Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Finetto, Christian (2014) Analysis of muscle coordination for the design of improved interacting robotic systems. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
15Mb

Abstract (inglese)

Despite the increasing effort put in the development of robotic systems for neurorehabiltation, justified by the big potential of such applications as additional end efficient tools for therapy, their clinical effectiveness is still being discussed. Many of the systems developed to date were designed from an engineering point of view and do not meet therapy demands, which is reflected by unsatisfactory clinical outcomes. In order to improve these systems, new rehabilitation protocols need to be based upon a deeper knowledge of how motor control and muscle coordination are achieved on a neurological level, and of how they are affected by neurologic injury.
In this research project, which is a combined effort between the Mechatronics group of the University of Padua and the Upper Extremity Motor Function Laboratory of the Medical University of South Carolina, we approached the study of muscle coordination by searching for fundamental coordination patters used to execute various movements and shared by different subjects. We recorded the EMG activity of 16 upper limb muscles of 15 healthy control subjects and 14 stroke patients during the execution of a wide variety of fast reaching movements. We then applied a non-negative factorization algorithm to the processed EMG envelopes and extracted motor modules, which represent the coordination strategies used by each subject.
We found that a very limited set of motor modules can explain the muscle activation patterns of all healthy control subjects, and that these coordination strategies are mostly shared between dominant and non-dominant side. Furthermore, most healthy participants seem to use similar coordination patterns, and we could associate each of the most commonly shared motor modules with a corresponding biomechanical function.
We also found that the effects of stroke can be seen both by looking at the number of modules and by analyzing their composition. In fact, stroke patients use significantly less modules both on their impaired and on their unimpaired side, and some of these modules can be explained as a combination of several merged modules found in healthy controls.
These results suggest that motor impairment after stroke can be explained by a reduction in the set of motor modules. Together with the apparent inability to control certain modules independently, and which are therefore identified as merged, this could justify the limited movement complexity observed in stroke patients. We propose that new robotic rehabilitation protocols could use the information obtained by the extraction of motor modules to assess the patient's motor impairment and to address his/her specific needs. In fact, the comparison of the patient's modules with those identified in healthy control subjects can give precious information on the nature of the patient's disabilities, and provide guidelines for the choice of motor functions that should be trained during therapy

Abstract (italiano)

Nonostante l'impegno sempre maggiore per lo sviluppo di sistemi robotici per la neuroriabilitazione, giustificato dal grande potenziale di queste applicazioni come strumenti aggiuntivi ed efficienti per la terapia, la loro efficacia dal punto di vista clinico è tuttora discussa. Molti dei sistemi sviluppati fino ad oggi sono stati progettati da una prospettiva ingegneristica senza tener conto di alcune fondamentali richieste necessarie per la terapia, il che si riflette nei risultati clinici poco soddisfacenti ottenuti da queste soluzioni. Per migliorare questi sistemi, i nuovi protocolli per la riabilitazione devono basarsi su una conoscenza più approfondita su come il controllo motorio e la coordinazione muscolare sono ottenuti al livello neurologico, e su come sono modificati da danni al sistema nervoso.
In questo progetto di ricerca, che nasce da una collaborazione tra il gruppo Mechatronics dell'Università degli Studi di Padova e il Upper Extremity Motor Function Laboratory della Medical University of South Carolina, abbiamo impostato lo studio della coordinazione partendo dalla ricerca di schemi basilari di coordinazione muscolare, usati per eseguire movimenti diversificati e condivisi da vari soggetti. Abbiamo registrato l'attività di 16 muscoli dell'arto superiore di 15 soggetti sani e di 14 pazienti con ictus durante l'esecuzione di un elevato numero di movimenti rapidi. Successivamente abbiamo applicato un algoritmo di fattorizzazione non negativa agli inviluppi dei segnali elettromiografici e abbiamo estratto i relativi moduli motori, i quali rappresentano le strategie di coordinazione usate da ogni soggetto.
Abbiamo scoperto che un numero molto limitato di moduli motori può spiegare l'attività muscolare di tutti i soggetti sani, e che molte di queste strategie di coordinazione sono condivise tra il lato dominante e quello non dominante. Inoltre ci risulta che la maggior parte dei soggetti sani usi delle strategie simili, e abbiamo potuto associare ognuno dei moduli motori più comunemente condivisi con delle corrispondenti funzioni biomeccaniche.
Oltre a ciò abbiamo visto che gli effetti dell'ictus possono essere quantificati osservando il numero di moduli motori e analizzando la loro composizione. Infatti i pazienti con ictus hanno un numero di moduli significativamente più basso su entrambi i lati, e alcuni di questi moduli possono essere visti come la fusione di due o più moduli riscontrati nei soggetti sani.
Questi risultati indicano che le disabilità motorie post ictus possono essere spiegate da una riduzione del set di moduli motori. Insieme all'apparente inabilità nel controllare certi moduli in maniera indipendente, i quali quindi risultano come fusi, questo potrebbe giustificare la limitata complessità osservata nei pazienti con ictus. Nuovi protocolli per la riabilitazione robot-assistita potrebbero usare le informazioni ottenute dall'estrazione di moduli motori per valutare le disabilità motorie del paziente e per indirizzare la terapia verso le sue specifiche necessità. Il confronto tra i moduli motori del paziente con quelli identificati nei soggetti sani può dare delle informazioni preziose sulla natura delle disabilità del paziente, e fornire delle linee guida per la scelta delle funzioni motorie su cui indirizzare la terapia

