Go to the content. | Move to the navigation | Go to the site search | Go to the menu | Contacts | Accessibility

| Create Account

Russo, Nicola (2014) Preventive Cardiology and Rehabilitation. [Ph.D. thesis]

Full text disponibile come:

PDF Document

Abstract (english)

Background: Despite the favourable effects of new therapeutic approaches during the acute phase of cardiac diseases and consequent favourable short-term outcomes, post-acute management and long term prognosis still remain unsatisfactory. Cardiac rehabilitation (CR) is a multidisciplinary treatment with established beneficial effects for the vast majority of cardiac patients and universally considered an important aspect of secondary prevention. Although it has been shown to reduce both morbidity and mortality and it is a class I recommendation in the guidelines, its use remains still rather limited in Europe and in the rest of the world.
Aim: The aim of this PhD research was to examine some aspects still little known, or unknown at all, in this field. In particular, the research aimed to evaluate safety and efficacy of a structured, exercise-based, CR in specific cohorts of patients: after transcatheter aortic valve implantation (TAVI), after left ventricular assist device (LVAD) implantation, and early after an acute myocardial infarction (AMI) in high risk subjects.
Methods: All patients (78 TAVI, mean age 82.1±3.6 years, 42 LVAD, 63.4 ± 7.4 years, and 376 AMI, 64.4±12.3 years) were referred to the Institute Codivilla-Putti (in Cortina d’Ampezzo, BL, Italy) for a two week, in-hospital, CR training and comprehensive risk factors interventions early after the acute event (within two weeks TAVI and AMI, within two months after LVAD implantation).
TAVI patients were compared with 80 consecutive peer patients who were admitted for CR in the same period after surgical aortic valve replacement (sAVR) and LVAD patients compared with 47 coeval chronic heart failure (CHF) patients who were admitted for CR in the same period after an acute heart failure event. In LVAD cohort, cardiac autonomic function was evaluated by means of heart rate variability.
AMI patients were divided into 2 groups according to a 40% left ventricular ejection fraction (LVEF) cut-off at enrolment, in order to evaluate the influence of a reduced LVEF on the rehabilitative process; furthermore, in 326 patients a glucometabolic characterization was obtained by means of a standard oral glucose tolerance test (OGTT) in patients without known diabetes.
In all patients the training protocol consisted of a low-medium intensity exercise protocol developed in three sets of exercises, 6 days per week: 30 min of respiratory workout, followed by an aerobic session on a cyclette (or on an arm ergometer in those patients who were not able to cycle) in the morning and, in the afternoon, 30 min of callisthenic exercises. Each session was supervised by a physician and a physiotherapist and all patients were ECG monitored by a telemetry system.
Functional capacity was assessed by a six min walking test (6MWT) on admission, and a second test at discharge; when possible, a cardiopulmonary exercise test (CPET) was also performed. The Barthel Index (BI) was used as an autonomy index in TAVI and LVAD cohorts. In AMI patients rate of death, hospitalizations, smoke cessation, physical activity and adherence to pharmacological treatment were recorded at follow up (up to 5 years, median 2 years).
Results: Despite the high risk profile of the population, the drop out rate was quite low (1.3% of TAVI, 1.1% of AMI and 11.9% of LVAD patients had to be transferred due to non fatal complications). All the subjects who completed the program had enhanced independence, mobility and functional capacity (mean BI increment was 9.9±12.6, p<0.01 and 11.9±10.5, p<0.01, in TAVI and LVAD patients respectively; mean 6MWT gain was 60.4±46.4 mt, p<0.01, 83.2±36.0 mt, p<0.05, 70.7±55.7 mt, p<0.01, in TAVI, LVAD and AMI patients, respectively).
Analysing the specific cohorts, a smaller proportion of TAVI patients, compared with sAVR, was able to complete at least a 6MWT (82% vs 92%) or a CPET (61% vs 95%) but, in those who did, the distance walked at 6MWT at discharge did not significantly differ between the groups (272.7±108 vs. 294.2±101 mt, p=0.42), neither did the exercise capacity assessed by CPET (peak-VO2 12.5±3.6 vs. 13.9±2.7 ml/kg/min, p=0.16).
At the end of the program, physical performance in LVAD patients was still generally poor, but not dissimilar from that found in CHF patients (peak-VO2 reached at CPET was 12.5±3.0 vs. 13.6±2.9 ml/kg/min, p=0.20).
Evaluating AMI patients, subjects with LVEF<40% achieved significantly lower peak-VO2 at CPET than the controls (15.2±3.9 vs. 18.2±5.2 ml/kg/min, p<0.01). After OGTT administration, a high prevalence of abnormal glucose metabolism was found (54%). As expected, exercise capacity was poorer in diabetic and pre-diabetic patients when compared with normoglicemic (peak-VO2 at CPET 15.3±4.1 vs 17.9±4.8 vs 19.4±5.5 ml/kg/min, p<0.01). At follow up 73% of the subjects reported to exercise regularly, 77% of the smokers definitively quitted and a high adherence to the therapy was registered. Cardiac and all cause mortality resulted 5.0% and 8.0 % at 1 year and 8.0 % and 13.0 % at 5 years, respectively and resulted higher in older people and in those with lower LVEF.
Conclusions: Patients who underwent TAVI and LVAD implantation are characterized by a long-term deconditioning status. In this perspective, benefit is not automatically achieved through high-technology interventions and pharmacological management alone. This study have shown that a short-term, supervised, exercise-based CR is feasible, safe and effective in elderly patients after TAVI, as well as after traditional surgery, and after LVAD implantation. An early CR programme enhances independence, mobility and functional capacity and should be encouraged in these subjects.
An early and intensive CR, based on physical activity and counselling, resulted to be safe and effective also in high risk patients after AMI, both in the short and in the long period. Indeed, a significant improvement in functional capacity in the short term - independent from the basal ventricular function or glucometabolic status - and a high adherence to therapy and to lifestyle modifications in the long term were achieved. Despite the high risk profile of these patients, this produced a favourable effect on cardiac and total mortality.

