Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Dall'Ora, Luca (2014) Analysis and Design of a Linear Tubular Electric Machine for Free-piston Stirling Micro-cogeneration Systems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
6Mb

Abstract (inglese)

The UE investments for the renewable source development, in order to achieve the set goals (Kyoto protocol and “20-20-20” targets), push to investigate in new technologies and to develop the existing. In this context, the cogeneration (CHP) plays a fundamental role, and in particular, the micro-CHP has wide development margins.
Among the different cogeneration process, the systems driven by a free-piston Stirling engine are one of the most significant challenges in the research area. In such systems, the thermal energy, coming from primary energy source (for example renewable energy), is converted into mechanical energy through a Stirling engine, and then a linear generator converts the mechanical energy into electrical energy, finally, the generator is connected to the electric grid or to the load by means of an electric converter. The use of the linear generator, instead of the traditional systems of linear to alternating motion conversion (rod-crank system), allows achieving several advantages, including: improving the system reliability, noise and cost reduction. Finally, this kind of system, if well-designed, allows improving the system efficiency.
In this thesis a linear generator, directly coupled to a free-piston Stirling engine in a CHP system, was developed and analysed. It was found, after a first phase of the study and literature review, that the most convenient choice, from the technical and economic point of view, is a single-phase tubular permanent magnet linear generator. In particular, the magnets are made of plasto-neodymium, while, for the realization of the stator magnetic circuit, due to the geometrical complexity, soft magnetic composites (SMC) materials have been considered.
In order to determine the generator performance, an analysis method based on FEAs was developed. This simplified method (HFEA) allows the study and the comparison of different magnetization patterns and current supply strategies. The proposed methodology exploits the representation of the magnetization spatial harmonics through an analytical processing that allows taking into account different magnetization profile of the permanent magnets. Thus, it was possible to reconstruct the most important quantities, such as the flux density and the flux linkage, superposing the effect of each harmonic obtained through the Fourier analysis. Furthermore, a procedure, able to reproduce the effects of magnetic saturation of the mover, generally not negligible in such kind of machines, was developed. For this purpose, an appropriate surface current distribution on the yoke of the mover was introduced, in order to reproduce the demagnetizing effect due to the saturation.
By means of the air gap flux density, the force provided by linear generator was calculated, while, by means of the flux density sampled on suitable points on the stator and mover yokes, the iron losses were estimated and then the machine efficiency. By means of the flux linkage the emf provided by linear generator was determined.
The results show a very good agreement with corresponding FEAs. The proposed analysis method allows carrying out a parametric analysis with a lower computational effort. Thanks to this feature, different magnetization patterns, supply strategies and SMC materials can be compared in order to optimize the machine design.
A prototype based on the design guidelines was built; then, a procedure based on experimental measurement was developed to characterize the electromagnetic parameters. To determine the magnetization profile of the magnets, the flux density on the mover surface was carried out by means of a Gaussmeter. As regards the SMC materials that compose the stator core, a calculation method was developed from suitable experimental elaborations, in order to determine the most important magnetic properties, such as the BH curve and core loss coefficients.
From experimental results, it can be noted that the actual characteristics are poorer than those provided by the manufactured datasheets, likely due to the manufacturing processes and spurious air gaps between the SMC modules. The update electromagnetic parameters are used to determine the actual performance of the machine, particularly to estimate the efficiency, the emf and the force.
Finally, a simplified model of the cogeneration system was developed in order to predict the dynamic behaviour and particularly, the actual values of the speed, output power and efficiency. This model allows developing the control strategy of the linear generator acting on the electric converter.

Abstract (italiano)

Gli investimenti da parte dei paesi della UE per lo sviluppo delle fonti rinnovabili, al fine di raggiungere gli obiettivi preposti (Protocollo di Kioto e Piano “20-20-20”), spingono a ricercare nuove tecnologie e a sviluppare quelle già esistenti. In questo ambito, la cogenerazione ricopre un ruolo fondamentale, ed in particolare, la micro-cogenerazione, anche in ambito domestico, presenta ancora ampi margini di sviluppo.
Tra le diverse modalità di cogenerazione, i sistemi free-piston azionati da motori Stirling rappresentano una tra le sfide più importanti nell’ambito della ricerca. In tali sistemi l’energia termica, proveniente da una fonte di energia primaria (ad esempio di tipo rinnovabile), è convertita in energia meccanica attraverso un motore Stirling; successivamente un generatore lineare converte l’energia meccanica in elettrica; ed infine, un convertitore elettrico interfaccia il generatore con un carico o con la rete elettrica. L’utilizzo del generatore lineare, al posto dei tradizionali sistemi di conversione del moto da lineare ad alternato (sistema biella-manovella), consente di ottenere diversi benefici, tra cui: migliorare l’affidabilità del sistema, limitare il rumore e ridurre i costi. Infine, questo sistema, se ben progettato, permette di aumentare il rendimento dell’impianto di cogenerazione.
In questo lavoro di tesi è stato progettato ed analizzato un generatore lineare da accoppiare direttamente ad un motore Stirling free-piston in un sistema di cogenerazione domestico. Dopo una prima fase di studio e ricerca bibliografica, è stato riscontrato che la scelta più conveniente dal punto di vista tecnico-economico, risulta essere quella di un generatore monofase tubolare a magneti permanenti. In particolare, i magneti sono a base di plasto-neodimio, mentre, per la realizzazione del circuito magnetico di statore, data la complessità geometrica, si sono considerati materiali magnetici compositi (SMC).
Al fine di determinare le prestazioni del generatore, è stata sviluppata una metodologia di analisi, basata su analisi FEM, che permettesse lo studio ed il confronto di diverse tipologie di magnetizzazione, in particolare radiale e Halbach, e considerare diverse strategie di alimentazione. Tale metodologia (HFEA) sfrutta la rappresentazione delle armoniche spaziali di magnetizzazione attraverso un'elaborazione di tipo analitico che permette di riprodurre diverse funzioni di magnetizzazione dei magneti permanenti. In tal modo, è stato possibile ricostruire le principali grandezze di interesse (induzione e flusso concatenato) sovrapponendo l’effetto di ciascuna armonica ricavata attraverso l'analisi di Fourier. Inoltre, è stata sviluppata una procedura in grado di riprodurre gli effetti della saturazione magnetica del traslatore, generalmente non trascurabile in questo tipo di macchine. A questo proposito sono state introdotte opportune distribuzioni superficiali di corrente sul giogo del traslatore che riproducono l'effetto smagnetizzante dovuto alla saturazione.
Dai valori dell’induzione al traferro, è possibile risalire al valore della forza esplicata dal generatore; mentre, dai valori dell’induzione, campionati in opportuni punti all’interno dei nuclei magnetici dello statore e del traslatore, è stato possibile stimare le perdite nel ferro e quindi il rendimento della macchina. Dal profilo del flusso concatenato è stato possibile stimare l’andamento della forza elettromotrice generata.
I risultati hanno evidenziato un ottimo accordo con le corrispondenti analisi agli elementi finiti, con il vantaggio rispetto a queste di poter effettuare analisi parametriche che coinvolgono diverse grandezze progettuali con tempi di calcolo inferiori. Grazie a questa caratteristica, è stato possibile confrontare le prestazioni con varie tipologie di magnetizzazioni, strategie di alimentazione e caratteristiche di materiali SMC, effettuando una prima ottimizzazione del progetto della macchina.
Dopo aver realizzato un prototipo sulla base delle indicazioni progettuali, è stata sviluppata una procedura sperimentale atta a determinare i parametri elettromagnetici del generatore, per verificarne la congruenza con le ipotesi progettuali e mettere a punto quindi i modelli per le analisi successive. Per determinare il profilo di magnetizzazione dei magneti sono state effettuate delle misure di induzione sulla superficie del materiale magnetico mediante l’uso di un Gaussmetro. Invece, per i materiali SCM che costituiscono lo statore della macchina, a partire da opportune elaborazioni sperimentali, è stato sviluppato un metodo di calcolo in grado di determinare le principali proprietà magnetiche (permeabilità, caratteristica BH e coefficienti delle perdite nel ferro per isteresi, correnti parassite ed eccesso).
Dai risultati sperimentali si nota che le caratteristiche reali sono meno performanti rispetto a quelle fornite dai datasheet dei costruttori, molto probabilmente a causa dei processi di lavorazione e dei traferri spuri presenti tra i moduli di SMC. I valori delle grandezze magnetiche aggiornate sono stati utilizzati per stimare le reali condizioni di esercizio della macchina, in particolare per determinare il valore del rendimento, della tensione e della forza sviluppata dalla macchina.
È poi stato sviluppato un modello semplificato che consente di riprodurre il comportamento dinamico del sistema di cogenerazione completo e di ricavare il profilo effettivo di velocità, la potenza erogata e il rendimento complessivo del sistema. Considerando l'interazione tra i singoli componenti, l'applicazione di questo modello risulta di estrema importanza per eseguire l’analisi e permette di mettere a punto la strategia di controllo del generatore agendo sul convertitore di interfacciamento con il carico.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Martinelli, Giovanni
Correlatore:Tortella, Andrea
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA INDUSTRIALE > INGEGNERIA DELL' ENERGIA
Data di deposito della tesi:26 Gennaio 2014
Anno di Pubblicazione:26 Gennaio 2014
Parole chiave (italiano / inglese):Linear generator, Free-piston, Stirling engine, co-generation system, renewable energy, FEM, FEA, tubular, PM
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/31 Elettrotecnica
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:6366
Depositato il:03 Nov 2014 12:35
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] DG for Energy and Transport (2009). "EU energy and transport in figures" - Luxembourg: Office for the Official Publications of the European communities. Cerca con Google

