Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Colla, Laura (2014) Experimental characterization of nanofluids as heat transfer media. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
3906Kb

Abstract (inglese)

Nanofluids are formed by solid particles with nano-sized dimension (1-200 nm) dispersed into common fluids. From the beginning, they have been proposed as heat transfer media, considering the high thermal conductivity of solid nanoparticles compared to the inherently poor thermal properties of conventional heat transfer fluids. In the last years, an exponential increase of publications on nanofluids is occurred. However, nanofluids are complex fluids, literature experimental works are often controversial and theoretical investigations must to be deepened. A big issue concerns the production of stable and reliable fluids, since different nanoparticles can be prepared with different methods and, also, different nanofluids derive from different preparation techniques.
In this work, nine nanofluids were analysed. The stability of the suspension was evaluated considering the mean size distribution of nanoparticles in suspension using the DLS technique. In addition, the ζ potential and the pH of the nanofluids were measured for the stability analysis. For stable nanofluids, the study of the thermophysical properties is necessary to understand their energy behaviour. Therefore, thermal conductivity and dynamic viscosity were determined experimentally.
The final objective of this work is to investigate the convective heat transfer capabilities of nanofluids. For this purpose, an experimental apparatus was built in order to measure the convective, single phase heat transfer coefficient of nanofluids, at constant wall heat flux.
After an intense work of experimental measurement on several nanofluids, a nanofluid with extraordinary thermophysical properties was not found, in spite of some results published in the literature. Amongst all the studied suspensions, it seems metal nanoparticles are the most promising. More concentrated nanofluids, with the proper surfactants, are under study.

Abstract (italiano)

I nanofluidi sono costituiti da particelle solide di dimensione nanometrica (1-200 nm) disperse all’interno di fluidi comuni. Considerata l’elevata conduttività termica delle nanoparticelle solide rispetto alle proprietà termiche intrinsecamente scarse dei fluidi convenzionalmente usati per lo scambio termico, i nanofluidi sono stati inizialmente proposti come fluidi termovettori caratterizzati da interessanti proprietà termiche. Negli ultimi anni, il numero di pubblicazioni sui nanofluidi ha avuto una crescita esponenziale. Tuttavia, i nanofluidi sono fluidi complessi e i lavori sperimentali che si trovano in letteratura presentano spesso risultati tra loro discordanti e imprecisi, non supportati da valutazioni teoriche che devono essere approfondite. Uno dei principali problemi riguarda la produzione di sospensioni stabili, affidabili e riproducibili.
In questo lavoro, sono stati presi in considerazione nove diversi nanofluidi, in acqua o glicole e con nanoparticelle di ossidi, metalli o carbonio, per valutare le possibili differenze tra i fluidi risultanti. Ogni fluido è stato attentamente caratterizzato.
Per ogni nanofluido, la stabilità della sospensione è stata valutata considerando la distribuzione della dimensione media delle nanoparticelle in sospensione, utilizzando la tecnica DLS (Dynamic Light Scattering). Inoltre, per l'analisi di stabilità, sono stati misurati anche il potenziale ζ ed il pH dei nanofluidi.
Per i nanofluidi che sono risultati stabili, si è proceduti con lo studio delle proprietà termofisiche, necessario per comprendere il loro potenziale impiego energeticamente favorevole in applicazioni specifiche. Per questo motivo, sono state misurate la conduttività termica e la viscosità dinamica.
L'obiettivo finale di questo lavoro è stato quello di indagare le capacità di scambio termico convettivo dei nanofluidi. A questo scopo, è stato progettato e costruito un apparato sperimentale per misurare il coefficiente di scambio termico monofase convettivo, in condizione di flusso termico di parete costante.
Dopo un intenso lavoro di misura sperimentale su più nanofluidi, non è stato trovato alcun nanofluido con straordinarie proprietà termofisiche, nonostante alcuni risultati pubblicati in letteratura che avevano posto le basi iniziali per questa tesi. Tra tutte le sospensioni studiate, quelle con nanoparticelle metalliche sembrano le più promettenti. Per questo motivo, nanofluidi più concentrati, con surfattanti adatti, sono in fase di studio.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zilio, Claudio
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA INDUSTRIALE > INGEGNERIA DELL' ENERGIA
Data di deposito della tesi:24 Gennaio 2014
Anno di Pubblicazione:2014
Parole chiave (italiano / inglese):Nanofluido, conduttività termica, viscosità dinamica, stabilità, coefficiente di scambio termico / Nanofluid, thermal conductivity, dynamic viscosity, stability, heat transfer coefficient
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/10 Fisica tecnica industriale
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:6354
Depositato il:07 Nov 2014 14:27
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

Chapter 1 Cerca con Google

[1] R. Saidur, K.Y. Leong, H.A. Mohammad, “A review on applications and challenges of nanofluids”, Renewable and Sustainable Energy Reviews, 15, 3, 1646–1668 (2011). Cerca con Google