Abstract (italian)

Introduzione: Nonostante gli effetti favorevoli di nuovi approcci terapeutici durante la fase acuta delle malattie cardiache e conseguente prognosi più favorevole nel breve termine, la gestione della fase post-acuta di tali patologie e la prognosi a lungo termine rimane ancora insoddisfacente. La Riabilitazione Cardiologica (RC) è un trattamento multidisciplinare con chiari effetti benefici nella stragrande maggioranza dei pazienti cardiologici ed universalmente considerata un aspetto importante della prevenzione secondaria. Sebbene si sia dimostrata in grado di ridurre morbidità e mortalità e sia ormai un trattamento raccomandato in I classe nelle linee guida, il suo uso rimane ancora piuttosto limitato in Europa e nel resto del mondo.
Scopo: Lo scopo del presente programma di ricerca è stato esaminare alcuni aspetti ancora pochi noti, se non del tutto sconosciuti, in questo campo. In particolare, la presente ricerca ha avuto lo scopo di valutare sicurezza ed efficacia di una RC strutturata, basata sull’esercizio fisico, in specifiche coorti di pazienti: dopo impianto di valvola aortica transcatetere (TAVI), dopo impianto di assistenza ventricolare sinistra (LVAD), e subito dopo infarto miocardico acuto (AMI) in soggetti ad alto rischio.
Metodi: Tutti i pazienti (78 TAVI, età media 82.1±3.6 anni, 42 LVAD, 63.4 ± 7.4 anni, e 376 AMI, 64.4±12.3 anni) sono stati inviati presso l’Istituto Codivilla-Putti (Cortina d’Ampezzo, BL, Italia) per un periodo di riabilitazione cardiologica degenziale di due settimane, basato sull’allenamento fisico ed interventi sui fattori di rischio cardiovascolare, subito dopo l’evento acuto (entro due settimane dopo TAVI ed AMI, entro due mesi dopo impianto di LVAD).
I pazienti TAVI sono stati confrontati con 80 pazienti di pari caratteristiche che nello stesso periodo giungevano in riabilitazione dopo sostituzione valvolare aortica per via tradizionale (sAVR); i pazienti LVAD sono stati confrontati con 47 pazienti di pari età affetti da scompenso cardiaco cronico (CHF) che giungevano nello stesso periodo dopo una riacutizzazione di scompenso. Nella coorte dei LVAD è stata inoltre valutata la funzione autonomica mediante lo studio dell’ heart rate variability.
Per valutare gli effetti di una depressione della frazione d’eiezione del ventricolo sinistro (LVEF) sul processo riabilitativo, i pazienti AMI sono stati divisi in 2 gruppi in base alla LVEF (cut-off 40%). Inoltre, in 326 pazienti, è stata ottenuta una caratterizzazione glumetabolica mediante una curva da carico di glucosio standard (OGTT) somministrata ai soggetti senza diabete noto.
Tutti i pazienti sono stati sottoposti ad un ciclo di ricondizionamento fisico con esercizi prevalentemente aerobici, distribuiti in 3 sessioni quotidiane per 6 giorni alla settimana (30 minuti di ginnastica respiratoria, seguiti da una sessione sulla cyclette, o su un arm-ergometro in coloro che non erano in grado di pedalare, nel pomeriggio 30 minuti di esercizi callistenici), sotto stretto monitoraggio telemetrico e diretta supervisione medica e fisioterapica.
La capacità funzionale è stata valutata mediante six min walking test (6MWT) all’ingresso e alla dimissione e un test cardiopolmonare (CPET). Nelle coorti TAVI e LVAD è stata usata la scala di Barthel (Barthel Index, BI) per valutare il grado di autonomia. Nei pazienti AMI è stato registrato al follow up (fino a 5 anni, mediana 2 anni) l’incidenza di morte, nuove ospedalizzazioni, cessazione del fumo, attività fisica ed aderenza alla terapia.