[2] REMODECE Project Members (2008). "Report with the results of the surveys based on questionnaires for all countries in REMODECE - Residential Monitoring to Decrease Energy Use and Carbon Emissions in Europe (IEEA Program Funded Project)". Cerca con Google

[3] European Environmental Agency (2001). Chapter "Households" in "Indicator Fact Sheet Signals 2001" - European Environmental Agency. Cerca con Google

[4] Almeida, A. and Fonseca, P. "Residential monitoring to Decrease Energy use and Carbon Emissions in Europe" in European Council for an Energy Efficient Economy, ECEEE Conference 2007 Summer Study. 2007. Côte d´Azur, France. Cerca con Google

[5] "Presidency Conclusions - Council of the European Union 8/9 March 2007" - European Parliament and European Council - Doc No. 7224/1/07 REV 1. Cerca con Google

[6] The World Bank (2010). "Part II-7Accelerating innovation and technology diffusion" in "World Development Report 2010" - The International Bank for Reconstruction and Development / The World Bank. Washington, USA. Cerca con Google

[7] "Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources" - European Parliament and European Council. Cerca con Google

[8] Macchi, E., Campanari, S. and Silva, P. La Microcogenerazione a gas naturale, ed. Polipress. Vol. Scienza e tecnologia per l'energetica. 2005, Milano: Polipress. Cerca con Google

[9] Josephson, M. "Edison; a biography". 1959, New York, USA: McGraw-Hill. Cerca con Google

[10] Eurostat. "Eurostat Web Portal". Main Database - Environment and Energy. Cerca con Google

[11] Lai, S.M. and Hui, C.W. "Feasibility and flexibility for a trigeneration system" Energy, 2009. 34: pgs. 1693-1704. Cerca con Google

[12] Carvalho, M., Serra, L.M. and Lozano, M.A. "Geographic evaluation of trigeneration systems in the tertiary sector. Effect of climatic and electricity supply conditions" Energy, 2010. 36(4): pgs. 1931-1939. Cerca con Google

[13] Borg, S. P. "Micro-trigeneration for energy-efficient residential buildings in southern Europe" Ph.D. Thesis, University of Strathclyde, Department of Mechanical & Aerospace Engineering, 2012. Cerca con Google

[14] Wu, D.W. and Wang, R.Z. "Combined cooling, heating and power: A review" Progress in Energy and Combustion Science 2006. 32: pgs. 459-495. Cerca con Google

[15] W. Beale, "Power Piston Actuated Displacer Piston Driving Means for Free-Piston Stirling Cycle Type Engine", U.S. Patent No. 3,937,018, February 10, 1976. Cerca con Google

[16] Neill W. Lane, "Commercialization Status of Free-piston Stirling Machines", 12th International Stirling Engine Conference, Durham (UK), September 2005 Cerca con Google

[17] W. Beale, G. Chen, "Small Stirling Free-Piston Engines for Cogeneratio", Sunpower Inc., Athens (Ohio), June 1992. Cerca con Google

[18] S. A. Zulkifli, M. N. Karsiti and A. R. A. Aziz, "Starting of a Free-Piston Linear Engine-Generator by Mechanical Resonance and Rectangular Current Commutation", IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008, Harbin, China. Cerca con Google

[19] J. Wang, D. Howe, "A linear permanent magnet generator for a free-piston energy converter", Conference on Electric Machines and Drives, 2005 IEEE International, 15-15 May 2005, San Antonio, TX. Cerca con Google

[20] Key World Energy Statistics Cerca con Google

[21] International Energy Statistics, www.eia.gov. Vai! Cerca con Google

[22] A. D. Minassians, "Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation", Pd.D. Thesis, Electrical Engineering and Computer Sciences, University of California at Berkeley, 2007. Cerca con Google

[23] Parabolic Dish Stirling Module Development and Test Results. Cerca con Google

[24] Introduction to Dish Stirling Technology – ennex developments, Solar South Africa, 21 June 2011, http://www.ennex.co.za/downloads/Dish Stirling Solar South Africa Conference 21 June 2011.pdf Vai! Cerca con Google

[25] W. T. Welford, Roland Winston, "High Collection Nonimaging Optics", ACADEMIC PRESS, INC. Cerca con Google

[26] M. Gräf, P. Treffinger, S. Pohl, F. Rinderknecht: "Investigation of a high efficient Free-piston Linear Generator with variable Stroke and variable Compression Ratio", 2007, WEVA Journal Volume l. Cerca con Google

[27] F. Rinderknecht, "A Highly Efficient Energy Converter for a Hybrid Vehicle Concept – Focused on the Linear Generator of the Next Generation", 2013 Eighth International Conference and Exhibition on Ecological Vehicles and Renewable Energies (EVER), 2013. Cerca con Google