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Rosati, Giulio
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA INDUSTRIALE > PROGETTAZIONE E DINAMICA DEI SISTEMI MECCANICI
Data di deposito della tesi:28 Gennaio 2014
Anno di Pubblicazione:28 Gennaio 2014
Parole chiave (italiano / inglese):robotics, rehabilitation, muscle coordination, motor modules, muscle synergies, EMG processing
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-IND/13 Meccanica applicata alle macchine
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria Industriale
Codice ID:6384
Depositato il:13 Nov 2014 10:54
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] N. Hogan, H. Krebs, J. Charnnarong, P. Srikrishna, and A. Sharon, "MIT-MANUS: a workstation for manual therapy and training. I," in [1992] Proc IEEE Int Work Robot Hum Commun. IEEE, 1992, pp. 161-165. Cerca con Google

[2] W. Harwin, J. Patton, and V. Edgerton, "Challenges and Opportunities for Robot-Mediated Neurorehabilitation," Proc IEEE, vol. 94, no. 9, pp. 1717-1726, Sept. 2006. Cerca con Google

[3] V. L. Roger, A. S. Go, and D. M. Lloyd-Jones, "Heart disease and stroke statistics-2012 update: a report from the American Heart Association." Circulation, vol. 125, no. 1, pp. e2-e220, Jan. 2012. Cerca con Google

[4] WHO, World Health Statistics 2013. WHO Press, Geneva, Switzerland, 2013. Cerca con Google

[5] T. Truelsen, B. Piechowski-Jozwiak, R. Bonita, C. Mathers, J. Bogousslavsky, and G. Boysen, "Stroke incidence and prevalence in Europe: a review of available data." Eur J Neurol, vol. 13, no. 6, pp. 581-98, June 2006. Cerca con Google

[6] G. Rosati, "The place of robotics in post-stroke rehabilitation." Expert Rev Med Devices, vol. 7, no. 6, pp. 753-8, Nov. 2010. Cerca con Google

[7] B. T. Volpe, M. Ferraro, H. I. Krebs, and N. Hogan, "Robotics in the rehabilitation treatment of patients with stroke." Curr Atheroscler Rep, vol. 4, no. 4, pp. 270-6, July 2002. Cerca con Google

[8] A. a. a. Timmermans, H. a. M. Seelen, R. D. Willmann, and H. Kingma, "Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition Cerca con Google

140 REFERENCES of motor control and therapist guidelines for rehabilitation technology design." J Neuroeng Rehabil, vol. 6, no. gure 1, p. 1, Jan. 2009. Cerca con Google

[9] D. J. Reinkensmeyer, J. L. Emken, and S. C. Cramer, "Robotics, motor learning, and neurologic recovery." Annu Rev Biomed Eng, vol. 6, pp. 497-525, Jan. 2004. Cerca con Google

[10] S. Hesse, H. Schmidt, and C. Werner, "Machines to support motor rehabilitation after stroke: 10 years of experience in Berlin." J Rehabil Res Dev, vol. 43, no. 5, pp. 671-8, 2006. Cerca con Google

[11] R. Riener, T. Nef, and G. Colombo, "Robot-aided neurorehabilitation of the upper extremities." Med Biol Eng Comput, vol. 43, no. 1, pp. 2-10, Jan. 2005. Cerca con Google

[12] G. Kwakkel, B. J. Kollen, and H. I. Krebs, "Eects of robot-assisted therapy on upper limb recovery after stroke: a systematic review." Neurorehabil Neural Repair, vol. 22, no. 2, pp. 111-21, 2008. Cerca con Google

[13] H. Krebs, "Robot Mediated Movement Therapy: A Tool for Training and Evaluation," in Eur Symp Tech Aids Rehabil - TAR 2007, Technical University of Berlin, 2007. Cerca con Google