Risultati: Nonostante l’alto profilo di rischio della popolazione, il tasso di abbandono dal programma è risultato piuttosto basso (nell’ 1.3% dei pazienti TAVI, 1.1% degli AMI e 11.9% dei LVAD si è reso necessario il trasferimento all’ospedale per acuti per complicazioni non fatali). Tutti i soggetti che hanno completato il programma hanno migliorato la propria indipendenza, mobilità e capacità funzionale (incremento medio del BI 9.9±12.6, p<0.01 e 11.9±10.5, p<0.01, nei pazienti TAVI e LVAD rispettivamente; guadagno medio al 6MWT 60.4±46.4 mt, p<0.01, 83.2±36.0 mt, p<0.05, 70.7±55.7 mt, p<0.01, nei pazienti TAVI, LVAD and AMI, rispettivamente).
Analizzando le specifiche coorti, una percentuale più bassa di pazienti TAVI rispetto a quelli del gruppo sAVR sono stati in grado di completare almeno un 6MWT (82% vs 92%) o un CPET (61% vs 95%) ma, in coloro che vi sono riusciti, non vi erano differenze significative tra i due gruppi in termini di distanza percorsa al 6MWT alla dimissione (272.7±108 vs 294.2±101 mt, p=0.42) e capacità funzionale al CPET (VO2 al picco 12.5±3.6 vs 13.9±2.7 ml/kg/min, p=0.16).
Al termine del programma la performance fisica nei pazienti LVAD era generalmente scarsa, ma non dissimile da quella dei pazienti CHF (VO2 al picco al CPET 12.5±3.0 vs 13.6±2.9 ml/kg/min, p=0.20).
Tra i pazienti AMI, coloro con LVEF<40% hanno raggiunto al CPET un VO2 al picco dell’esercizio significativamente più basso rispetto ai controlli (15.2±3.9 vs 18.2±5.2 ml/kg/min, p<0.01). Dopo somministrazione dell’OGTT è stata riscontrata un’alta prevalenza di alterazioni del metabolismo glucidico non precedente note (54%). Come atteso la capacità fisica era inferiore nei diabetici e nei prediabetici in confronto ai normoglicemici (al CPET VO2 al picco 15.3±4.1 vs 17.9±4.8 vs 19.4±5.5 ml/kg/min, p<0.01). Al follow up 73% dei soggetti hanno riferito di svolgere un’attività fisica regolare, 77% dei fumatori hanno definitivamente smesso ed è stata registrata un’alta aderenza alla terapia. La mortalità cardiaca e per tutte le cause è risultata 5.0% e 8.0% ad 1 anno, 8.0% e 13.0% a 5 anni, rispettivamente, ed è risultata più elevata nei soggetti più anziani ed in quelli con ridotta LVEF.
Conclusioni: I pazienti che sono andati incontro ad intervento di TAVI e LVAD sono caratterizzati da un notevole grado di decondizionamento fisico. In tale prospettiva non si può automaticamente raggiungere un beneficio con il solo intervento ad alta tecnologia o con il trattamento farmacologico. Un breve periodo di RC, con supervisione medica, si è dimostrato fattibile, sicuro ed efficace in pazienti anziani dopo TAVI, così come dopo chirurgia aortica tradizionale, e dopo impianto di LVAD. Un programma precoce di RC aumenta l’indipendenza, la mobilità e la capacità funzionale ed andrebbe sicuramente incoraggiato in questi soggetti.
Una RC intensiva e precoce basata sull’attività fisica e sul counselling è risultata sicura ed efficace anche in soggetti ad alto rischio dopo AMI, sia nel breve che nel lungo termine. Infatti è stato raggiunto un significativo miglioramento della capacità funzionale nel breve periodo - indipendentemente dalla funzione ventricolare sinistra residua o dallo stato glucometabolico - ed un’elevata aderenza alla terapia e alle modifiche dello stile di vita proposte. Nonostante l’elevato profilo di rischio di tali pazienti, questo può aver prodotto un effetto favorevole sulla mortalità.