[28] Thorpe, T.W., "An Overview of Wave Energy Technologies" Report AEAT-3615, Office of Science and Technology, AEA Technology, 1999. Cerca con Google

[29] "2004 Survey of Energy", World Energy Council, London (UK), 2004. Cerca con Google

[30] EV ANS, D.V.: "A theory for Wave-Power absorption by oscillating bodies", Journal of Fluid Mechanics, 77, 1976, ppl-23 Cerca con Google

[31] Mueller, MA, et al., "Low Speed Linear Electric Generators for Renewable Energy Applications", Proceeding of the Conference on Linear Drives in Industrial Apllications (LDIA 2003), Birmingan (UK), pp. 121- 124, 2003. Cerca con Google

[32] L. Szabo, C. Oprea, J. Viorel, K. A. Biro "Novel Permanent Magnet Tubular Linear Generator for Wave Energy Converters", Electric Machines & Drives Conference, 2007. IEMDC '07. IEEE International (Volume:2 ), 3-5 May 2007, Antalya. Cerca con Google

[33] Yokobori, K., "Survey of Energy Resources," 19th edition, World Energy Council, Tokyo (Japan), 2002. Cerca con Google

[34] Danielsson, O., Thorburn, K., Eriksson, and M., Leijon, M., "Permanent magnet fixation concepts for linear generator," Proceedings of the 5th European Wave Energy Conference, Cork (Ireland), pp. 117-124, 2003. Cerca con Google

[35] Mueller, M.A. et al., "Dynamic Modelling of a Linear Vernier Hybrid Permanent Magnet Machine Coupled to a Wave Energy Emulator Test Rig," Conference Record of the International Conference on Electrical Machines (ICEM '2004), Cracow (Poland), on CD: 495.pdf, 2004. Cerca con Google

[36] Brooking, P.R.M., "Power conversion in a low speed reciprocating electrical generator," Conference Record of the International Conference on Electrical Machines (ICEMA'2002), Brugge (Belgium), on CD: 452.pdf, 2002. Cerca con Google

[37] Baker, N.J., "Linear Generators for Direct Drive Marine Renewable Energy Converters," Ph.D. Thesis, School of Engineering, University of Durham (UK), 2003. Cerca con Google

[38] C. A. Oprea, C. S. Martis, F. N. Jurca, D. Fodorean, L. Szabó, "Permanent Magnet Linear Generator for Renewable Energy Applications: Tubular vs. Four-Sided Structures", International Conference on Clean Electrical Power (ICCEP) 2011, 14-16 June 2011, Ischia (Italy). Cerca con Google

[39] P. Frangois, I. Garcia Burrel, H. Ben Ahmed, L. Prevond, B. Multon, "3D Analytical Model for a Tubular Linear Induction Generator in a Stirling cogeneration system", Electric Machines & Drives Conference, IEMDC '07, IEEE International, 2007. Cerca con Google

[40] S. Hor, A. Tabesh, A. Zamani, "Analytical Model of an Improved Linear Generator for Seawave Energy Harvesting", Conference on Renewable Power Generation (RPG 2011), IET, 6-8 Sept. 2011, Edinburgh (Scotland). Cerca con Google

[41] T. T. Dang, P. François, L. Prévond, H. B. Ahmed, "Theoretical and experimental results of Tubular Linear Induction Generator for Stirling Cogenerator System", Conference on Electrical Machines (ICEM), 2010 XIX International, 6-8 Sept. 2010, Rome (Italy). Cerca con Google

[42] Van Arsdell BH. Stirling engines. In: Zumerchik J, editor. Macmillan encyclopedia of energy, vol. 3. Macmillan Reference USA; 2001. p. 1090–95. Cerca con Google

[43] Senft JR. Ringbom Stirling engines. New York: Oxford University Press, 1993. Cerca con Google

[44] Walker G. Stirling engines. Oxford: Clarendon Press, 1980. Cerca con Google

[45] Walpita SH. Development of the solar receiver for a small Stirling engine. In: Special study project report no. ET-83-1. Bangkok: Asian Institute of Technology; 1983. Cerca con Google

[46] West CD. A historical perspective on Stirling engine performance. In: Proceedings of the 23rd Intersociety Energy Conversion Engineering Conference, Paper 889004. Denver: American Society of Mechanical Engineers; 1988. Cerca con Google

[47] Trayser DA, Eibling JA. A 50-Watts portable generator employing a solar-powered Stirling engine. Sol Energy 1967;11:153–9. Cerca con Google

[48] Gupta RK, Deshpande AM, Brave KM. Development of 1 kW solar powered reciprocating engine for rural applications. In: International Solar Energy Congress, New Delhi. 1978. p. 2016–20. Cerca con Google

[49] Spencer LC. A comprehensive review of small solar-powered heat engines: Part I.I. Research since 1950—“Conventional” engines up to 100 kW. Sol Energy 1989;43:197–210. Cerca con Google

[50] Pearce JM, Al Zahawi BA, Auckland DW, Starr F. Electricity generation in the home: evaluation of single-house domestic combined heat and power. IEE Proc-A 1996;143:345–50. Cerca con Google

[51] Prodesser E. Electricity production in rural villages with biomass Stirling engine. Renew Energy 1999;16:1049–52. Cerca con Google

[52] Dixit DK, Ghodke SV. Renewable energy powered Stirling engines—a viable energy alternative. In: Sayigh AAM, editor. Renewable energy technology and the environment. Proceedings of the Second World Renewable Energy Congress, vol. 2. 1992. p. 934–8. Cerca con Google

[53] Markman MA, Shmatok YI, Krasovkii VG. Experimental investigation of a low-power Stirling engine. Geliotekhnika 1983;19:19–24. Cerca con Google

[54] Orunov B, Trukhov VS, Tursunbaev IA. Calculation of the parameters of a symmetrical rhombic drive for a single-cylinder Stirling engine. Geliotekhnika 1983;19:29–33. 152 B. Kongtragool, S. Wongwises / Renewable and Sustainable Energy Reviews 7 (2003) 131–154 Cerca con Google

[55] Abdalla S, Yacoub SH. Feasibility prediction of potable water production using waste heat from refuse incinerator hooked up at Stirling cycling machine. Desalination 1987;64:491–500. Cerca con Google

[56] Nakajima N, Ogawa K, Fujimasa I. Study on micro-engines: miniaturizing Stirling engines for actuators. Sensor Actuator 1989;20:75–82. Cerca con Google

[57] Aramtummaphon D. A study of the feasibility of using heat energy from producer gas for running Stirling engine by steam as working Fluid. Master thesis, King Mongkut’s University of technology Thonburi; 1996. Cerca con Google

[58] Hirata K, Iwamoto S, Toda F, Hamaguchi K. Performance evaluation for a 100 W Stirling engine. In: Proceedings of Eighth International Stirling Engine Conference. 1997. p. 19–28. Cerca con Google

[59] Costea M, Feidt M. The effect of the overall heat transfer coefficient variation on the optimal distribution of the heat transfer surface conductance or area in a Stirling engine. Energy Convers Manage 1998;39:1753–63. Cerca con Google

[60] Wu F, Chen L, Wu C, Sun F. Optimum performance of irreversible Stirling engine with imperfect regeneration. Energ Convers Manage 1998;39:727–32. Cerca con Google