[14] S. Masiero, A. Celia, G. Rosati, and M. Armani, "Robotic-assisted rehabilitation of the upper limb after acute stroke." Arch Phys Med Rehabil, vol. 88, no. 2, pp. 142-9, Feb. 2007. Cerca con Google

[15] S. Masiero, E. Carraro, C. Ferraro, P. Gallina, A. Rossi, and G. Rosati, "Upper limb rehabilitation robotics after stroke: a perspective from the University of Padua, Italy." J Rehabil Med, vol. 41, no. 12, pp. 981-5, Nov. 2009. Cerca con Google

[16] J. Mehrholz, A. Hadrich, T. Platz, J. Kugler, and M. Pohl, "Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke." Cochrane database Syst Rev, vol. 6, no. 6, p. CD006876, Jan. 2012. Cerca con Google

[17] N. Kutner, R. Zhang, A. Butler, S. Wolf, and J. Alberts, "Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial," Phys Ther, vol. 90, no. 4, p. 493, 2010. Cerca con Google

REFERENCES 141 Cerca con Google

[18] J. L. Allen, S. A. Kautz, and R. R. Neptune, "The in uence of merged muscle excitation modules on post-stroke hemiparetic walking performance," Clin Biomech, vol. 28, no. 6, pp. 697-704, 2013. Cerca con Google

[19] V. C. K. Cheung, L. Piron, M. Agostini, S. Silvoni, A. Turolla, and E. Bizzi, "Stability of muscle synergies for voluntary actions after cortical stroke in humans." Proc Natl Acad Sci U S A, vol. 106, no. 46, pp. 19 563-8, Nov. 2009. Cerca con Google

[20] M. D. Ellis, B. G. Holubar, A. M. Acosta, R. F. Beer, and J. P. a. Dewald, "Modiability of abnormal isometric elbow and shoulder joint torque coupling after stroke." Muscle Nerve, vol. 32, no. 2, pp. 170-8, Aug. 2005. Cerca con Google

[21] A. D'Avella, P. Saltiel, and E. Bizzi, "Combinations of muscle synergies in the construction of a natural motor behavior." Nat Neurosci, vol. 6, no. 3, pp. 300-8, Mar. 2003. Cerca con Google

[22] D. J. Clark, L. H. Ting, F. E. Zajac, R. R. Neptune, and S. A. Kautz, "Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke." J Neurophysiol, vol. 103, no. 2, pp. 844-57, Feb. 2010. Cerca con Google

[23] V. B. Brooks, "Motor control. How posture and movements are governed." Phys Ther, vol. 63, no. 5, pp. 664-73, May 1983. Cerca con Google

[24] E. N. Marieb and K. Hoehn, Human Anatomy and Physiology, 7th ed. Pearson, 2006. Cerca con Google

[25] N. A. Bernshtein, The co-ordination and regulation of movements, 1st ed. Oxford: Pergamon Press, 1967. Cerca con Google

[26] M. C. Tresch, P. Saltiel, A. D'Avella, and E. Bizzi, "Coordination and localization in spinal motor systems." Brain Res Brain Res Rev, vol. 40, no. 1-3, pp. 66-79, Oct. 2002. Cerca con Google

[27] P. Saltiel, K. Wyler-Duda, A. D'Avella, M. C. Tresch, and E. Bizzi, "Muscle synergies encoded within the spinal cord: evidence from focal intraspinal NMDA iontophoresis in the frog." J Neurophysiol, vol. 85, no. 2, pp. 605-19, Feb. 2001. Cerca con Google

142 REFERENCES Cerca con Google

[28] J.-P. Gossard and H. Hultborn, "The organization of spinal rhythm generation in locomotion," in Plast Motoneuronal Connect, A.Wernig, Ed. Elsevier, Amsterdam, 1991, pp. 385-404. Cerca con Google

[29] S. Grillner, "Control of Locomotion in Bipeds, Tetrapods, and Fish," in Handb Physiol Nerv Syst Mot Control Vol 2, V. B. Brooks, Ed., 1981, pp. 1179-1236. Cerca con Google

[30] S. Rossignol, "Neural control of stereotypic movements," in Handb Physiol, L. B. Rowell and J. T. Sheperd, Eds. American Physiological Society, 1996, pp. 173-216. Cerca con Google

[31] P. S. G. Stein and J. L. Smith, "Neural and biomechanical control strategies for dierent forms of vertebrate hindlimb motor tasks," in Neurons, Networks, Mot Behav, P. S. G. Stein, S. Grillner, A. I. Selverston, and D. G. Stuart, Eds. MIT Press, Cambridge, 1997, pp. 61-73. Cerca con Google