[2] S.U.S. Choi, J.A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles”, ASME International Mechanical Engineering Congress & Exposition, November 12-17, 1995, San Francisco, CA. Cerca con Google

[3] J.C. Maxwell, Electricity and Magnetism, 1st Ed., Clarendon Press, Oxford, England, (1873). Cerca con Google

[4] M.H. Buschmann, “Nanofluisd in thermosyphons and heat pipe: Overview of recent experiments and modeling approaches”, International Journal of Thermal Sciences, 1-17 (2013). Cerca con Google

[5] S.M. Abbasi, A. Rashidi, A. Nemati, K. Arzani, “The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina”, Ceramics International, 39, 3885-3891 (2013). Cerca con Google

[6] A. Nasiri, M. Shariaty-Niasar, A. M. Rashidi, R. Khodafarin, “Effect of CNT structures on thermal conductivity and stability of nanofluid”, International Journal of Heat and Mass Transfer, 55, 1529–1535 (2012). Cerca con Google

[7] S. K. Das, N. Putra, P. Thiesen, W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids”, Journal of Heat Transfer, 125, 4, 567-574 (2003). Cerca con Google

[8] S.M.S. Murshed, K.C. Leong, C. Yang, “Enhanced thermal conductivity of TiO2-water based nanofluids”, International Journal of Thermal Sciences, 44, 4, 367-373 (2005). Cerca con Google

[9] R. Prasher, P. Bhattacharya, P.E. Phelan, “Thermal conductivity of nanoscale colloidal solutions (nanofluids)”, Physical Review Letters, 94, 2, 25901 (2005). Cerca con Google

[10] T.K. Hong, H.S. Yang, C.J. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids”, Journal of Applied Physics, 97, 6, 064311 (2005). Cerca con Google

[11] J. Buongiorno, D. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y. Tolmachev, P. Keblinski, L. Hu, J. Alvarado, I. Bang, S. Bishnoi, M. Bonetti, F. Botz, A. Cecere, Y. Chang, G. Chen, H. Chen, S. Chung, M. Chyu, S. Das, R. Di Paola, Y. Ding, F. Dubois, G. Dzido, J. Eapen, W. Escher, D. Funfschilling, Q. Galand, J. Gao, P. Gharagozloo, K. Goodson, J. Gutierrez, H. Hong, M. Horton, K. Hwang, C. Iorio, S. Jang, A. Jarzebski, Y. Jiang, L. Jin, S. Kabelac, A. Kamath, M. Kedzierski, L. Kieng, C. Kim, J. Kim, S. Kim, S. Lee, K. Leong, I. Manna, B. Michel, R. Ni, H. Patel, J. Philip, D. Poulikakos, C. Reynaud, R. Savino, P. Singh, P. Song, T. Sundararajan, E. Timofeeva, T. Tritcak, A. Turanov, S. Van Vaerenbergh, D. Wen, S. Witharana, C. Yang, W. Yeh, X. Zhao, S. Zhou, “A benchmark study on the thermal conductivity of nanofluids”, Journal of Applied Physics, 106, 094312 (2009). Cerca con Google

[12] A.T. Utomo, H. Poth, P.T. Robbins, A.W. Pacek, “Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids”, International Journal of Heat and Mass Transfer, 55, 7772-7781 (2012). Cerca con Google

[13] P. Warrier, A. Teja, “Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles”, Nanoscale Research Letters, 6, 247 (2011). Cerca con Google

[14] P. Garg, J.L. Alvarado, C. Marsh, T.A. Carlso, D.A. Kessler, K. Annamalai, “An experimental study on the effect of ultrasonication on viscosity and heat transfer performance of multi-wall carbon nanotube-based aqueous nanofluids”, International Journal of Heat and Mass Transfer, 52, 5090-5101 (2009). Cerca con Google

[15] V. Kumaresan, S. Mohaideen Abdul Khader, S. Karthikeyan, R. Velraj, “Convective heat transfer characteristics of CNT nanofluids in a tubular heat exchanger of various lengths for energy efficient cooling/heating system”, International Journal of Heat and Mass Transfer, 60, 413-421 (2013). Cerca con Google

[16] M.M. Heyhat, F. Kowsary, A.M. Rashidi, M.H. Momenpour, A. Amrollahi, “Experimental investigation of laminar convective heat transfer and pressure drop of water-based Al2O3 nanofluids in fully developed flow regime”, Experimental Thermal and Fluid Science, 44 483-489 (2013). Cerca con Google

[17] B.C. Pak, Y.I. Cho, “Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles”, Experimental Heat Transfer, 11, 2, 151–170, (1998). Cerca con Google

[18] P. Keblinski, R. Prasher, J. Eapen, “Thermal conductance of nanofluids: is the controversy over?”, Journal of Nanoparticles Research, 10, 1089 (2008). Cerca con Google