[61] Wu F, Chen L, Sun F, Wu C, Zhu Y. Performance and optimization criteria for forward and reverse quantum Stirling cycles. Energ Convers Manage 1998;39:733–9. Cerca con Google

[62] Wu F, Chen L, Sun F, Wu C. Finite-time exergoeconomic performance bound for a quantum Stirling engine. Int J Eng Sci 2000;38:239–47. Cerca con Google

[63] Gu Z, Sato H, Feng X. Using supercritical heat recovery process in Stirling engines for high thermal efficiency. Appl Therm Eng 2001;21:1621–30. Cerca con Google

[64] Winkler W, Lorenz H. Design studies of mobile applications with SOFC-heat engine modules. J Power Sources 2002;106:338–43. Cerca con Google

[65] Hsu ST, Lin FY, Chiou JS. Heat-transfer aspects of Stirling power generation using incinerator waste energy. Renew Energ 2003;28:59–69. Cerca con Google

[66] Ptrescu S, Costea M, Harman C, Florea T. Application of the direct method to irreversible Stirling cycles with finite speed. Int J Energ Res 2002;26:589–609. Cerca con Google

[67] Rizzo JG. The Stirling engine manual. Somerset: Camden miniature steam services, 1997. Cerca con Google

[68] Jordan RC, Ibele WE. Mechanical energy from solar energy. In: Proceedings of the World Symposium on Applied Solar Energy, Phoenix. 1955. p. 81–101. Cerca con Google

[69] Spencer LC. A comprehensive review of small solar-powered heat engines: Part I. A history of solar-powered devices up to 1950. Sol Energy 1989;43:191–6. Cerca con Google

[70] Ericsson J. Sun power; the solar engine. Contributions to the Centennial Exhibition, Philadelphia: John Ericsson, 1870. p. 571–77. Cerca con Google

[71] Daniels F. Direct use of the sun’s energy. New Haven: Yale University Press, 1964. Cerca con Google

[72] Meinel AB, Meinel MP. Applied solar energy: an introduction. Reading, MA: Addison-Wesley, 1976. Cerca con Google

[73] Reader GT, Hooper C. Stirling engines. London: Cambridge University Press, 1983. Cerca con Google

[74] Ghai ML. Small solar power plants. In: Daneils F, Duffie JA, editors. Solar energy research. London: Thames and Hudson; 1955. p. 81–4 [Section 4]. Cerca con Google

[75] Dunn PD. Solar powered pumps. Joint Conference: University of Reading and U. K. I.S.E.S.: Solar Energy in Agriculture; 1976. p. 55–7. Cerca con Google

[76] Meijer RJ. STM4-120 Stirling engine for solar application. Abs. I.S.E.S, Solar World Congress, Hamburg; 1987. p. 2, 13, 16. Cerca con Google

[77] Jordan RC. Conversion of solar to mechanical energy. In: Zarem AM, Erway DD, editors. Introduction to the utilization of solar energy. New York: McGraw-Hill; 1963. p. 125–52. Cerca con Google

[78] Utz JA, Braun RA. Design and initial tests of a Stirling engine for solar energy applications. MS thesis, Mechanical Engineering Department, University of Wisconsin; 1960. Cerca con Google

[79] Finkelstein T. Internally focussing solar power systems. American Society of Mechanical Engineers, Paper 61-WA-297. Annual Meeting; 1961. Cerca con Google

[80] Gurtler RW. Optically driven solar engine. U.S. Patent; 1979. p. 4, 173, 123. Cerca con Google

[81] Walker G, Kentfield J, Johnson E, Fauvel R, Srinivasen V. Coal-fired Stirling engines for railway locomotive and stationary applications. Proc Inst Mech Eng 1983;197:46. Cerca con Google

[82] Hull PG, Hunt AJ. A reciprocating solar-heated engine utilizing direct absorption by small particles. J Sol Eng Trans ASME 1984;106:29–34. Cerca con Google

[83] Holland MB. The Stirling engine—power plant of the future? Charter Mech Eng 1979;April:60–3. Cerca con Google

[84] Pons RL, Fox RJ. A solar/Stirling total energy system. In: Sharing the Sun, Solar Technology in the 1970s Conference, Winnipeg. 1976. p. 77–91. Cerca con Google

[85] Brown CT, Mackie PE, Neale DH. Advanced component research in the solar thermal program. In: Proceedings of the Solar World Congress, Perth. 1983. p. 1421–5. Cerca con Google

[86] Marriott AT. Solar electric power from parabolic dishes. In: Proceedings of the Solar World Congress, Perth. 1983. p. 1438–43. Cerca con Google

[87] Selcuk MK, Bowyer JM. Dish Stirling module performance analysis as evaluated from tests ofvarious TBC concentrator/USAB engine configurations as the parabolic dish test site. Ext. Abst. Intersol ’85, Montreal; 1985. p. 313. Cerca con Google

[88] McGlaun MA. The LaJet energy large scale innovative solar concentrator study of wind loading effects. Abs., I.S.E.S. Solar World Congress, Hamburg; 1987. p. 2, 18, 15. Cerca con Google

[89] Schlaich J. Solar power plants with a membrane concave mirror-50 kW. Abs., I.S.E.S. Solar World Congress, Hamburg; 1987. p. 2, 18, 16. Cerca con Google

[90] Al-Rebaian A, Hansen J. 50 kW Solar concentrators with stirling generators—results of the first six mounts of operation in Saudi Arabia. Abs., I.S.E.S. Solar World Congress, Hamburg; 1987. p. 2, 13, 15. Cerca con Google

[91] Leibowitz L, Hanseth E. Solar thermal technology-outlook the 80’s. Mech Eng 1982;104:30–5. Cerca con Google

[92] Ahmed A, Al-Agami M, Al-Garni M. Solar powered Stirling engine with a single membrane dish concentrator. In: Proceedings of the First World Renewable Energy Congress, Energy and the Environment, Reading, UK, September 23–28, vol. 2. 1990. p. 1202–7. Cerca con Google

[93] Childs WD, Dabiri AE, Al-Hinai HA, Abdullah HA. VARI-RO solar-powered desalting technology. Desalination 1999;125:155–66. Cerca con Google

[94] Audy Ch, Fischer M, Messerschmid EW. Nonsteady behaviour of solar dynamic power systems with Stirling cycle for space stations. Aerosp Sci Technol 1999;1:49–58. Cerca con Google

[95] Washom B. Parabolic dish Stirling module development and test results. In: Proceedings of the IECEC, Paper No. 849516, San Francisco. 1984. Cerca con Google

[96] Stine WB, Diver RP. A compendium of solar dish/Stirling technology. Sandia National Laboratories, Albuquerque, Report SAND93-7026 UC-236; 1994. Cerca con Google

[97] West CD. Principles and applications of Stirling engines. New York: Van Nostrand Reinhold, 1986. Cerca con Google

[98] Droher J, Squier S. Performance of the Vanguard solar dish-Stirling module. Electric Power Research Institute, Palo Alto, Report AP-4608; 1986. Cerca con Google