[32] D. N. Levine, "Sherrington's "The Integrative action of the nervous system": a centennial appraisal." J Neurol Sci, vol. 253, no. 1-2, pp. 1-6, Feb. 2007. Cerca con Google

[33] C. Sherrington, "Flexion-re ex of the limb, crossed extension-re ex, and re ex stepping and standing," J Physiol, vol. 40, no. 1-2, pp. 28-121, 1910. Cerca con Google

[34] R. E. Burke, "Sir Charles Sherrington's the integrative action of the nervous system: a centenary appreciation." Brain, vol. 130, no. Pt 4, pp. 887-94, Apr. 2007. Cerca con Google

[35] T. G. Brown, "The Intrinsic Factors in the Act of Progression in the Mammal," Proc R Soc B Biol Sci, vol. 84, no. 572, pp. 308-319, Dec. 1911. Cerca con Google

[36] P. S. G. Stein, D. G. Stuart, S. Grillner, and A. I. Selverston, Eds., Neurons, Networks, and Motor Behavior. MIT Press, 1999. Cerca con Google

[37] L. M. Jordan, "Brainstem and Spinal Cord Mechanisms for the Initiation of Locomotion," in Neurobiol Basis Hum Locomot, M. Shimamura, S. Grillner, and V. R. Edgerton, Eds. Japan Scientic Societies Press, Tokyo, 1991, pp. 3-20. Cerca con Google

REFERENCES 143 Cerca con Google

[38] P. S. Stein, a. W. Camp, G. a. Robertson, and L. I. Mortin, "Blends of rostral and caudal scratch re ex motor patterns elicited by simultaneous stimulation of two sites in the spinal turtle." J Neurosci, vol. 6, no. 8, pp. 2259-66, Aug. 1986. Cerca con Google

[39] P. S. G. Stein, L. I. Mortin, and G. a. Robertson, "The forms of a task and their blends," in Neurobiol Vertebr Locomot, S. Grillner, P. S. G. Stein, D. G. Stuart, H. Forssberg, and R. M. Herman, Eds. London: Macmillan Press, 1986, pp. 201-216. Cerca con Google

[40] P. S. Stein, J. C. Victor, E. C. Field, and S. N. Currie, "Bilateral control of hindlimb scratching in the spinal turtle: contralateral spinal circuitry contributes to the normal ipsilateral motor pattern of ctive rostral scratching." J Neurosci, vol. 15, no. 6, pp. 4343-55, June 1995. Cerca con Google

[41] P. S. Stein, M. L. McCullough, and S. N. Currie, "Reconstruction of exor/extensor alternation during ctive rostral scratching by two-site stimulation in the spinal turtle with a transverse spinal hemisection." J Neurosci, vol. 18, no. 1, pp. 467-79, Jan. 1998. Cerca con Google

[42] P. S. G. Stein, M. L. McCullough, and S. N. Currie, "Spinal motor patterns in the turtle," Ann N Y Acad Sci, vol. 860, pp. 142-54, Nov. 1998. Cerca con Google

[43] L. I. Mortin and P. S. Stein, "Spinal cord segments containing key elements of the central pattern generators for three forms of scratch re ex in the turtle." J Neurosci, vol. 9, no. 7, pp. 2285-96, July 1989. Cerca con Google

[44] J. Cheng, R. B. Stein, K. Jovanovic, K. Yoshida, D. J. Bennett, and Y. Han, "Identication, localization, and modulation of neural networks for walking in the mudpuppy (Necturus maculatus) spinal cord." J Neurosci, vol. 18, no. 11, pp. 4295-304, June 1998. Cerca con Google

[45] M. Wheatley and R. Stein, "An in vitro preparation of the mudpuppy for simultaneous intracellular and electromyographic recording during locomotion," J Neurosci Methods, vol. 42, no. 1, pp. 129-137, 1992. Cerca con Google

144 REFERENCES Cerca con Google

[46] E. Bizzi, F. A. Mussa-Ivaldi, and S. Giszter, "Computations underlying the execution of movement: a biological perspective." Science, vol. 253, no. 5017, pp. 287-91, July 1991. Cerca con Google

[47] E. Bizzi, M. C. Tresch, P. Saltiel, and a. D'Avella, "New perspectives on spinal motor systems." Nat Rev Neurosci, vol. 1, no. 2, pp. 101-8, Nov. 2000. Cerca con Google

[48] S. F. Giszter, F. A. Mussa-Ivaldi, and E. Bizzi, "Convergent force elds organized in the frog's spinal cord." J Neurosci, vol. 13, no. 2, pp. 467-91, Feb. 1993. Cerca con Google