Statistiche Download - Aggiungi a RefWorks
EPrint type:Ph.D. thesis
Tutor:Iliceto, Sabino
Data di deposito della tesi:26 January 2014
Anno di Pubblicazione:26 January 2014
Key Words:riabilitazione cardiologica, cardiologia preventiva, capacità funzionale, test del cammino dei sei minuti, test cardiopolmonare, prognosi, impianto di valvola aortica transcatetere, assistenza ventricolare sinistra, infarto miocardico/ cardiac rehabilitation, preventive cardiology, exercise capacity, six minute walking test, cardiopulmonary exercise test, outcome, transcatheter aortic valve implantation, left ventricular assist device, myocardial infarction
Settori scientifico-disciplinari MIUR:Area 06 - Scienze mediche > MED/11 Malattie dell'apparato cardiovascolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Cardiologiche, Toraciche e Vascolari
Codice ID:6372
Depositato il:04 Nov 2014 14:57
Simple Metadata
Full Metadata
EndNote Format


I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Wenger NK. Current status of cardiac rehabilitation. J Am Coll Cardiol 2008; 51: 1619–31. Cerca con Google

2. Piepoli MF, Corra` U, Benzer W, et al. Secondary prevention through cardiac rehabilitation: physical activity counselling and exercise training. Eur Heart J 2010; 31:1967–1976 Cerca con Google

3. AHA; ACC; National Heart, Lung, and Blood Institute, et al. AHA/ACC guidelines for secondary prevention for patients with coronary and other atherosclerotic vascular disease: 2006 update endorsed by the National Heart, Lung, and Blood Institute. J Am Coll Cardiol 2006;47:2130-9. Cerca con Google

4. Smith SC, Benjamin EJ, Bonow RO, et al. AHA/ACCF Secondary Prevention and Risk Reduction Therapy for Patients With Coronary and Other Atherosclerotic Vascular Disease: 2011 Update. A Guideline From the American Heart Association and American College of Cardiology Foundation. Circulation 2011;124:2458-2473 Cerca con Google

5. O'Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 61:e78-140 Cerca con Google

6. Anderson JL, Adams CD, Antman EM, et al. 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 2013; 127:e663-828 Cerca con Google

7. Hillis LD, Smith PK, Anderson JL et al. 2011 ACCF/AHA Guideline for Coronary Artery Bypass Graft Surgery. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2011; 58:e123-210 Cerca con Google

8. Vahanian A, Alfieri O, Andreotti F, et al. Guidelines for the Management of Valvular Heart Disease (version 2012). Eur Heart J 2012; 33, 2451–2496 Cerca con Google

9. McMurray JJ, Adamopoulos S, Anker SD, et al. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Eur Heart J 2012; 33:1787-847 Cerca con Google

10. Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines. Circulation 2006; 113:e463-654 Cerca con Google

11. Niebauer J (Editor). Cardiac rehabilitation manual. Springer 2011. ISBN 978-1-84882-793-6 Cerca con Google

12. Heberden W. Some accounts of a disorder of the chest. Med Trans Coll Physician 1772; 2:59 Cerca con Google

13. Parry CH. An Inquiry into the Symptoms and Causes of Syncope Anginosa Commonly Called Angina Pectoris. London, England, Caldwell and Davis, 1799 Cerca con Google

14. Mallory GK, White PD, Salcedo-Salger J. The speed of healing of myocardial infarction: A study of the pathological anatomy of seventy-two cases. Am Heart J 1939; 18:647-671 Cerca con Google

15. Masters AM, Oppenheimer ET. A simple exercise tolerance test for circulatory efficiency with standard tables for normal individuals. Am J Med Sci 177:223, 1929 Cerca con Google

16. Certo CM. History of cardiac rehabilitation. Phys Ther 1985; 65:1793-1795 Cerca con Google

17. Levine SA, Lown B. Armchair treatment of acute coronary thrombosis. JAMA 1952; 148:1365 Cerca con Google

18. Katz LN. Symposium: Unsettled clinical questions in the management of cardiovascular disease. Circulation 1953; 18: 430-450 Cerca con Google

19. Turell D, Hellerstein H. Evaluation of cardiac function in relation to specific physical activities following recovery from acute myocardial infarction. Prog Cardiovasc Dis 1958; 1:237 Cerca con Google

20. Saltin B, Bloomquist G, Mitchell JH, et al. Response to exercise after bedrest and after training. Circulation 1968; 38:1-78 Cerca con Google

21. Wenger N. The use of exercise in the rehabilitation of patients after myocardial infarction. J SC Med Assoc 1969; 65:66-68 Cerca con Google

22. Zohman L, Tobis JS. A rehabilitation program for inpatients with recent myocardial infarction. Arch Phys Med Rehabil 1968; 49:443 Cerca con Google

23. Bruce RA. Evaluation of functional capacity in patients with cardiovascular disease. Geriatrics 1957; 12:317 Cerca con Google

24. Hellerstein H. Exercise therapy in coronary disease. Bull NY Acad Med 1968; 44:1028-1047 Cerca con Google

25. Bjarnason-Wehrens B, McGee H, Zwisler AD, et al. Cardiac rehabilitation in Europe: results from the European Cardiac Rehabilitation Inventory Survey. Eur J Cardiovasc Prev Rehabil 2010; 17:410-8 Cerca con Google

