, 102005 (2003) Cerca con Google

[7] M. Bonaldi, M. Cerdonio et al., Physical Review D 68, 102004 (2003) Cerca con Google

[8] M. Cerdonio, L. Conti, J.A. Lobo, A. Ortolan, L. Taffarello and J.P. Zendri, Phys. Rev. Lett. 87 031101 (2001) Cerca con Google

[9] M. Bonaldi, M. Cerdonio, L. Conti, M. Pinard, G.A. Prodi, L. Taffarello and J.P.Zendri, Phys. Rev. D 68 102004 (2003) Cerca con Google

[10] Bonaldi et al., Principles of wide bandwidth acoustic detectors and the single-mass DUAL detector,Phys. Rev. D 74 (2006) 022003 1 Cerca con Google

[11] M.Bignotto et al., Dual detectors of gravitational waves, Proceedings of Astronomical Telescopes and Instrumentation , 21- 25 June 2004, Glasgow, Scotland, Proceedings of SPIE { Volume 5500 Gravitational Wave and Particle Astrophysics Detectors, J. Hough, G. H. Sanders, Editors, September 2004, pp. 105-112 Cerca con Google

[12] Article in preparation. Cerca con Google

[13] T. Briant, M. Cerdonio, L. Conti, A. Heidmann, A. Lobo, M. Pinard, Phys. Rev. D 67, 102005 (2003). Cerca con Google

[14] Landau, Lifshitz, Theory of elasticity, Pergamon Press. Cerca con Google

[15] P.R.Saulson, Physical Review D 42, 2437 (1990) Cerca con Google

[16] K. Yamamoto et al., Physics Letters A 321, 79 (2004) Cerca con Google

[17] C.W.Misner, K.S.Thorne, J.A.Wheeler, Gravitation, W.H.Freeman and Company, S. Francisco, 1973. Cerca con Google

[18] H.B.Callen and T.A.Welton, Physical review D 83, 34 (1951) Cerca con Google

[19] Yu.Levin, Physical Review D, Vol.57, No.2, 659 (1998) Cerca con Google

[20] V.B.Braginsky and F.Ya.Khalili, Quantum Measurement, Cambridge University Press, Cambridge, 1992. Cerca con Google

[21] W.Duffy Jr., Journal of Applied Physics, 72, 5628 (1992) Cerca con Google

[22] M.Bignotto, La test facility ultracriogenica per trasduttori di spostamento: sospensioni meccaniche e refrigeratore a diluizione He3 - He4, Laurea Theses, 1999, University of Padova, Italy. Cerca con Google

[23] A.Marin, Elettromechanical readout for the second run of the gravitational wave detector AURIGA, PhD Thesis (2002), Padova University. Cerca con Google

[24] G.K.White, Experimental techniques in low-temperature physics, third edition, Clarredon Press Oxford Science Publications, Oxford (1979) Cerca con Google

[25] S.Grasso et al., Electrostatic systems for fine control of mirror orientation in interferometric GW antennas, Physycs Letters A, 244, (1998) 360-370 Cerca con Google

[26] A.Cadez, A.Abramovici, J. Phys. E 21 (1988) 453 Cerca con Google

[27] J.B.Jackson, Classical Electrodynamics (Ed. Wiley, New York, 1962) Cerca con Google

[28] K.Numata, G.B.Bianc, M.Tanaka, S.Otsuka, K.Kawabe, M.Ando and K.Tsubono, Phys. Lett. A 284, 162 (2001) Cerca con Google

[29] K.Numata et al., Phys. Lett. A 276 (2000), p.37-46 Cerca con Google

[30] D.F.McGuigan et al., J. Low Temp. Phys. 30 621 (1978) Cerca con Google

[31] D.H.Gwo, Ultra-precision and reliable bonding methods, U.S. patent 6284085 (2001) Cerca con Google

[32] Material Properties Database (MPDB), Vai! Cerca con Google

[33] J.C.Thompson, B.A.Younglove, J. Phys. Chem. Solids 20, 146 (1961) Cerca con Google

[34] J.J.Wortman and R.A. Evans, J. Appl. Phys. 36, 153 (1965) Cerca con Google

[35] Ron Lifshitz and M.L.Roukes, Thermoelastic damping in microand nano-mechanical systems, Phys. Rev. B, Vol. 61, N. 8, 5600- 5609 (2000) Cerca con Google

[36] C. Zener, Phys. Rev. 52, 230 (1937); 53, 90 (1938); C. Zener, W. Otis and R. Nuckolls, ibid., 53, 100 (1938) Cerca con Google

[37] A.S.Nowick and B.S.Berry, Anelastic relaxation in crystalline solids, Academic Press, New York, 1972. Cerca con Google

[38] D.G.Blair, The detection of gravitational waves, 1988 Cerca con Google

[39] M.Bonaldi et al., Loss budget of a setup for measuring mechanical dissipations of silicon wafers between 300K and 4K, article in preparation. Cerca con Google

[40] J.Hough et al., Class. Quant. Grav. 20, 5025 (2003) Cerca con Google

[41] C.L.Spiel, R.O.Phol and A.T.Zehnder, Sev. Sci. Instrum. 72, 1482 (2001) Cerca con Google

[42] X.Liu, J.F.Vignola, H.J.Simpson, B.R.Lemon, B.H.Houston and D.M. Photiadis, J. Appl. Phys. 97, 023524 (2005) Cerca con Google

[43] H.J.Mamin and D.Rugar, Appl. Phys. Lett. 79, 3358 (2001) Cerca con Google

[44] U.Gysin et al., Phys. Rev. B 69, 045403 (2004) Cerca con Google

[45] K.Wago et al., J. Vac. Sci. Technol. B 14, 1197 (1996) Cerca con Google

[46] R.E.Mihailovich and J.M.Parpia, Phys. Rev. Lett. 68, 3052 (1992) Cerca con Google

[47] A.Zimmer, R.Nawrodt et al., arXiv:0709.2124v1 Cerca con Google

[48] R.G.Christian, Vacuum 16, 175 (1966) Cerca con Google

[49] M.Bao et al., J. Micromech. And Microeng., 12, 341 (2002) Cerca con Google

[50] C.Kittel, Introduction in solid state physics., Wiley & sons, 7th edition Cerca con Google

[51] P.G.Neudeck, A.J.Trunek, D.J.Spry, J.A.Powell, H.Du, M.Skowronski, X.Huang, M.Dudley, CVD growth of 3C-SiC on 4H/6H mesas, (2006) technical report. Cerca con Google

[52] P.M.Sarro, Silicon Carbide as a new mems technology, Sensors and Actuators A, 82, 210-218 Cerca con Google

[53] E.K.Hu et al., Phys.Lett. A 157, 209 (1991) Cerca con Google

[54] R.N.Kleiman, G.Agnolet, D.J.Bishop, Two-Level Systems obseved in the mechanical properties of single-crystal silicon at low temperature, Phys.Rev.Lett., 59, 18, 2079-2082 Cerca con Google

[55] K.A.Topp, David G.Chaill, Elastic properties of several amorphous solids and disordered crystals below 100K, Z. Phys B 101, 235-245 (1996) Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record