[49] F. A. Mussa-Ivaldi, S. F. Giszter, and E. Bizzi, "Linear combinations of primitives in vertebrate motor control." Proc Natl Acad Sci U S A, vol. 91, no. 16, pp. 7534-8, Aug. 1994. Cerca con Google

[50] W. J. Kargo and S. F. Giszter, "Rapid correction of aimed movements by summation of force-eld primitives." J Neurosci, vol. 20, no. 1, pp. 409-26, Jan. 2000. Cerca con Google

[51] P. Saltiel, M. C. Tresch, and E. Bizzi, "Spinal cord modular organization and rhythm generation: an NMDA iontophoretic study in the frog." J Neurophysiol, vol. 80, no. 5, pp. 2323-39, Nov. 1998. Cerca con Google

[52] S. Grillner and P. Zangger, "On the central generation of locomotion in the low spinal cat," Exp Brain Res, vol. 34, no. 2, pp. 241-261, Jan. 1979. Cerca con Google

[53] Y. Ichikawa, Y. Terakado, and T. Yamaguchi, "Last-order interneurones controlling activity of elbow extensor motoneurones during forelimb ctive locomotion in the cat." Neurosci Lett, vol. 121, no. 1-2, pp. 37-9, Jan. 1991. Cerca con Google

[54] D. A. McCrea, "Neuronal Basis of Aerent-evoked Enhancement of Locomotor Activitya," Ann N Y Acad Sci, vol. 860, no. 1 NEURONAL MECH, pp. 216-225, Nov. 1998. Cerca con Google

[55] M. C. Tresch and O. Kiehn, "Coding of locomotor phase in populations of neurons in rostral and caudal segments of the neonatal rat lumbar spinal cord." J Neurophysiol, vol. 82, no. 6, pp. 3563-74, Dec. 1999. Cerca con Google

REFERENCES 145 Cerca con Google

[56] M. C. Tresch, P. Saltiel, and E. Bizzi, "The construction of movement by the spinal cord." Nat Neurosci, vol. 2, no. 2, pp. 162-7, Feb. 1999. Cerca con Google

[57] V. C. K. Cheung, A. D'Avella, M. C. Tresch, and E. Bizzi, "Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors." J Neurosci, vol. 25, no. 27, pp. 6419-34, July 2005. Cerca con Google

[58] A. D'Avella and E. Bizzi, "Shared and specic muscle synergies in natural motor behaviors." Proc Natl Acad Sci U S A, vol. 102, no. 8, pp. 3076-81, Feb. 2005. Cerca con Google

[59] L. H. Ting and J. M. Macpherson, "A limited set of muscle synergies for force control during a postural task." J Neurophysiol, vol. 93, no. 1, pp. 609-13, Jan. 2005. Cerca con Google

[60] G. Torres-Oviedo, J. M. Macpherson, and L. H. Ting, "Muscle synergy organization is robust across a variety of postural perturbations." J Neurophysiol, vol. 96, no. 3, pp. 1530-46, Sept. 2006. Cerca con Google

[61] J. L. McKay and L. H. Ting, "Functional muscle synergies constrain force production during postural tasks." J Biomech, vol. 41, no. 2, pp. 299-306, Jan. 2008. Cerca con Google

[62] S. a. Overduin, A. D'Avella, J. Roh, and E. Bizzi, "Modulation of muscle synergy recruitment in primate grasping." J Neurosci, vol. 28, no. 4, pp. 880-92, Jan. 2008. Cerca con Google

[63] V. C. K. Cheung, A. D'Avella, and E. Bizzi, "Adjustments of motor pattern for load compensation via modulated activations of muscle synergies during natural behaviors." J Neurophysiol, vol. 101, no. 3, pp. 1235-57, Mar. 2009. Cerca con Google

[64] J. Roh, V. C. K. Cheung, and E. Bizzi, "Modules in the brain stem and spinal cord underlying motor behaviors." J Neurophysiol, vol. 106, no. 3, pp. 1363-78, Sept. 2011. Cerca con Google

[65] S. a. Overduin, A. D'Avella, J. M. Carmena, and E. Bizzi, "Microstimulation activates a handful of muscle synergies." Neuron, vol. 76, no. 6, pp. 1071-7, Dec. 2012. Cerca con Google

146 REFERENCES Cerca con Google

[66] Y. P. Ivanenko, R. Grasso, M. Zago, M. Molinari, G. Scivoletto, V. Castellano, V. Macellari, and F. Lacquaniti, "Temporal components of the motor patterns expressed by the human spinal cord re ect foot kinematics." J Neurophysiol, vol. 90, no. 5, pp. 3555-65, Nov. 2003. Cerca con Google