26. Varadarajan P, Kapoor N, Bansal RC, et al. Survival in elderly patients with severe aortic stenosis is dramatically improved by aortic valve replacement: Results from a cohort of 277 patients aged ≥80 years. Euro J Cardiothorac Surg 2006; 30: 722 – 727 Cerca con Google

27. Florath I, Albert A, Boening A, et al. Aortic valve replacement in octogenarians: identification of high-risk patients. Eur J Cardiothorac Surg 2010; 37:1304-10 Cerca con Google

28. Genereux P, Head SJ, Wood D, et al. Transcatheter aortic valve implantation 10 year anniversary: review of current evidence and clinical implications. Eur Heart J 2012; 33, 2388–2400 Cerca con Google

29. Cribier A, Eltchaninoff H, Bash A, et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: first human case description. Circulation 2002;106:3006-8 Cerca con Google

30. Eltchaninoff H, Prat A, Gilard M, et al. Transcatheter aortic valve implantation: Early results of the FRANCE (FRench Aortic National CoreValve and Edwards) Registry. Eur Heart J 2011; 32: 191-197 Cerca con Google

31. Ussia GP, Barbanti M, Petronio AS, et al. Transcatheter aortic valve implantation: 3-year outcomes of selfexpanding CoreValve prosthesis. Eur Heart J 2012;33:969–976 Cerca con Google

32. Leon MB, Smith CR, Mack M, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 2010; 363: 1597 – 1607 Cerca con Google

33. Smith CR, Leon MB, Mack M, et al. Transcatheter versus Surgical Aortic-Valve Replacement in High-Risk Patients. N Engl J Med 2011; 364:2187–2198 Cerca con Google

34. Kirklin JK, Naftel DC, Kormos RL, et al. The fourth INTERMACS annual report: 4,000 implants and counting. J Heart Lung Transplant 2012; 31:117-126 Cerca con Google

35. Bank AJ, Mir SH, Nguyen DQ, et al. Effects of left ventricular assist devices on outcomes in patients undergoing heart transplantation. Ann Thorac Surg 2000; 69:1369-74 Cerca con Google

36. Jacquet L,Vancaenegem O, Pasquet A, et al. Exercise capacity in patients supported with rotary blood pumps is improved by a spontaneous increase of pump flow at constant pump speed and by a rise in native cardiac output. Artif Organs 2011;35: 682-90. Cerca con Google

37. Guan Y, Karkhanis T, Wang S, et al. Physiologic benefits of pulsatile perfusion during mechanical circulatory support for the treatment of acute and chronic heart failure in adults. Artif Organs 2010; 34:529–36 Cerca con Google

38. Haft J, Armstrong W, Dyke DB, et al. Hemodynamic and exercise performance with pulsatile and continuous-flow left ventricular assist devices. Circulation 2007;116(Suppl. 1):I-8–I-15 Cerca con Google

39. Corrà U, Pistono M, Mezzani A, et al. Cardiovascular prevention and rehabilitation for patients with ventricular assist device from exercise therapy to long-term therapy. Part I: Exercise therapy. Monaldi Arch Chest Dis 2011; 76:27-32 Cerca con Google

40. Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systematic review and metaanalysis of randomized controlled trials. Am J Med. 2004;116:682–92. Cerca con Google

41. Giannuzzi P, Temporelli PL, Marchioli R, et al; GOSPEL Investigators. Global secondary prevention strategies to limit event recurrence after myocardial infarction: results of the GOSPEL study, a multicenter, randomized controlled trial from the Italian Cardiac Rehabilitation Network. Arch Intern Med 2008; 168:2194 –2204. Cerca con Google

42. Goel K, Lennon RJ, Tilbury RT, Squires RW, Thomas RJ. Impact of Cardiac Rehabilitation on Mortality and Cardiovascular Events After Percutaneous Coronary Intervention in the Community. Circulation 2011;123:2344-2352. Cerca con Google

43. Martin BJ, Hauer T, Arena R, et al. Cardiac Rehabilitation Attendance and Outcomes in Coronary Artery Disease Patients. Circulation 2012; 126:677-687 Cerca con Google

44. Hammill BG, Curtis LH, Schulman KA, Whellan DJ. Relationship Between Cardiac Rehabilitation and Long-Term Risks of Death and Myocardial Infarction Among Elderly Medicare Beneficiaries. Circulation 2010; 121:63-70 Cerca con Google

45. Haykowsky MJ, Liang Y, Pechter D, Jones LW, McAlister FA, Clark AM. A meta-analysis of the effect of exercise training on left ventricular remodeling in heart failure patients: the benefit depends on the type of training performed. J Am Coll Cardiol 2007; 49:2329 –2336. Cerca con Google