[99] Lopez CW, Stone KW. Design and performance of the Southern California Edison Stirling dish. In: Proceedings of the 1992 ASME-JSES-KSES International Solar Energy Conference, Maui. 1992. Cerca con Google

[100] Lopez CW, Stone KW. Design and performance of the Southern California Edison Stirling dish. Sandia National Laboratories, Albuquerque, Report SAND93-7098; 1993. Cerca con Google

[101] Stone KW, Drubka RE. Impact of Stirling engine operational requirements on dish-Stirling system life cycle costs. In: Proceedings of the 1994 ASME Solar Energy Conference, San Francisco. 1994. Cerca con Google

[102] Stone KW, Lopez CW, McAlister R. Economic performance of the SCE Stirling dish. In: Proceedings of the IECEC, Atlanta. 1993. Cerca con Google

[103] Bean JR, Diver RB. The CPG 5-kWe dish/Stirling development program. In: Proceedings of the IECEC, San Diego, Paper No. 929181. 1992. 154 B. Kongtragool, S. Wongwises / Renewable and Sustainable Energy Reviews 7 (2003) 131–154 Cerca con Google

[104] Gallup DR, Mancini TR, Christensen J, Beninga K. The utility scale joint-venture program. In: Proceedings of the IECEC, Monterey, AIAA-94-3945-CP. 1994. Cerca con Google

[105] Beninga K, Davenport R, Sellars J, Smith D, Johansson S. Performance results for the SAIC/STM prototype dish/Stirling systems. In: Proceedings of the 1997 ASME International Solar Energy Conference, Washington. 1997. Cerca con Google

[106] Diver R, Andraka CE, Rawlinson KS, Goldberg V, Thomas G. The advanced dish development system project. In: Proceedings of the Solar Forum 2001, Technical paper. 2001. Cerca con Google

[107] Davenport R, Mayette J, Forristall RE. The salt river project sundish/Stirling system. In: Proceedings of the ASME Solar Forum 2001, Washington. 2001. Cerca con Google

[108] Davenport RL, Butler BL, Taylor R, Forristall R, Johansson S, Ulrich J et al. Operation of second generation dish/Stirling power systems. In: Proceedings of the ASES 2002 Solar Conference, Reno. 2002. Cerca con Google

[109] Umarov GY, Orunov BB, Klyuchevskii YE, Tursunbaev IA, Trukhov VS. Thermodynamic analysis and choice of optimal parameters of dynamic converter for solar energy plant. Geliotekhnika 1976;12:31–4. Cerca con Google

[110] Umarov GY, Trukhov VS, Tursunbaev IA, Orunov BB. A method for optimizing heat exchangers of a Stirling engine. Geliotekhnika 1976;12(6):18–23. Cerca con Google

[111] Howell JR, Bannerot RB. Optimum solar collector operation for maximizing cycle work output. Sol Energy 1977;19:149–53. Cerca con Google

[112] Eldighidy SM, Taha IS, Darwish MA. Optimum conditions for maximum solar energy absorbed by flat plate collector augmented by plane reflector. In: Proceedings of the Energy Symposium (ISATED), Montreux, Swiss. 1979. p. 28–32. Cerca con Google

[113] Eldighidy SM. Optimum outlet temperature of solar collector for maximum work output for an Otto air-standard cycle with ideal regeneration. Sol Energy 1993;51:175–82. Cerca con Google

[114] Gordon JM. On optimized solar-driven heat engines. Sol Energy 1988;40:457–61. Cerca con Google

[115] Altfeld K, Leiner W, Feebig M, “Second law optimization of flat-plate air heaters. Part I: the concept of net exergy flow and the modelling of solar air heaters”, Sol Energy 1988;41:127–32. Cerca con Google

[116] Altfeld K, Leiner W, Feebig M, “Second law optimization of flat-plate air heaters. Part II: results of optimization and analysis of sensibility to variations of operating conditions”, Sol Energy 1988;41:127–32. Cerca con Google

[117] Costea M, Petrescu S, Harman C, “The effect of irreversibilities on solar Stirling engine cycle performance”, Energ Convers Manage 1999;40:1723–31. Cerca con Google

[118] Chen YT, Chong KK, Bligh TP, Chen LC, Yunus J, Kannan KS et al, “Non-imaging, focusing heliostat”, Sol Energy 2001;71:155–64. Cerca con Google

[119] Haneman D, “Theory and principles of low-temperature hot air engines fuelled by solar energy”, Report Prepared for U.S. Atomic Energy Comm. Contract W-7405-Eng-48; 1975. Cerca con Google

[120] Spencer LC, “A comprehensive review of small solar-powered heat engines: Part III”, Research since 1950-“unconventional” engines up to 100 kW. Sol Energy 1989;43:211–25. Cerca con Google

[121] White EW, “Solar heat engines”, U.S. Patent; 1983. p. 4, 414, 814. Cerca con Google

[122] O’Hare R, “Convection powered solar engine”, U.S. Patent; 1984. p. 4, 453, 382. Cerca con Google

[123] Senft JR, “An ultra-low temperature differential Stirling engine”, In: Proceedings of the Fifth International Stirling Engine Conference, Paper ISEC 91032, Dubrovnik, May. 1991. Cerca con Google

[124] Stine WB. Stirling engines. In: Kreith F, editor. The CRC handbook of mechanical engineers. Boca Raton: CRC Press; 1998. p. 8-7–8-6. Cerca con Google

[125] C.D. West, “Principles and applications of Stirling engines”, Van Nostrand Reinhold, 1986. Cerca con Google

[126] J.R. Senft, “Ringbom stirling engines”, Oxford University Press, 1993. Cerca con Google

[127] B. Kongtragool, S. Wongwises, “Investigation on power output of the gamma-configuration low temperature differential Stirling engines”, Renewable Energy, 30 (2005):465-476. Cerca con Google

[128] J.I. Prieto, J. Fano, C. González, M.A. González, R. Diaz, “Preliminary design of the kinematic Stirling engine using dynamic similarity and quasi-static simulation”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 211 (1997):229-238. Cerca con Google

[129] J.I. Prieto, A.B. Stefanovskiy, “Dimensional analysis of leakage and mechanical power losses of kinematic Stirling engines”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217 (2003):917-934. Cerca con Google

[130] J.I. Prieto, M.A. González, C. González, J. Fano, “A new equation representing the performance of kinematic Stirling engines”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 214 (2000):449-464. Cerca con Google

[131] J. Prieto, D. Garcia, “Comparison between Kolin’s cube law for power and other criteria for preliminary design of kinematic Stirling engines”, Proceeding of 12th international Stirling engine conference, Durham UK, 2005, pp. 389-397. Cerca con Google

[132] W.R. Martini, “Stirling Engine Design Manual”, Arch, 1978. Cerca con Google

[133] N.C.L. Chen, F.P. Griffin, “A review of Stilring engine mathematical models”, Report No ORNL/CON 135, OAK Ridge National Laboratory, Tennessee, 1983. Cerca con Google

[134] K. Mahkamov, “Stirling Engine Based Micro-Energy Systems”, In: R. Beith, I.P. Burdon, M. Knowles (Eds.). Micro-Energy Systems. John Wiley & Sons, 2004, pp. 101-144. Cerca con Google