[67] Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, "Five basic muscle activation patterns account for muscle activity during human locomotion." J Physiol, vol. 556, no. Pt 1, pp. 267-82, Apr. 2004. Cerca con Google

[68] G. Cappellini, Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, "Motor patterns in human walking and running." J Neurophysiol, vol. 95, no. 6, pp. 3426-37, June 2006. Cerca con Google

[69] Y. P. Ivanenko, G. Cappellini, N. Dominici, R. E. Poppele, and F. Lacquaniti, "Coordination of locomotion with voluntary movements in humans." J Neurosci, vol. 25, no. 31, pp. 7238-53, Aug. 2005. Cerca con Google

[70] E. Morin, "Lower limb muscle synergies during gait in humans." Conf Proc IEEE Eng Med Biol Soc, vol. Suppl, pp. 6667-9, Jan. 2006. Cerca con Google

[71] G. Torres-Oviedo and L. H. Ting, "Muscle synergies characterizing human postural responses." J Neurophysiol, vol. 98, pp. 2144-2156, 2007. Cerca con Google

[72] R. R. Neptune, D. J. Clark, and S. A. Kautz, "Modular control of human walking: a simulation study." J Biomech, vol. 42, no. 9, pp. 1282-7, June 2009. Cerca con Google

[73] C. P. McGowan, R. R. Neptune, D. J. Clark, and S. a. Kautz, "Modular control of human walking: Adaptations to altered mechanical demands." J Biomech, vol. 43, no. 3, pp. 412-9, Feb. 2010. Cerca con Google

[74] F. Hug, N. A. Turpin, A. Couturier, and S. Dorel, "Consistency of muscle synergies during pedaling across dierent mechanical constraints." J Neurophysiol, vol. 106, no. 1, pp. 91-103, July 2011. Cerca con Google

[75] S. a. Chvatal and L. H. Ting, "Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking." J Neurosci, vol. 32, no. 35, pp. 12 237-50, Aug. 2012. Cerca con Google

REFERENCES 147 Cerca con Google

[76] S. A. Chvatal and L. H. Ting, "Common muscle synergies for balance and walking." Front Comput Neurosci, vol. 7, no. May, p. 48, Jan. 2013. Cerca con Google

[77] A. D'Avella, A. Portone, L. Fernandez, and F. Lacquaniti, "Control of fast-reaching movements by muscle synergy combinations." J Neurosci, vol. 26, no. 30, pp. 7791-810, July 2006. Cerca con Google

[78] A. D'Avella, L. Fernandez, A. Portone, and F. Lacquaniti, "Modulation of phasic and tonic muscle synergies with reaching direction and speed." J Neurophysiol, vol. 100, no. 3, pp. 1433-54, Sept. 2008. Cerca con Google

[79] A. B. Ajiboye and R. F. Weir, "Muscle synergies as a predictive framework for the EMG patterns of new hand postures." J Neural Eng, vol. 6, no. 3, p. 036004, June 2009. Cerca con Google

[80] S. Muceli, A. T. l. Boye, A. D'Avella, and D. Farina, "Identifying representative synergy matrices for describing muscular activation patterns during multidirectional reaching in the horizontal plane." J Neurophysiol, vol. 103, no. 3, pp. 1532-42, Mar. 2010. Cerca con Google

[81] J. Roh, W. Z. Rymer, and R. F. Beer, "Robustness of muscle synergies underlying three-dimensional force generation at the hand in healthy humans." J Neurophysiol, vol. 107, no. 8, pp. 2123-42, Apr. 2012. Cerca con Google

[82] "Stroke | World Heart Federation." Cerca con Google

[83] A. Di Carlo, "Human and economic burden of stroke." Age Ageing, vol. 38, no. 1, pp. 4-5, Jan. 2009. Cerca con Google

[84] "American Stroke Association." Cerca con Google

[85] J. P. Dewald and R. F. Beer, "Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis." Muscle Nerve, vol. 24, no. 2, pp. 273-83, Feb. 2001. Cerca con Google

[86] J. P. Dewald, R. F. Beer, J. D. Given, J. R. McGuire, and W. Z. Rymer, "Reorganization of exion re exes in the upper extremity of hemiparetic subjects." Muscle Nerve, vol. 22, no. 9, pp. 1209-21, Sept. 1999. Cerca con Google

148 REFERENCES Cerca con Google

[87] J. Li, Z. J. Wang, J. J. Eng, and M. J. McKeown, "Bayesian network modeling for discovering "dependent synergies" among muscles in reaching movements." IEEE Trans Biomed Eng, vol. 55, no. 1, pp. 298-310, Jan. 2008. Cerca con Google