[19] W. Yu, D.M. France, J.L. Routbort, S.U.S. Choi “Review and Comparison of Nanofluid Thermal Conductivity and Heat Transfer Enhancements”, Heat Transfer Engineering, 29, 432 (2008). Cerca con Google

[20] H. Tyagi, P.E. Phelan, R.S. Prasher, “Predicted efficiency of a nanofluid-based direct absorption solar receiver”, ASME 2007 energy sustainability conference, 729-736 (2007). Cerca con Google

[21] E.V. Clancy, United States Patent Application Publication, Pub. No. US 2012/0017614 A1 (2012). Cerca con Google

[22] J.U. Ahamed, R. Saidur, H.H. Masjuki, “A review on exergy analysis of vapor compression refrigeration system”, Renewable and Sustainable Energy Reviews, 15, 3, 1593-1600 (2011). Cerca con Google

[23] D.S. Kumar, R. Elansezhian “Experimental Study on Al2O3-R134a Nano Refrigerant in Refrigeration System”, International Journal of Modern Engineering Research, 2, 5, 3927-3929 (2012). Cerca con Google

[24] C.G. Lee, S.W. Cho, Y. Hwang, J.K. Lee, B.C. Lee, J.S. Park, J.S. Jung, “Effects of nanolubricants on the friction and wear characteristics at thrurst slide bearing of scroll compressor”, International Proceeding of the 22nd International Congress of Refrigeration, Bejijng (China) (2007). Cerca con Google

[25] S. Wu, D. Zhu, X. Li, H. Li, J. Lei, “Thermal energy storage behavior of Al2O3–H2O nanofluids”, Thermochimica Acta, 483, 73-77 (2009). Cerca con Google

[26] J.M. Wu, J. Zhao, “A review of nanofluid heat transfer and critical heat flux enhancement-Research gap to engineering application”, Progress in Nuclear Energy, 66, 13-24 (2013). Cerca con Google

Chapter 2 Cerca con Google

[1] T.W. Ebbesen, “Carbon Nanotubes”, Annual Review of Materials Research, 24, 235 (1994). Cerca con Google

[2] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, “Self-Assembly of Tubular Fullerenes”, Journal of Physical Chemistry, 99, 10694–10697 (1995). Cerca con Google

[3] M. Endo, K. Takeuchi, S. Igarashi, K. Kobori, M. Shiraishi, H.W. Kroto, “The production and structure of pyrolytic carbon nanotubes (PCNTs)”, Journal of Physics and Chemistry of Solids, 54, 1841-1848 (1993). Cerca con Google

[4] W.K. Hsu, J.P. Hare, M. Terrones, H.W. Kroto, D.R.M. Walton, P.J.F. Harris, “Condensed-phase nanotubes”, Nature, 377, 687 (1995). Cerca con Google

[5] W.K. Hsu, M. Terrones, J.P. Hare, H. Terrones, H.W. Kroto, D.R.M. Walton, “Electrolytic formation of carbon nanostructures”, Chemical Physics Letters, 262, 161 (1996). Cerca con Google

[6] S. Jijima, “Helical microtubules of graphitic carbon”, Nature, 354, 56 (1991). Cerca con Google

[7] S. Jijima, T. Ichihashi, “Single-shell carbon nanotubes of lnm diameter”, Nature, 363, 603 (1993). Cerca con Google

[8] D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, Nature, 363, 605 (1993). Cerca con Google

[9] A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes”, Science, 273, 483 (1996). Cerca con Google

[10] L. Fedele, L. Colla, S. Bobbo, S. Barison, F. Agresti, “Experimental stability analysis of different water-based nanofluids”, Nanoscale Research Letters, 6, 300 (2011). Cerca con Google

[11] J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thomson, “Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol Based Nanofluids Containing Copper Nanoparticles”, Applied Physics Letters, 78, 718–720 (2001). Cerca con Google

[12] M. Chopkar, P.K. Das, I. Manna, “Synthesis and Characterization of Nanofluid for Advanced Heat Transfer Applications”, Scripta Materialia, 55, 549–552 (2006). Cerca con Google

[13] H. Zhu, C. Zhang, S. Liu, Y. Tang, “Effects of Nanoparticle Clustering and Alignment on Thermal Conductivities of Fe3O4 Aqueous Nano-fluids”, Applied Physics Letters, 89, 023123 (2006). Cerca con Google

[14] T.X. Phuoc, Y. Soong, M.K. Chyu, “Synthesis of Ag-Deionized Water Nanofluids Using Multi-Beam Laser Ablation in Liquids”, Optics and Lasers in Engineering, 45, 1099–1106 (2007). Cerca con Google

[15] L. Xinfang, Z. Dongsheng, W. Xianju, “Evaluation on dispersion behavior of the aqueous copper nano-suspensions”, Journal of Colloid and Interface Science, 310, 456-463 (2007). Cerca con Google