[135] G. Walker, “Stirling engines”, Clarendon Press, 1980. Cerca con Google

[136] G. Walker, J.R. Senft, “Free Piston Stirling Engines”, Springer, 1985. Cerca con Google

[137] F. Toda, S. Iwamoto, K. Nagajima, “Development of Low-Temperature Difference Stirling engine- Behaviour of the mechanism effectiveness for the performance prediction method”, Proceeding of 13th international Stirling engine conference, Tokyo, 2007, pp. 49-51. Cerca con Google

[138] I. Urieli, D.M. Berchowitz, “Stirling cycle engine analysis”, A. Hilger, 1984. Cerca con Google

[139] M. Abbas, N. Said, B. Boumeddane, “Thermal analysis of Stirling engine solar driven”, Revue des Energies Renouvelables, 11 (2008):503 - 514. Cerca con Google

[140] J.M. Strauss, R.T. Dobson, “Evaluation of a second order simulation for Sterling engine design and optimisation”, Journal of Energy in Southern Africa, 21 (2010):17-29. Cerca con Google

[141] I. Urieli, “Stirling cycle machine analysis”, Available at http://www.ent.ohiou.edu/ urieli/stirling/me422.html (accessed on 17 November 2008) Vai! Cerca con Google

[142] F.J.G. Granados, M.A.S. Perez, V. Ruiz-Hernandez, “Thermal Model of the EuroDish Solar Stirling Engine”, Journal of Solar Energy Engineering, 130 (2008):011014-011018. Cerca con Google

[143] F. Nepveu, A. Ferriere, F. Bataille, “Thermal model of a dish/Stirling systems”, Solar Energy, 83 (2009):81-89. Cerca con Google

[144] W. Reinalter, S. Ulmer, P. Heller, T. Rauch, J.-M. Gineste, A. Ferriere, F. Nepveu, “Detailed performance analysis of the 10 kW CNRS-PROMES dish/stirling system”, Proceedings of the 13th SolarPACES International Symposium, Seville Spain, 2006. Cerca con Google

[145] N. Parlak, A. Wagner, M. Elsner, H.S. Soyhan, “Thermodynamic analysis of a gamma type Stirling engine in non-ideal adiabatic conditions”, Renewable Energy, 34 (2009):266-273. Cerca con Google

[146] I. Tlili, Y. Timoumi, S.B. Nasrallah, “Analysis and design consideration of mean temperature differential Stirling engine for solar application”, Renewable Energy, 33 (2008):1911-1921. Cerca con Google

[147] Y. Timoumi, I. Tlili, S. Ben Nasrallah, “Design and performance optimization of GPU-3 Stirling engines”, Energy, 33 (2008):1100-1114. Cerca con Google

[148] S. Schulz, F. Schwendig, “A General Simulation Model for Stirling Cycles”, Journal of Engineering for Gas Turbines and Power, 118 (1996):1-7. Cerca con Google

[149] K.K. Makhkamov, D.B. Ingham, “Analysis of the Working Process and Mechanical Losses in a Stirling Engine for a Solar Power Unit”, Journal of Solar Energy Engineering, 121 (1999):121-127. Cerca con Google

[150] Ö. Ercan Ataer, H. Karabulut, “Thermodynamic analysis of the V-type Stirling-cycle refrigerator”, International Journal of Refrigeration, 28 (2005):183-189. Cerca con Google

[151] H. Karabulut, H.S. Yücesu, C. Çinar. Nodal, “Analysis of a Stirling engine with concentric piston and displacer”, Renewable Energy, 31 (2006):2188-2197. Cerca con Google

[152] S.K. Andersen, H. Carlsen, P.G. Thomsen, “Preliminary results from simulations of temperature oscillations in Stirling engine regenerator matrices” Energy, 31 (2006):1371-1383. Cerca con Google

[153] N. Martaj, L. Grosu, P. Rochelle, “Thermodynamic Study of a Low Temperature Difference Stirling Engine at Steady State Operation”, International Journal of Thermodynamics, 10 (2007):165-176. Cerca con Google

[154] A. Robson, T. Grassie, J. Kubie, “Modelling of a low-temperature differential Stirling engine”, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221 (2007):927-943. Cerca con Google

[155] R.W. Dyson, S.D. Wilson, R.C. Tew, “Review of Computational Stirling Analysis Methods”, Proceedings of 2nd International Energy Conversion Engineering Conference, Paper No AIAA20045582, Providence RI, (2004) 1-21. Cerca con Google

[156] S.K. Andersen, “Numerical Simulation of Cyclic Thermodynamic Processes”, PhD Thesis (2006). Department of Mechanical Engineering, Technical University of Denmark. Cerca con Google

[157] R.C. Tew, R.W. Dyson, S.D. Wilson, R. Demko, “Overview 2004 of NASA-Stirling Convertor CFD Model Development and Regenerator R&D Efforts”, Report No NASA/TM-2004-213404, NASA, 2004. Cerca con Google

[158] S.K. Andersen, H. Carlsen, P.G. Thomsen, “Control volume based modelling in one space dimension of oscillating, compressible flow in reciprocating machines”, Simulation Modelling Practice and Theory, 14 (2006):1073-1086. Cerca con Google

[159] K. Mahkamov, “An Axisymmetric Computational Fluid Dynamics Approach to the Analysis of the Working Process of a Solar Stirling Engine”, Journal of Solar Energy Engineering, 128 (2006):45-53. Cerca con Google

[160] M.B. Ibrahim, R.C. Tew, Z. Zhang, D. Gedeon, T. Simon, “CFD modeling of free-piston Stirling engines”, Report No NASA/TM-2001-211132, NASA, 2001. Cerca con Google

[161] K. Mahkamov, D. Djumanov, “Three- Dimensional CFD Modelling of a Stirling Engine”, Proceeding of 11th International Stirling Engine Conference, Rome, Italy, 2003, pp. 96-107. Cerca con Google

[162] R. Tan, K. Mahkamov, D. Djumanov, “Experimental and numerical investigations on a small physical Model of a solar Stirling engine”, Proceeding of 12th International Stirling Engine Conference, Durham, UK, 2005, pp. 74-85. Cerca con Google

[163] K. Mahkamov, “Design Improvements to a Biomass Stirling Engine Using Mathematical Analysis and 3D CFD Modeling”, Journal of Energy Resources Technology, 128 (2006):203-215. Cerca con Google

[164] K. Mahkamov, E. EiD, “Technical feasibility study of a concept of a medium temperature Stirling engine solar power unit”, Proceeding of 14th International Stirling Engine Conference (on CD only), Groningen, The Netherlands, 2009. Cerca con Google

[165] R.W. Dyson, S.D. Wilson, R.C. Tew, R. Demko, “Fast whole-engine Stirling analysis”, Report No NASA/TM—2005-213960, NASA, 2005. Cerca con Google

[166] D.A. Blank, C. Wu, “Power optimization of an extra-terrestrial, solar-radiant stirling heat engine”, Energy, 20 (1995):523-530. Cerca con Google

[167] L.B. Erbay, H. Yavuz, “Analysis of the stirling heat engine at maximum power conditions”, Energy, 22 (1997):645-650. Cerca con Google

[168] M. Costea, S. Petrescu, C. Harman, “The effect of irreversibilities on solar Stirling engine cycle performance”, Energy Conversion and Management, 40 (1999):1723-1731. Cerca con Google