46. Sivarajan ES, Bruce RA, Lindskog BD, Almes MJ, Belanger L, Green B. Treadmill test responses to an early exercise programme after myocardial infarction: A randomized study. Circulation 1982; 65:1420-1428 Cerca con Google

47. Aamot IL, Moholdt T, Amundsen BH, Solberg HS, Morkved S, Stoylen A. Onset of exercise training 14 days after uncomplicated myocardial infarction: A randomized controlled trial. Eur J Cardiovasc Prev Rehabil 2010; 17:387-392 Cerca con Google

48. Report of the WHO consultation, definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. World Health Organisation, Department of Non-communicable Disease Surveillance, Geneva 1999. Cerca con Google

49. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2008; 31 (Suppl 1): S55-S60 Cerca con Google

50. Mezzani A, Hamm LF, Jones AM, et al. Aerobic exercise intensity assessment and prescription in cardiac rehabilitation. J Cardiopulm Rehabil Prev 2012;32:327-350 Cerca con Google

51. Mahoney FI, Barthel DN. Functional evolution: The Barthel Index. Md Med J 1965; 14: 61–5 Cerca con Google

52. Sainsbury A, Seebass G, Bansal A et al. Reliability of the Barthel index when used with older people. Age Ageing 2005; 34: 228–32 Cerca con Google

53. American Thoracic Society (ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories). ATS statement: Guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002;166:111-117 Cerca con Google

54. Gibbons RJ, Balady GJ, Bricker JT, et al. ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines). J Am Coll Cardiol 2002;40:1531-1540 Cerca con Google

55. Balady GJ, Arena R, Sietsema K, et al. Clinicians guide to cardiopulmonary exercise testing in adults. Circulation 2010;122:191-225 Cerca con Google

56. Russo N, Compostella L, Setzu T, et al. Cardiac rehabilitation after transcatheter aortic valve implantation: a single centre experience. Eur Heart J 2011; 32:184 Cerca con Google

57. Russo N, Compostella L, Tarantini G, et al. Cardiac rehabilitation after transcatheter versus surgical prosthetic valve implantation for aortic stenosis in the elderly. Eur J Prev Cardiol 2013; [ahead of print] Cerca con Google

58. Bellotto F, Russo N, Compostella L, et al. Cardiac rehabilitation in patients with ventricular assist devices. G Ital Cardiol 2010; 11: 59 Cerca con Google

59. Russo N, Compostella L, Setzu T, et al. Intensive, exercise based, cardiac rehabilitation in patients with jarvik 2000 ventricular assist device. Eur J Prev Cardiol 2012; 19: S126 Cerca con Google

60. Russo N, Compostella L, Setzu T, et al. Effects of short-term exercise training at anaerobic threshold in patients with axialflow left ventricular assist device. Eur J Prev Cardiol 2013; 20: S30 Cerca con Google

61. Compostella L, Russo N, Setzu T, et al. Cardiac autonomic dysfunction in the early phase after left ventricular assist device implant: Implications for surgery and follow-up. Int J Artif Organs 2013; 36: 410-418 Cerca con Google

62. Compostella L, Russo N, Setzu T, et al. Exercise Performance of Chronic Heart Failure Patients in the Early Period of Support by an Axial-Flow Left Ventricular Assist Device as Destination Therapy. Artif Organs 2013; [ahead of print] Cerca con Google

63. Russo N, Compostella L, Setzu T, et al. Safety and efficacy of intensive, exercise based, cardiac rehabilitation early after an acute myocardial infarction. Eur J Prev Cardiol 2012; 19: S87 Cerca con Google

64. Russo N, Compostella L, Vettore E, et al. Intensive, exercise based, cardiac rehabilitation immediately after an acute myocardial infarction in high risk patients: impact on immediate and long-term prognosis. Eur J Prev Cardiol 2013; 20: S139 Cerca con Google

65. Lavie CJ, Milani RV: Effects of cardiac rehabilitation and exercise training programs in patients _75 years of age. Am J Cardiol 1996;78:675–7 Cerca con Google

66. Balady GJ, Jette D, Scheer J, et al. Changes in exercise capacity following cardiac rehabilitation in patients stratified according to age and gender. Results of the Massachusetts Association of Cardiovascular and Pulmonary Rehabilitation Multicenter Database. J Cardiopulm Rehabil 1996;16:38–46 Cerca con Google

67. Eder B, Hofmann P, Duvillard SP, et al. Early 4-week cardiac rehabilitation exercise training in elderly patients after heart surgery. J Cardiopulm Rehabil Prev 2010;30:85–92 Cerca con Google

68. Macchi C, Fattirolli F, Molino Lova R, et al. Early and late rehabilitation and physical training in elderly patients after cardiac surgery. Am J Phys Med Rehabil 2007; 86: 826-834 Cerca con Google