[16] V.H. Grassian, “When Size Really Matters: Size-Dependent Properties and Surface Chemistry of Metal and Metal Oxide. Nanoparticles in Gas and Liquid Phase Environments”, Journal of Physical Chemistry C, 112, 47, 18303-18313 (2008). Cerca con Google

[17] X. Wang, D. Zhu, S. Yang, “Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids”, Chemical Physics Letters, 470, 107-111 (2009). Cerca con Google

[18] A. Ghadimi, R. Saidur, H.S.C. Metselaar, “A review of nanofluid stability properties and characterization in stationary conditions”, International Journal of Heat and Mass Transfer, 54, 17-18, 4051–4068 (2011). Cerca con Google

[19] Y. Hwang, J. K. Lee, J. K. Lee, Y.M. Jeong, S. Cheong, Y.C. Ahn, S.H. Kim, “Production and dispersion stability of nanoparticles in nanofluids”, Powder Technology, 186, 2, 145–153 (2008). Cerca con Google

[20] B.J. Berne, R. Pecora, “Dynamic Light Scattering”, Courier Dover Publications (2000). Cerca con Google

[21] R. Pecora, “Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy”, Plenum Press (1985). Cerca con Google

[22] C. Washington, “Particle Size Analysis in Pharmaceutics and other Industries: Theory and Practice”, Ellis Horwood, England (1992). Cerca con Google

Chapter 3 Cerca con Google

[1] A. Einstein, Annalen der Physik, 19, 289–306 (1906). Cerca con Google

[2] H.C. Brinkman, “The viscosity of concentrated suspensions and solutions”, Journal of Chemical Physics, 20, 4, 571-581 (1952). Cerca con Google

[3] G.K. Batchelor, “The effect of Brownian motion on the bulk stress in a suspension of spherical particles”, Journal of Fluid Mechanics, 83, 97-117(1977). Cerca con Google

[4] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0; National Institute of Standards and Technology (2010). Cerca con Google

[5] H.S. Carslaw and J.C. Jaeger, “Conduction of Heat in Solids, second ed., Oxford Science Publications”, New York (2000). Cerca con Google

[6] J. He, “The Rapid thermal conductivity measurement with a hot disk sensor Part 1. Theoretical considerations”, Thermochimica Acta, 436, 122-129 (2005). Cerca con Google

[7] S. M. Abbasi, A. Rashidi, A. Nemati, K. Arzani, “The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina”, Ceramics International, 39, 3885-3891 (2013). Cerca con Google

[8] A. Nasiri, M. Shariaty-Niasar, A. M. Rashidi, R. Khodafarin, “Effect of CNT structures on thermal conductivity and stability of nanofluid”, International Journal of Heat and Mass Transfer, 55 1529–1535 (2012). Cerca con Google

[9] S. K. Das, N. Putra, P. Thiesen, W. Roetzel, “Temperature dependence of thermal conductivity enhancement for nanofluids”, Journal of Heat Transfer, 125, 4 567-574 (2003). Cerca con Google

[10] S. M. S. Murshed, K. C. Leong, C. Yang, “Enhanced thermal conductivity of TiO2-water based nanofluids”, International Journal of Thermal Sciences, 44, 4 367-373 (2005). Cerca con Google

[11] R. Prasher, P. Bhattacharya, P. E. Phelan, “Thermal conductivity of nanoscale colloidal solutions (nanofluids)”, Physical Review Letters, 94, 2 (2005). Cerca con Google

[12] T. K. Hong, H. S. Yang, and C. J. Choi, “Study of the enhanced thermal conductivity of Fe nanofluids”, Journal of Applied Physics, 97, 6 (2005). Cerca con Google

[13] J. Buongiorno, D. C. Venerus, N. Prabhat, T. McKrell, J. Townsenddi et al., “A benchmark study on the thermal conductivity of nanofluids conduttività”, Journal of Applied Physics, 106 (2009). Cerca con Google

[14] A. T. Utomo, H. Poth, P. T. Robbins, A. W. Pacek, “Experimental and theoretical studies of thermal conductivity, viscosity and heat transfer coefficient of titania and alumina nanofluids”, International Journal of Heat and Mass Transfer, 55 (2012). Cerca con Google

[15] P. Warrier and A. Teja, “Effect of particle size on the thermal conductivity of nanofluids containing metallic nanoparticles”, Nanoscale Research Letters, 247, 6 (2011). Cerca con Google

[16] J.C. Maxwell, A Treatise on Electricity and Magnetism, Dover Publications, Inc. (1954). Cerca con Google

[17] R.L. Hamilton and O.K. Crosser, “Thermal conductivity of heterogeneous two-component systems”, Industrial & Engineering Chemistry Fundamentals, 1 182-191 (1962). Cerca con Google