[169] S.T. Hsu, F.Y. Lin, J.S. Chiou, “Heat-transfer aspects of Stirling power generation using incinerator waste energy”, Renewable Energy, 28 (2003):59-69. Cerca con Google

[170] Y.C. Hsieh, T.C. Hsu, J.S. Chiou, “Integration of a free-piston Stirling engine and a moving grate incinerator”, Renewable Energy, 33 (2008):48-54. Cerca con Google

[171] N. Martaj, L. Grosu, P. Rochelle, “Exergetical analysis and design optimisation of the Stirling engine”, International Journal of Exergy, 3 (2006):45-67. Cerca con Google

[172] P.C.T. de Boer, “Optimal regenerator performance in Stirling engines”, International Journal of Energy Research, 33 (2009):813-832. Cerca con Google

[173] L. Yaqi, H. Yaling, W. Weiwei, “Optimization of solar-powered Stirling heat engine with finite-time thermodynamics”, Renewable Energy, 36 (2011):421-427. Cerca con Google

[174] J.R. Senft, “Optimum Stirling engine geometry”, International Journal of Energy Research, 26 (2002):1087-1101. Cerca con Google

[175] B. Cullen, J. McGovern, “Development of a theoretical decoupled Stirling cycle engine”, Simulation Modelling Practice and Theory, 19 (2011):1227-1234. Cerca con Google

[176] F. Formosa, G. Despesse, “Analytical model for Stirling cycle machine design”, Energy Conversion and Management, 51 (2010):1855-1863. Cerca con Google

[177] A. Altman. SNAPpro: Stirling numerical analysis program (2004). Available at http://home.comcast.net/snapburner/SNAPpro (accessed on 13 March 2009). Vai! Cerca con Google

[178] B. Orunov, V.T. Krykov, A.P. Korobkov, K. Mahkamov, D. Djumanov, “The first stage of the development of a small Stirling tri-generation power unit”, Proceeding of 12th international Stirling engine conference, Durham, UK, 2005, pp. 416-423. Cerca con Google

[179] J. Zarinchang, A. Yarmahmoudi, “Optimization of Thermal Components in a Stirling Engine”, WSEA Transactions on Heat and Mass Transfer, 4(2009):1-10. Cerca con Google

[180] P. Rochelle., “LTD Stirling engine simulation and optimization using Finite dimension thermodynamics”, Proceeding of 12th international Stirling engine conference, Durham, UK, 2005, pp. 358-366. Cerca con Google

[181] S. Abdullah, B.F. Yousif, K. Sopian, “Design consideration of low temperature differential double-acting Stirling engine for solar application”, Renewable Energy, 30 (2005):1923-1941. Cerca con Google

[182] P. C. Sen, “Principles of Electrical Machines and Power Electronics” J Whiley & sons inc. ISBN 0-471-02295-0, p292, 1997. Cerca con Google

[183] M. J. Balchin, J. F. Eastham and P. C. Coles, “Effects of pole flux distribution in a homopolar linear synchronous machine”, Journal of Applied Physics 75 (10): pp 6987-6989 Part 2B May 1994. Cerca con Google

[184] A. Cosic, C. Sadarangani, J. Timmerman, “Design and Manufacturing of a Linear Transverse Flux Permanent Magnet Machines”, Industry Applications Society Annual Meeting (IAS 08), Edmonton (Alta), 5-9 Oct. 2008, pp 1-5. Cerca con Google

[185] M. Husband, “Developing the transverse flux motor TFM”, One day seminar, 'New topologies for electrical machines', UK Magnetics Society, Leicester, September 2002. Cerca con Google

[186] E. Spooner and & L. Ha Ydock, “Vernier Hybrid Machines”', to be published, lEE Proceedings Part B, Electric Power Applications. Cerca con Google

[187] B. C. Mecrow and A. G. Jack, “'A new high torque density permanent magnet machine configuration”, Proc. of the Int. Elec. Machines Conf., Cambridge Mass. USA, Sept 1990 Cerca con Google

[188] M. R. Harris and B. C. Mecrow, “Variable Reluctance Permanent.Magnet Motors for High Specific Output”, 'Proc. lEE International Conference ID Electrical Machines and Drives, Oxford, UK, 1993 Cerca con Google

[189] Iw Abuchi, N, W. A. Ka, T. Kume, T. Kabashima & N. Nagaska, “A novel High-Torque Reluctance Motor with Rare Earth Magnet”, IEEE Trans on Ind. App.,. Vol. 30, No.3, June 1994, pp609-613 Cerca con Google

[190] M. R. Harris, G. H. Pajooman and S. M. Abu Sharkh, “The problem of power factor in the VRPM Transverse Flux Machines”, Int. Conf. On Electrical Machines and Drives, Cambridge 1997, lEE publication 444, ISBN 0 85296 6962 Cerca con Google

[191] M.A. Mueller, N.J. Backer, P.R.M. Brooking and J. Xiang, “Low speed linear electrical generators for reversible energy applications”, Record of LDIA-2003, Birmingham, U.K., pp. 29-32. Cerca con Google

[192] W. Cawthorne, P. Famouri and N. Clark, “Integrated design of linear alternator/engine system for auxiliary unit”, Record of IEEE-IEMDC, 2001. Cerca con Google

[193] Boldea and S. A. Nasar, “Linear electric actuators and generators,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 712–717, Sept. 1999. Cerca con Google

[194] Yacine Amara, Jiabin Wang and David Howe, “Analytical prediction of eddy current loss in modular tubular permanent-magnet machines,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 761–770, Dec. 2005. Cerca con Google

[195] Mats Leijon, Hans Bernhoff, Olov Agren, Jan Isberg, Jan Sundberg, Marcus Berg, Karl Erik Karlson and Arne Wolfbrandt, “Multiphysics simulation of wave energy to electric energy conversion by permanent magnet linear generator,” IEEE Trans. Energy Convers., vol. 20, no. 1, pp. 219–224, Mar. 2005. Cerca con Google

[196] H. Polinder, M.E.C. Damen and F. Garder, “Linear PM generator for wave energy conversion in the AWS,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 583–589, Sept. 2004. Cerca con Google

[197] H. Polinder, Barrie C. Mecrow, Alan G. Jack, Phililip G. Dickinson and Markus A. Mueller, “Conventional and TFPM linear generators for direct drive wave energy conversion,” IEEE Trans. Energy Convers., vol. 20, no. 2, pp. 260–267, Jun. 2005. Cerca con Google

[198] J. Wang, W. Wang, G.W. Jewell, and D. Dowe, “Design and experimental characterization of a linear reciprocating generator”, Electric Power Applications, IEE Proceedings, Volume: 145, pp. 509 – 518, Nov. 1998. Cerca con Google

[199] J. Wang and D. Dowe, “A Linear Permanent Magnet Generator for a Free-Piston Energy Converter”, Conference on Electric Machines and Drives, 2005 IEEE International, pp. 1521 – 1528, 15-15 May 2005. Cerca con Google

[200] J. Faiz, M.E. Salari, Gh. Shahgholian, “Reduction of Cogging Force in Linear Permanent-Magnet Generators”, IEEE Transaction on magnetic, vol. 46, No. 1, January 2010. Cerca con Google