[88] L. Gizzi, J. r. F. k. Nielsen, F. Felici, Y. P. Ivanenko, and D. Farina, "Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients." J Neurophysiol, vol. 106, no. 1, pp. 202-10, July 2011. Cerca con Google

[89] V. C. K. Cheung, A. Turolla, M. Agostini, S. Silvoni, C. Bennis, P. Kasi, S. Paganoni, P. Bonato, and E. Bizzi, "Muscle synergy patterns as physiological markers of motor cortical damage." Proc Natl Acad Sci U S A, vol. 109, no. 36, pp. 14 652-6, Sept. 2012. Cerca con Google

[90] J. J. Kutch, A. D. Kuo, A. M. Bloch, and W. Z. Rymer, "Endpoint force uctuations reveal exible rather than synergistic patterns of muscle cooperation." J Neurophysiol, vol. 100, no. 5, pp. 2455-71, Nov. 2008. Cerca con Google

[91] M. C. Tresch and A. Jarc, "The case for and against muscle synergies." Curr Opin Neurobiol, vol. 19, no. 6, pp. 601-7, Dec. 2009. Cerca con Google

[92] F. J. Valero-Cuevas, M. Venkadesan, and E. Todorov, "Structured variability of muscle activations supports the minimal intervention principle of motor control." J Neurophysiol, vol. 102, no. 1, pp. 59-68, July 2009. Cerca con Google

[93] F. Hug, N. a. Turpin, S. Dorel, and A. Guevel, "Smoothing of electromyographic signals can in uence the number of extracted muscle synergies." Clin Neurophysiol, vol. 123, no. 9, pp. 1895-6, Sept. 2012. Cerca con Google

[94] A. de Rugy, G. E. Loeb, and T. J. Carroll, "Are muscle synergies useful for neural control?" Front Comput Neurosci, vol. 7, no. March, p. 19, Jan. 2013. Cerca con Google

[95] U. Windhorst and H. k. Johansson, Eds., Modern Techniques in Neuroscience Research, 1st ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. Cerca con Google

[96] "SENIAM (Surface ElectroMyoGraphy for the Non-Invasive Assessment of Muscles)." Cerca con Google

REFERENCES 149 Cerca con Google

[97] H. J. Hermens, B. Freriks, C. Disselhorst-Klug, and G. Rau, "Development of recommendations for SEMG sensors and sensor placement procedures." J Electromyogr Kinesiol, vol. 10, no. 5, pp. 361-74, Oct. 2000. Cerca con Google

[98] C. D. Luca, "The use of surface electromyography in biomechanics," J Appl Biomech, vol. 13, no. 2, pp. 135-163, 1997. Cerca con Google

[99] J. H. T. Viitasalo and P. V. Komi, "Signal characteristics of EMG during fatigue," Eur J Appl Physiol Occup Physiol, vol. 37, no. 2, pp. 111-121, 1977. Cerca con Google

[100] a. Georgakis, L. K. Stergioulas, and G. Giakas, "Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged Cerca con Google

instantaneous frequency." IEEE Trans Biomed Eng, vol. 50, no. 2, pp. 262-5, Feb. 2003. Cerca con Google

[101] A. Burden, "How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research." J Electromyogr Kinesiol, vol. 20, no. 6, pp. 1023-35, Dec. 2010. Cerca con Google

[102] F. Hug, "Can muscle coordination be precisely studied by surface electromyography?" J Electromyogr Kinesiol, vol. 21, no. 1, pp. 1-12, Feb. 2011. Cerca con Google

[103] K. G. Keenan, D. Farina, R. Merletti, and R. M. Enoka, "Amplitude cancellation reduces the size of motor unit potentials averaged from the surface EMG." J Appl Physiol, vol. 100, no. 6, pp. 1928-37, June 2006. Cerca con Google

[104] J. D. M. Drake and J. P. Callaghan, "Elimination of electrocardiogram contamination from electromyogram signals: An evaluation of currently used removal techniques." J Electromyogr Kinesiol, vol. 16, no. 2, pp. 175-87, Apr. 2006. Cerca con Google

[105] M. Bilodeau, S. Schindler-Ivens, D. M. Williams, R. Chandran, and S. S. Sharma, "EMG frequency content changes with increasing force and during fatigue in the quadriceps femoris muscle of men and women." J Electromyogr Kinesiol, vol. 13, no. 1, pp. 83-92, Feb. 2003. Cerca con Google

150 REFERENCES Cerca con Google

[106] B. I. Prilutsky, "Coordination of two- and one-joint muscles: functional consequences and implications for motor control." Motor Control, vol. 4, no. 1, pp. 1-44, an. 2000. Cerca con Google