[18] D.A.G. Bruggeman, “Berechnung Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen”, Annalen der Physik, 416, 7, 636-664 (1935). Cerca con Google

[19] S. Lu and H. Lin, “Effective Effective conductivity of composites containing aligned spheroidal inclusions of finite conductivity”, Journal of Applied Physics, 79, 9, 6761-6769 (1996). Cerca con Google

[20] Y. Xuan, Q. Li and W. Hu, “Aggregation structure and thermal conductivity of nanofluids”, AlChE Journal, 49, 4 1038-1043 (2003). Cerca con Google

Chapter 4 Cerca con Google

[1] K.S. Hwang, S.P. Jang, S.U.S. Choi, “Flow and convective heat transfer characteristics of water based Al2O3 nanofluids in fully developed laminar flow regime”, International Journal of Heat and Mass Transfer, 52, 193–9 (2009). Cerca con Google

[2] D.S. Wen, Y.L. Ding, “Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions”, International Journal of Heat and Mass Transfer, 47, 5181–5188 (2004). Cerca con Google

[3] D.J. Faulkner, D.R. Rector, J.J. Davidson, R. Shekarriz, “Enhanced Heat Transfer Through the Use of Nanofluids in Forced Convection”, ASME Paper No. IMECE2004-62147 (2004). Cerca con Google

[4] B. Pak, Y.I. Cho, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide Particle”, Experimental Heat Transfer, 11, 151–170 (1998). Cerca con Google

[5] Y. Xuan, Q. Li, “Investigation on Convective Heat Transfer and Flow Features of Nanofluids”, ASME Journal of Heat Transfer, 125, 151–155 (2003). Cerca con Google

[6] C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, “Heat Transfer Enhancement Using Al2O3-Water Nanofluid for an Electronic Liquid Cooling System”, Applied Thermal Engineering, 27, 1501–1506 (2007). Cerca con Google

[7] N. Prabhat, J. Buongiorno, L.W. Hu, “Convective Heat Transfer Enhancement in Nanofluids: Real Anomaly or Analysis Artifact?”, Journal of Nanofluids, T10070-T10070 (2011). Cerca con Google

[8] Y. Ding, H. Chen, L. Wang, C.Y. Yang, Y. He, W. Yang, W.P. Lee, L. Zhang, R. Huo, “Heat Transfer Intensification Using Nanofluids”, KONA Powder and Particle, 25, 23–38 (2007). Cerca con Google

[9] X.Q. Wang and A.S. Mujumdar, “Heat Transfer Characteristics of Nanofluids: A Review”, International Journal of Thermal Sciences, 46, 1, 55–62 (2007). Cerca con Google

[10] W. Yu, D.M. France, E.V. Timofeeva, D. Singh, J.L. Routbort, “Comparative Review of Turbulent Heat Transfer of Nanofluids”, International Journal of Heat Transfer, 55, 5380–5396 (2012). Cerca con Google

[11] V. Bianco, O. Manca, S. Nardini, “Numerical Simulation of Water/Al2O3 Nanofluid Turbulent Convection”, Advances in Mechanical Engineering, 976254 (2010). Cerca con Google

[12] V. Gnielinski, “New equations for heat and mass transfer in turbulent pipe and channel flow”, International Journal of Chemical Engineering, 16, 359-368 (1976). Cerca con Google

[13] B. S. Petukhov, V. V. Kirillov, “To the question of heat transfer in turbulent pipe flow of liquids in tubes (Zur Frage des Wärmeübergangs bei turbulenter Strömung von Flüssigkeiten in Rohren)”, Teploenergetika, 4, 63 (1958). Cerca con Google

[14] G. K. Filonenko, Hydraulic resistance of pipes (Hydraulischer Widerstand von Rohrleitungen), Teploenergetika, 1, 40 (1954). Cerca con Google

[15] V. Gnielinski, “A new calculation procedure for the heat transfer in the transition region between laminar and turbulent pipe flow (Ein neues Berechnungsverfahren für die Wärmeübertragung im Übergangsbereich zwischen laminarer und turbulenter Rohrströmung)”, Forschung im Ingenieurwesen, 61, 9, 240 (1995). Cerca con Google

[16] P. K. Konakov, “A new equation for the friction coefficient for smooth tubes (Eine neue Formel für den Reibungskoeffizienten glatter Rohre)”, Report of the academic society for science of the UDSSR, LI51, 7, 503 (1946). Cerca con Google

[17] S. W. Churchill, “Comprehensive correlating equations for heat, mass and momentum transfer in fully developed flow in smooth tubes”, Industrial & Engineering Chemistry, 16, 109 (1977). Cerca con Google

[18] D. Huber, H. Walter, Proceedings of the 2010 international conference on theoretical and applied mechanics, and 2010 international conference on Fluid mechanics and heat & mass transfer, 132 (2010). Cerca con Google