69. Gotzmann M, Hehen T, Germing A, et al. Short term effects of transcatheter aortic valve implantation on neurohormonal activation, quality of life and 6-minute walk test in severe and symptomatic aortic stenosis. Heart 2010; 96:1102-1106 Cerca con Google

70. Bagur R, Rodés-Cabau J, Dumont E, et al. Performance-based functional assessment of patients undergoing transcatheter aortic valve implantation. Am Heart J 2011;161:726 –734 Cerca con Google

71. Passantino A, Lagioia R, Mastropasqua F, et al. Short-term change in distance walked in 6 min is an indicator of outcome in patients with chronic heart failure in clinical practice. J Am Coll Cardiol 2006;48:99-105 Cerca con Google

72. Russo N, Compostella L, Setzu T, et al. Impact of metabolic syndrome on functional recovery after cardiac rehabilitation. Eur Heart J 2011; 32:711 Cerca con Google

73. Russo N, Compostella L, Fadini G, et al. Prediabets influences cardiac rehabilitation in coronary artery disease patients. Eur J Prev Cardiol. 2012;19:382-8 Cerca con Google

74. Scardovia AB, Coletta C, De Maria R, et al. The cardiopulmonary exercise test is safe and reliable in elderly patients with cronic heart failure. J Cardiovasc Med 2007; 8:608-12 Cerca con Google

75. Lund LH, Mancini D. Peak VO2 in elderly patients with heart failure. Int J Cardiol 2008; 125:166-71 Cerca con Google

76. Bellotto F, Palmisano P, Russo N, et al. Anemia does not preclude increments in cardiac performance during a short period of intensive, exercise-based cardiac rehabilitation. Eur J Cardiovasc Prev Rehabil 2011;18:150-7 Cerca con Google

77. Kumpati GS, McCarthy PM, Hoercher KJ. Left Ventricular Assist Device Bridge to Recovery: A Review of the Current Status. Ann Thorac Surg 2001; 71:S103–8 Cerca con Google

78. Burkhoff D, Klotz S, Mancini DM. LVAD-induced reverse remodeling: basic and clinical implications for myocardial recovery. J Cardiac Fail 2006; 12:227-239 Cerca con Google

79. Jaski BE, Lingle RJ, Reardon LC, Dembitsky WP. Left ventricular assist device as a bridge to patient and myocardial recovery. Prog Cardiovasc Dis 2000; 43:5-18 Cerca con Google

80. Mishra V, Fiane AE, Geiran O, et al. Hospital costs fell as numbers of LVADs were increasing: experiences from Oslo University Hospital. J Cadiothorac Surg 2012; 7:76 Cerca con Google

81. Laoutaris ID, Dritsas A, Adamopoulos S, et al. Benefits of physical training on exercise capacity, inspiratory muscle function, and quality of life in patients with ventricular assist devices long-term postimplantation. Eur J Cardiovasc Prev Rehabil 2011; 18:33-40 Cerca con Google

82. Dimopoulos S, Diakos N, Tseliou E, Tasoulis A, Mpouchla A, Manetos C, Katsaros L, Drakos S, Terrovitis J, Nanas S. Chronotropic incompetence and abnormal heart rate recovery early after left ventricular assist device implantation. Pacing Clin Electrophysiol 2011; 34:1607-1614 Cerca con Google

83. Mikus E, Stephanenko A, Krabatsch T, Loforte A, Dandel M, Lehmkuhl HB, Hetzer R, Potapov EV. Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg 2011; 40:971-977 Cerca con Google

84. Cohen-Solal A, Laperche T, Morvan D, Geneves M, Caviezel B, Gourgon R. Prolonged kinetics of recovery of oxygen consumption after maximal graded exercise in patients with chronic heart failure. Analysis with gas exchange measurements and NMR spectroscopy. Circulation 1995; 91:2924-2932 Cerca con Google

85. Bellotto F, Compostella L, Agostoni P, Russo N, et al. Peripheral adaptation mechanisms in physical training and cardiac rehabilitation. The case of a patient supported by a cardiowest total artificial heart. Journal of Cardiac Failure 2011; 17:670-675 Cerca con Google

86. Kalra PR, Bolger AP, Francis DP, Genth-Zotz S, Sharma R, Ponikowski PP, Poole-Wilson PA, Coats AJ, Anker SD. Effect of anemia on exercise tolerance in chronic heart failure in men. Am J Cardiol 2003; 91:888–891 Cerca con Google

87. Anand IS. Anemia and chronic heart failure implications and treatment options. J Am Coll Cardiol 2008; 52:501–511 Cerca con Google

88. Piepoli MF, Guazzi M, Boriani G, et al; Exercise intolerance in chronic heart failure: mechanisms and therapies. Part I. Eur J Cardiovasc Prev Rehabil 2010; 17:637-42 Cerca con Google