[201] V. Delli Colli, P. Cancelliere, F. Marignetti, R. Di Stefano, “A Tubular-Generator Drive For Eave Energy Conversion”, IEEE Transactions on Industrial Electronics, pp. 1152 – 1159, June 2006. Cerca con Google

[202] M. Trapanese, “Analytical model of an improved linear generator for sea wave energy harvesting”, IEEE Transactions on Magnetics, Dec. 2008. Cerca con Google

[203] P. Francois, Ecole Normale Cachan, I.G. Burrel, H. Ben Ahmed, L. Prevond, “3D Analytical Model for a Tubular Linear Induction Generator in a Stirling cogeneration system”, IEEE International Electric Machines & Drives Conference (IEMDC), pp. 392 – 397, 3-5 May 2007. Cerca con Google

[204] S.Y. Kim, J. Huth, and J.G. Wood, “Performance Characterization of Sunpower Free-Piston Stirling Engines”, 3rd Int. Energy Conversion Engineering Conf., 15-18 August 2005, San Francisco (USA). Cerca con Google

[205] Saiful A. Zulkifli, Mohd N. Karsiti and A. Rashid A. Aziz, “Starting of a Free-Piston Linear Engine-Generator by Mechanical Resonance and Rectangular Current Commutation”, IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5, 2008, Harbin (China). Cerca con Google

[206] J. Wang, M. West, D. Howe, H. Z. De La Parra, “Design and Experimental Verification of a Linear Permanent Magnet Generator for a Free-Piston Energy Converter”, IEEE Transaction on Energy Cconversion, vol. 22, no. 2, June 2007, pp. 299-306. Cerca con Google

[207] J. Wang and D. Howe, “Magnetic field distribution of quasi-Halbach magnetized cylinder for tubular permanent magnet machines,” in Proc. 4th Int. Symp. Linear Drives Ind. Appl., Birmingham, U.K., Sep. 8–10, 2003, pp. 481–484. Cerca con Google

[208] Y. Amara, J. Wang and D. Howe, “Eddy current loss in tubular modular permanent magnet machines”, Proceedings of International Conference on Electrical Machines (ICEM 2004), Cracow, Poland, Paper ID 193, 2004. Cerca con Google

[209] J. Wang, G.W. Jewell, and D. Howe, “A General Framework for the Analysis and Design of Tubular Linear Permanent Magnet Machines”, IEEE Trans. on Magn., vol. 35, no. 3, May 1999, pp.1986-2000. Cerca con Google

[210] X. Chen, Z.Q. Zhu, and D. Howe, “Modeling and Analysis of a Tubular Oscillating Permanent-Magnet Actuator”, IEEE Trans. on Industry Appl., vol. 45, no. 6, Nov./Dec. 2009, pp.1961-1970. Cerca con Google

[211] N. Bianchi, A. Canova, G. Gruosso, M. Repetto, and F. Tonel, “Analytical and finite element design optimisation of a tubular linear IPM motor”, COMPEL, Vol. 20 ,no. 3, 2001, pp. 777-795. Cerca con Google

[212] M. Andriollo, L. Dall’Ora, A. Tortella, “Magnetization space harmonic analysis of TLPMGs allowing for magnetic saturation”, Proceedings of International Symposium on Power Electronics, Electrical Drives, Automation and Motion SPEEDAM 2012 pp. 501-506, ISBN: 9781467313001, Sorrento (Italy), 20-22 June 2012. Cerca con Google

[213] D. Lin, P. Zhou, W. N. Fu, Z. Badics, and Z. J. Cendes, “Dynamic Core Loss Model for Soft Ferromagnetic and Power Ferrite Materials in Transient Finite Element Analysis”, IEEE Trans. on Magnetics., vol. 40, no. 2, March 2004, pp.1318-1321. Cerca con Google

[214] M. Andriollo, L. Dall'Ora, G. Martinelli, A. Tortella “Performance comparison of saturated tubular linear permanent magnet generators by simplified FEAs”, Proceedings of the International Conference on Renewable Energy Research and Applications (ICRERA), 2012 pp. 1-6, Nagasaky (Japan), 11-14 Nov. 2012. Cerca con Google

[215] GKN Sinter Metals GmbH, SMC Material Data Sheet. Cerca con Google

[216] Hoeganaes Corp., Insulated Powder Composites: Characteristics And Electromagnetic Application Guidelines, 2010. Cerca con Google

[217] Höganäs, Somaloy® Prototyping Material Datasheet, http://www.hoganas.com/Documents/Somaloy Broschyrer och Wear Resist/SMC/Somaloy Prototyping Material March 2011.pdf Vai! Cerca con Google

[218] J. Wang and D. Howe, “Influence of soft magnet materials on the design and performance of tubular permanent magnet machines”, IEEE Trans. on Magnetics, vol. 41, no. 10, Oct. 2005, pp. 4057–4059. Cerca con Google

[219] L. Hultman, and Z. Ye, “Soft Magnetic Composites-Properties and Applications” World Congress on Powder Metallurgy & Particulate Materials, PM2TEC 2002, 18 June 2002, Orlando, USA. Cerca con Google

[220] M. Andriollo, L. Dall'Ora, A. Tortella, “Electromagnetic parameter characterization of a short-stroke linear PM generator for renewable energy application”, International Conference on Clean Electrical Power (ICCEP), 11-13 June 2013, Alghero, Italy p. 383-390. Cerca con Google

[221] J. Brauer, “Simple equations for the magnetization and reluctivity curves of steel”, IEEE Trans. on Magnetics, vol. 11, no. 1, 1975, pp.81. Cerca con Google

[222] O. Andersson and P. Hofecker, “Advances in Soft Magnetic Composites – Materials and Applications”, in Int. Conf. on Powder Metallurgy & Particulate Materials PowderMet 2009, 19-22 July 2009, Las Vegas, 2009. Cerca con Google

[223] D. Lin, P. Zhou, W. N. Fu, Z. Badics, and Z. J. Cendes, “Dynamic Core Loss Model for Soft Ferromagnetic and Power Ferrite Materials in Transient Finite Element Analysis”, IEEE Trans. on Magnetics., vol. 40, no. 2, March 2004, pp.1318-1321. Cerca con Google

[224] J. Wang, T. Ibrahim, and D. Howe, “Prediction and Measurement of Iron Loss in a Short-Stroke, Single-Phase, Tubular Permanent Magnet Machine”, IEEE Trans. on Magnetics, vol. 46, no. 6, June 2010, pp.1315-1318. Cerca con Google

[225] J. Wang, Z. Lin, and D. Howe, “Characteristics of linear compressors under current source excitation,” Proc. Inst. Mech. Eng. A, J. Power Energy, vol. 221, no. 7, pp. 1057–1065, 2007. Cerca con Google

[226] Martini WR. Stirling engine design manual, report no. NASA CR-135382. In: M.J. Collie, editor. Stirling engine design and feasibility for automotive use. New Jersey: Noyes data corp.; 1979. Cerca con Google

[227] J. G. Schreiber, S. M. Geng and G. V. Lorenz, “RE-1000 Free-Piston Stirling Engine Sensitivity Test Results”, NASA TM-88846 (1986). Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record