[19] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0; National Institute of Standards and Technology (2010). Cerca con Google

Chapter 5 Cerca con Google

[1] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0; National Institute of Standards and Technology (2010). Cerca con Google

[2] S.M.S. Murshed, K.C. Leong, C. Yang, “Enhanced thermal conductivity of TiO2 –water based nanofluids”, International Journal of Thermal Sciences 44, 367-373 (2005). Cerca con Google

[3] X. Zhang, H. Gu, M. Fujii, “Experimental Study on the Effective Thermal Conductivity and Thermal Diffusivity of Nanofluids”, International Journal of Thermophysics, 27, 2, 569-580 (2006). Cerca con Google

[4] W. Duangthongsuk and S. Wongwises, “Effect of thermophysical properties models on the predicting of the convective heat transfer coefficient for low concentration nanofluid”, International Communications in Heat and Mass Transfer, 35, 1320-1326 (2009). Cerca con Google

[5] W. Duangthongsuk and S. Wongwises, “Comparison of the effects of measured and computed thermophysical properties of nanofluids on heat transfer performance”, Experimental Thermal and Fluid Science, 34, 616-624 (2010). Cerca con Google

[6] H. Chen, S. Witharana, Y. Jin, C. Kim, Y. Ding, “Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology”, Particuology, 7, 151-157 (2009). Cerca con Google

[7] W.J. Tseng and K.C. Lin, “Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions”, Materials Science and Engineering, A355 186-192. 2765 (2003). Cerca con Google

Chapter 6 Cerca con Google

[1] M. Yudasaka, S. Iijima, V. H. Crespi, “Carbon Nanotubes”, Topics in Applied Physics. Jorio A, Dresselhaus G, Dresselhaus MS, editor. Vol. 111. Berlin/Heidelberg: Springer; Single-wall carbon nanohorns and nanocones; 605–629 (2008). Cerca con Google

[2] S.U.S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood, E. A. Grulke, “Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions”, Applied Physics Letters, 79, 2252-2254 (2001). Cerca con Google

[3] J. Miyawaki, M. Yudasaka, T. Azami, Y. Kubo, S. Iijima, “Toxicity of single-walled carbon nanohorns”, ACS Nano, 2, 213–226 (2008). Cerca con Google

[4] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0; National Institute of Standards and Technology (2010). Cerca con Google

[5] I.M. Krieger, T.-J. Dougherty, “A mechanism for non-Newtonian flow in suspension of rigid spheres”, Transaction of the Society of Rheology, 3,137–152 (1959). Cerca con Google

[6] H. Chen, Y. Ding, Y. He, C. Tan, “Rheological behaviour of ethylene glycol based titania nanofluids”, Chemical Physics Letters, 444, 333–337 (2007). Cerca con Google

[7] B.X. Wang, L.P. Zhou, X.P. Peng, “A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles”, International Journal of Heat and Mass Transfer, 46, 2665–2672 (2003). Cerca con Google

[8] C.W. Nan, R. Birringer, D.R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance”, Journal of Applied Physics, 81, 10, 6692-6699 (1997). Cerca con Google

[9] R. Prasher, P.E. Phelan, P. Bhattacharya, “Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid)”, Nano Letters, 6, 1529–1534 (2006). Cerca con Google

[10] T. Kitano, T. Kataoka, T. Shirota, “An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers”, Rheologica Acta, 20, 207–209 (1981). Cerca con Google

[11] D.M. Liu, “Heat Transfer Enhancement of Nanofluids”, Journal of Materials Science, 35, 5503–5507 (2000). Cerca con Google

Chapter 7 Cerca con Google

[1] J. Buongiorno, D. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y. Tolmachev, P. Keblinski, L. Hu, J. Alvarado, I. Bang, S. Bishnoi, M. Bonetti, F. Botz, A. Cecere, Y. Chang, G. Chen, H. Chen, S. Chung, M. Chyu, S. Das, R. Di Paola, Y. Ding, F. Dubois, G. Dzido, J. Eapen, W. Escher, D. Funfschilling, Q. Galand, J. Gao, P. Gharagozloo, K. Goodson, J. Gutierrez, H. Hong, M. Horton, K. Hwang, C. Iorio, S. Jang, A. Jarzebski, Y. Jiang, L. Jin, S. Kabelac, A. Kamath, M. Kedzierski, L. Kieng, C. Kim, J. Kim, S. Kim, S. Lee, K. Leong, I. Manna, B. Michel, R. Ni, H. Patel, J. Philip, D. Poulikakos, C. Reynaud, R. Savino, P. Singh, P. Song, T. Sundararajan, E. Timofeeva, T. Tritcak, A. Turanov, S. Van Vaerenbergh, D. Wen, S. Witharana, C. Yang, W. Yeh, X. Zhao, S. Zhou, “A benchmark study on the thermal conductivity of nanofluids”, Journal of Applied Physics, 106, 094312 (2009). Cerca con Google