89. Agostoni P, Salvioni E, Debenedetti C, et al. Relationship of resting hemoglobin concentration to peak oxygen uptake in heart failure patients. Am J Hematol 2010; 85:414-7 Cerca con Google

90. Triposkiadis F, Karayannis G, Giamouzis G, Skoularigis J, Louridas G, Butler J. The sympathetic nervous system in heart failure. Physiology, pathophysiology, and clinical implications. J Am Coll Cardiol 2009; 54:1747-62 Cerca con Google

91. Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure: pathophysiology and potential implications for therapy. Circulation 2008; 118:863-71 Cerca con Google

92. Ogletree-Hughes ML, Stull LB, Sweet WE, et al. Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation 2001; 104:881-6. Cerca con Google

93. Klotz S, Barbone A, Reiken S, et al. Left ventricular assist device support normalizes left and right ventricular beta-adrenergic pathway properties. J Am Coll Cardiol 2005; 45:668-76. Cerca con Google

94. Xydas S, Rosen RS, Ng C, et al. Mechanical unloading leads to echocardiographic, electrocardiographic, neurohormonal, and histologic recovery. J Heart Lung Transplant 2006; 25:7-15. Cerca con Google

95. Kim SY, Montoya A, Zbilut JP, et al. Effect of Heart-Mate left ventricular assist device on cardiac autonomic nervous activity. Ann Thorac Surg 1996; 61:591-3. Cerca con Google

96. Miyagawa S, Sawa Y, Fukushima N, et al. Analysis of sympathetic nerve activity in end-stage cardiomyopathy patients receiving left ventricular support. J Heart Lung Transplant 2001; 20:1181-7. Cerca con Google

97. Soares PPS, Moreno AM, Cravo SLD, Nóbrega ACL. Coronary artery bypass surgery and longitudinal evaluation of the autonomic cardiovascular function. Critical Care 2005; 9:R124-31 Cerca con Google

98. Amar D, Fleisher M, Pantuck CB, et al. Persistent alterations of the autonomic nervous system after noncardiac surgery. Anesthesiology 1998; 89:30-42 Cerca con Google

99. Vongvanich P, Paul-Labrador MJ, Merz CN. Safety of medically supervised exercise in a cardiac rehabilitation centre. Am J Cardiol 1996;77:1383-1385 Cerca con Google

100. Pavy B, Iliou MC, Meurin P, et al. Functional Evaluation and Cardiac Rehabilitation Working Group of the French Society of Cardiology. Safety of exercise training for cardiac patients: Results of the french registry of complications during cardiac rehabilitation. Arch Intern Med 2006;166:2329-2334 Cerca con Google

101. Kwan G, Balady G. Cardiac rehabilitation 2012: advancing the field through emerging science. Circulation. 2012;125:369–373. Cerca con Google

102. Williams MA, Haskell WL, Ades PA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: A scientific statement from the american heart association council on clinical cardiology and council on nutrition, physical activity, and metabolism. Circulation 2007;116:572-584 Cerca con Google

103. Gremeaux V, Troisgros O, Benaim S, et al. Determining the minimal clinically important difference for the six-minute walk test and the 200-meter fast-walk test during cardiac rehabilitation programme in coronary artery disease patients after acute coronary syndrome. Arch Phys Med Rehabil 2011;92:611-619 Cerca con Google

104. Barth J, Critchley J, Bengel J. Efficacy of psychosocial interventions for smoking cessation in patients with coronary heart disease: A systematic review and meta-analysis. Ann Behav Med 2006;32:10-20 Cerca con Google

105. Perez GH, Nicolau JC, Romano BW, et al. Depression: A predictor of smoking relapse in a 6-month follow-up after hospitalization for acute coronary syndrome. Eur J Cardiovasc Prev Rehabil 2008;15:89-94 Cerca con Google

106. Kripalani S, Yao X, Haynes RB. Interventions to enhance medication adherence in chronic medical conditions: A systematic review. Arch Intern Med 2007;167:540-550 Cerca con Google

107. Kim C, Kim DY, Lee DW. The impact of early regular cardiac rehabilitation programme on myocardial function after acute myocardial infarction. Ann Rehabil Med 2011;35:535-540 Cerca con Google

108. Olivari Z, Steffenino G, Savonitto S, et al. (on behalf of BLITZ 4 Investigators). The management of acute myocardial infarction in the cardiological intensive care units in Italy: the ‘BLITZ 4 Qualità’ campaign for performance measurement and quality improvement. European Heart Journal: Acute Cardiovascular Care 2012; 1:143-52 Cerca con Google

109. Coles AH, Fisher KA, Darling C, et al. Recent trends in post-discharge mortality among patients with an initial acute myocardial infarction. Am J Cardiol 2012;110:1073-7 Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record