[107] C. Angeloni, P. Riley, and D. Krebs, "Frequency content of whole body gait kinematic data," IEEE Trans Rehabil Eng, vol. 2, no. 1, pp. 40-46, Mar. 1994. Cerca con Google

[108] D. A. Winter, The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological. Waterloo Biomechanics, 1991. Cerca con Google

[109] M. C. Tresch, V. C. K. Cheung, and A. D'Avella, "Matrix factorization algorithms for the identication of muscle synergies: evaluation on simulated and experimental data sets." J Neurophysiol, vol. 95, no. 4, pp. 2199-212, Apr. 2006. Cerca con Google

[110] D. D. Lee and H. S. Seung, "Learning the parts of objects by non-negative matrix factorization." Nature, vol. 401, no. 6755, pp. 788-91, Oct. 1999. Cerca con Google

[111] P. Paatero and U. Tapper, "Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values," Environmetrics, vol. 5, no. 2, pp. 111-126, June 1994. Cerca con Google

[112] D. D. Lee and H. S. Seung, "Algorithms for non-negative matrix factorization," Adv Neural Inf Process Syst, no. 1, 2001. Cerca con Google

[113] C.-J. Lin, "Projected gradient methods for nonnegative matrix factorization." Neural Comput, vol. 19, no. 10, pp. 2756-79, Oct. 2007. Cerca con Google

[114] J. Piper, P. V. Pauca, R. J. Plemmons, and M. Gin, "Object Characterization from Spectral Data Using Nonnegative Factorization and Information Theory," Proc Amos Tech Conf, Maui, HI, 2004. Cerca con Google

[115] C. Lin, "On the Convergence of Multiplicative Update Algorithms for Nonnegative Matrix Factorization," IEEE Trans Neural Networks, vol. 18, no. 6, pp. 1589-1596, Nov. 2007. Cerca con Google

[116] P. Paatero, "The Multilinear Engine: A Table-Driven, Least Squares Program for Solving Multilinear Problems, Including the n -Way Parallel Factor Analysis Model," J Comput Graph Stat, vol. 8, no. 4, pp. 854-888, Dec. 1999. Cerca con Google

REFERENCES 151 Cerca con Google

[117] M. Chu, F. Diele, R. Plemmons, and S. Ragni, "Optimality, computation, and interpretation of nonnegative matrix factorizations," SIAM J Matrix Anal, 2004. Cerca con Google

[118] W. J. Kargo and S. F. Giszter, "Individual premotor drive pulses, not time-varying synergies, are the units of adjustment for limb trajectories constructed in spinal Cerca con Google

cord." J Neurosci, vol. 28, no. 10, pp. 2409-25, Mar. 2008. Cerca con Google

[119] A. D'Avella and M. C. Tresch, "Modularity in the motor system : decomposition of muscle patterns as combinations of time-varying synergies," Adv Neural Inf Process Syst, vol. 14, pp. 141-148, 2002. Cerca con Google

[120] R. Shiavi, S. Champion, F. Freeman, and P. Grin, "Variability of electromyographic patterns for level-surface walking through a range of self-selected speeds." Bull Prosthet Res, vol. 10-35, pp. 5-14, Jan. 1981. Cerca con Google

[121] J. A. Magarik, E. C. Jauch, S. J. Patel, R. J. Adams, R. D. Turner, M. I. Chaudry, J. A. Chalela, A. Hays, M. I. Chimowitz, T. N. Turan, C. A. Holmstedt, E. Debenham, D. T. Lackland, and A. S. Turk, "MUSC's comprehensive stroke program: changing what's possible in stroke care across South Carolina." J S C Med Assoc, vol. 108, no. 5, pp. 128-31, 2012. Cerca con Google

[122] M. L. Woodbury, C. a. Velozo, L. G. Richards, and P. W. Duncan, "Rasch analysis staging methodology to classify upper extremity movement impairment Cerca con Google

after stroke." Arch Phys Med Rehabil, vol. 94, no. 8, pp. 1527-33, Aug. 2013. Cerca con Google

[123] A. Savitzky and M. J. E. Golay, "Smoothing and Dierentiation of Data by Simplied Least Squares Procedures." Anal Chem, vol. 36, no. 8, pp. 1627-1639, July 1964. Cerca con Google

[124] J. J. Baskett, H. J. Marshall, J. B. Broad, P. H. Owen, and G. Green, "The good side after stroke: ipsilateral sensory-motor function needs careful assessment." Age Ageing, vol. 25, no. 3, pp. 239-44, May 1996. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record