[2] C. W. Nan, R. Birringer, D. R. Clarke, and H. Gleiter, “Effective thermal conductivity of particulate composites with interfacial thermal resistance”, Journal of Applied Physics, 81, 10, 6692-6699 (1997). Cerca con Google

[3] Y.J Chen, P.Y. Wang, Z.H. Liu, “Application of water-based SiO2 functionalized nanofluid in a loop thermosyphon”, International Journal of Heat and Mass Transfer, 56, 59-68 (2013). Cerca con Google

[4] A.M. Hussein, R.A. Bakar, K. Kadirgama, “Study of forced convection nanofluid heat transfer in the automotive cooling system”, Case Studies in Thermal Engineering, 2, 50–61(2014). Cerca con Google

[5] A. A. R. Darzi, M. Farhadi, K. Sedighi, R. Shafaghat, K. Zabihi, “Experimental investigation of turbulent heat transfer and flow characteristics of SiO2/water nanofluid within helically corrugated tubes”, International Communications in Heat and Mass Transfer, 39, 1425–1434 (2012). Cerca con Google

[6] S. Ferrouillat, A. Bontemps, J.P. Ribeiro, J.A. Gruss, O. Soriano, “Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions”, International Journal of Heat and Fluid Flow, 32, 424-439 (2011). Cerca con Google

Chapter 8 Cerca con Google

[1] S.U.S. Choi, “Nanofluid technology: current status and future research”, Energy Technology Division, Argonne National Laboratory, Argonne. Cerca con Google

[2] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0; National Institute of Standards and Technology (2010). Cerca con Google

[3] T.W. Phuoc and M. Massoudi, “Experimental observations of the effects of shear rates and particle concentration on the viscosity of Fe2O3–deionized water nanofluids”, International Journal of Thermal Sciences, 48, 1294-1301 (2009). Cerca con Google

[4] M.J. Pastoriza-Gallego, L. Lugo, J.L. Legido, M.M. Piñeiro, “Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids”, Nanoscale Research Letters, 6, 1, 560 (2011). Cerca con Google

[5] T.H. Tsai, L.S. Kuo, P.H. Chen, D.S Lee, C.T. Yang, “Applications of ferro-nanofluid on a micro-transformer”, Sensors, 10, 9, 8161-8172 (2010). Cerca con Google

[6] T.H. Tsai, P.H. Chen, D.S. Lee, C.T. Yang, “Investigation of electrical and magnetic properties of ferro-nanofluid on transformers”, Nanoscale Research Letters, 6, 264 (2011). Cerca con Google

[7] I. Nkurikiyimfura, Y. Wanga, Z. Pan, “Heat transfer enhancement by magnetic nanofluids - A review”, Renewable and Sustainable Energy Reviews, 21, 548–561 (2013). Cerca con Google

[8] C. Clauser and E. Huenges, Rock Physics and Phase Relations, A Handbook of Physical Constants, edited by T. J. Ahrens (American Geophysical Union), Washington, D.C. (1995). Cerca con Google

[9] T. Kitano, T. Karaoka and T. Shirota, “An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers”, Rheologica Acta, 20, 207-209 (1981). Cerca con Google

[10] D.M. Liu, “Particle packing and rheological property of highly-concentrated ceramic suspensions: ϕm determination and viscosity prediction”, Journal of Materials Science, 35, 5503-5507 (2000). Cerca con Google

Chapter 8 Cerca con Google

[1] E. W. Lemmon, M. L. Huber, M. O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0; National Institute of Standards and Technology (2010). Cerca con Google

[2] G.J. Lee, C.K. Kim, M.K. Lee, C.K. Rhee, S. Kim, C. Kim, “Thermal conductivity enhancement of ZnO nanofluid using one-step physical method”, Thermochimica Acta, 542, 24 (2012). Cerca con Google

[3] M. Kole, T. K. Dey, “Effect of prolonged ultrasonication on the thermal conductivity of ZnO–ethylene glycol nanofluids”, Thermochimica Acta, 535, 58 (2012). Cerca con Google

[4] W. Yu, H. Xie, L. Chen, Y. Li, “Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid”, Thermochimica Acta, 491, 92-96 (2009). Cerca con Google

[5] M.T. Zafarani-Moattar, R. Majdan-Cegincara, “Effect of temperature on volumetric and transport properties of nanofluids containing ZnO nanoparticles poly(ethylene glycol) and water”, Journal of Chemical Thermodynamics, 54, 55-67 (2012). Cerca con Google

[6] R. Jalal, E. K. Goharshadia, M. Abareshi, M. Moosavic, A. Yousefi, P. Nancarro, “ZnO nanofluids: Green synthesis, characterization, and antibacterial activity”, Materials Chemistry and Physics, 121, 198 (2010). Cerca con Google

[7] L. Zhang, Y. Ding, M. Povey, D. York, “ZnO nanofluids-A potential antibacterial agent”, Progress in Natural Science, 18, 939 (2008). Cerca con Google

[8] A. K. Singh, “Synthesis, characterization, electrical and sensing properties of ZnO nanoparticles”, Advanced Powder Technology, 21, 609 (2010). Cerca con Google

[9] S. Ferrouillat, A. Bontemps, O. Poncelet, O. Soriano, “Influence of nanoparticle shape factor on convective heat transfer and energetic performance of water-based SiO2 and ZnO nanofluids”, Applied Thermal Engineering, 51, 839 (2013). Cerca con Google

[10] K. S. Suganthi, K. S. Rajan, “Temperature induced changes in ZnO–water nanofluid: Zeta potential, size distribution and viscosity profiles”, International Journal of Heat and Mass Transfer, 55, 7969 (2012). Cerca con Google

Chapter 10 Cerca con Google

[1] H. Xie, J. Wang, T. Xi, Y. Liu, “Thermal conductivity of suspensions containing nanosized SiC particles”, International Journal of Thermal Sciences, 23, 571-580 (2002). Cerca con Google

[2] M.J. Assael, E. Charitidou, S. Avgoustiniatos, W.A. Wakeham, “Absolute Measurements of the Thermal Conductivity of Mixtures of Alkene-Glycols with Water”, International Journal of Thermophysics, 10, 1127-1140 (1989). Cerca con Google

[3] W. Yu, D.M. France, D.S. Smith, D. Singh, E.V. Timofeeva, J.L. Routbort, “Heat transfer to a silicon carbide/water nanofluid”, International Journal of Heat and Mass Transfer, 52, 3606-3612 (2009). Cerca con Google

[4] A. Ijam and R. Saidur, “Nanofluid as a coolant for electronic devices (cooling of electronics devices)”, Applied Thermal Engineering, 32, 76-82 (2012). Cerca con Google

Chapter 11 Cerca con Google

[1] C.Y. Tsai, H.T. Chien, P.P Ding, B. Chan, T.Y. Luh, P.H. Chen, “Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance”, Materials Letters, 58, 1461-1465 (2004). Cerca con Google

[2] J.A. Dahl, B.L.S. Maddux, J.E. Hutchison, “Toward Greener Nanosynthesis”, Chemical Reviews, 107, 6, 2228-2269 (2007). Cerca con Google

[3] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0; National Institute of Standards and Technology (2010). Cerca con Google

[4] H.E. Patel, S.K. Das, T. Sundararajan, A.S. Nair, B. George, T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects”, Applied Physics Letters, 83, 14, 2931-2933 (2003). Cerca con Google

[5] G. Paul, T. Pal, I. Manna, “Thermophysical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique”, Journal of Colloid and Interface Science, 349, 434–437 (2010). Cerca con Google

[6] H.J. Kim, I.C. Bang, J. Onoe, “Characteristic stability of bare Au-water nanofluids fabricated by pulsed laser ablation in liquids”, Optics and Lasers in Engineering, 47, 532–538 (2009). Cerca con Google

Chapter 12 Cerca con Google

[1] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23, Reference Fluid Thermodynamic and Transport Properties (REFPROP), version 9.0; National Institute of Standards and Technology (2010). Cerca con Google

[2] Å. Melinder, “Properties of Secondary Working Fluids for Indirect Systems. Secondary Refrigerants or Coolants, Heat Transfer Fluids”, International Institute of Refrigeration (IIR) (2010). Cerca con Google

[3] A.Z. Dakroury, M.B.S. Osman, A.W.A. EI-Sharkawy, “Thermal Properties of Aqueous Solutions of Polyvinylpyrrolidone in the Temperature Range 20-80°C”, International Journal of Thermophysics, 11, 3, 151-532 (1990). Cerca con Google

[4] P. Sharma, I.H. Baek, T. Cho, S. Park, K. B. Lee, “Enhancement of thermal conductivity of ethylene glycol based silver nanofluids”, Powder Technology, 208, 7–19 (2011). Cerca con Google

[5] K. Vajravelu, “The effect of variable viscosity on the flow and heat transfer of a viscous Ag- water and Cu-water nanofluids”, Journal of Hydrodynamics, 25, 1-9 (2013). Cerca con Google

[6] P. Jain, T. Pradeep, “Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter”, Biotechnol Bioeng, 90, 59-63 (2005). Cerca con Google

[7] A.D. McFarland, R.P.V. Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity”, Nano Letters, 3, 8, 1057-1062 (2003). Cerca con Google

[8] L. G. Asirvatham, R. Nimmagadda, S. Wongwises, “Heat transfer performance of screen mesh wick heat pipes using silver–water nanofluid”, International Journal of Heat and Mass Transfer, 60, 201–209 (2013). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record