Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Filippini, Sara (2008) Production of HCV infectious viral particles through
trans-complementation of gpE1/gpE2 and characterization of early events that follow HCV binding to target cells.
[Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF
3648Kb

Abstract (inglese)

Trans-complementation of gpE1/gpE2 allows recovery of infectious Hepatitis C virus

Although observed for other members of the Flaviviridae including bovine diarrea virus and Kunjin virus, trans-complementation of replication-defective replicons was never observed for hepatitis C virus (HCV). This suggested an isolated and independent nature of the HCV replication complexes, with little or not exchange of factors between them. In particular, HCV non structural proteins seem to remain associated to their respective complexes and may not be able to access other complexes.

In the present work we demonstrated for the first time for HCV that when the structural proteins E1 and E2 are provided in trans by the use of complementing cell lines constitutively expressing them it is possible to achieve production of infectious viral particles.

Using a 293T cells retroviral system we created three packaging cell lines constitutively expressing the two surface proteins E1 and E2 from genotype 2a (S6.1/E1E2:2a), GT 1a (S6.1/E1E2:1a), and GT 1b (S6.1/E1E2:1b).
When viral backbone RNA lacking the E1E2 genes (JFH?E1E2) deriving from the JFH-1 isolate (GT 2a) was transfected into S6.1/E1E2:2a cells, HCV infectious particles were released, indicating that for successful virus assembly, budding and release the structural glycoproteins E1 and E2 can be provided in trans. These results were consistent with what we observed in S6.1 naïve cells transfected with the full length RNA genome of JFH-1, use as positive control. The release of infectious viral particles, though, could not be detected in S6.1/E1E2:1a and S6.1/E1E2:1b transfected with JFH?E1E2.
We can hypotize that in the case of heterologous trans-complementation, genetic incompatibility between JFH-1 backbone and the structural proteins of GT 1a and GT 1b could have totally or partially affected the production of viral particles in our system, although these is only a speculative hypothesis that need to be verified in other experiments of homologous and heterologous trans-complementation, characterizing the relationships among HCV proteins and other viral factors

Characterization of early events that follow HCV binding to target cells

As we have previously seen, by transfecting permissive cells with the mRNA of the HCV isolate JFH-1 it is possible to produce infectious viral particles that might be used for experiments on the viral life cycle, as binding, attachment and entry. One of the main advantages of the cell culture-derived HCV (HCVcc) in fact is probably the mechanisms of interaction of these viral particles with the host cell receptors that closely mimic what happens in a natural infection event.
Besides the two main HCV receptors identified so far, CD81 and SR-BI, many cellular factors act in concert to mediate HCV binding and entry into hepatocytes. Recently Evans et al. (2007) identified a tight junction protein that is highly expressed in liver cells, Claudin-1 (CLDN-1), which seems to act late in the entry process, after virus binding and interaction with the HCV co-receptor CD81.
In the present study we demonstrated that there is a strict connection among CD81 and CLND-1 during the early events of viral attachment and entry. In fact engagement of CD81 by the use of the recombinant protein E2, the E1E2 heterodimer complex or anti-CD81 antibody led to a translocation of this receptor, normally present on the whole cellular surface, to the areas of cell-cell junctions, where CLDN-1 dwells.
The use of chemical inhibitors of actin polymerization, such as Latrunculin A and Jasplakinolide, proved the involvement of the actin cytoskeleton in CD81 translocation. Time course experiments with LatA demonstrated that an intact and functional cytoskeleton is required at a very early stage in the relocalization process, beside having also a relevant physiological importance on viral internalization. In fact, pretreatment of cells with these specific actin inhibitors as well as silencing the expression of some proteins of the Rho GTPases family, such as Rho, Rac ad Cdc42, which normally modulate the actin rearrangement, greatly reduced HCVcc infectivity.


Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Montecucco, Cesare
Correlatore:Crotta, Stefania
Dottorato (corsi e scuole):Ciclo 20 > Scuole per il 20simo ciclo > BIOSCIENZE > BIOLOGIA CELLULARE
Data di deposito della tesi:2008
Anno di Pubblicazione:2008
Parole chiave (italiano / inglese):HCV trans-complementation, CD81 relocalization
Settori scientifico-disciplinari MIUR:Area 05 - Scienze biologiche > BIO/11 Biologia molecolare
Struttura di riferimento:Dipartimenti > Dipartimento di Scienze Biomediche Sperimentali
Codice ID:639
Depositato il:25 Set 2008
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

1. Agnello V, Ábel G, Elfahal M, Knight GB, Zhang QX (1999). Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 96:12766-12771. Cerca con Google

2. Akazawa D, Date T, Morikawa K, Murayama A, Miyamoto M, Kaga M, Barth H, Baumert TF, Dubuisson J, Wakita T (2007). CD81 expression is important for the permessiveness of Huh7 cell clones for heterogeneous hepatitis C virus infection. J. Virol. 81: 5136-5045. Cerca con Google

3. Anderson MJ (2001). Molecular structure of tight junctions and their role in epithelial transport. News Physiol. Sci. 16:126-130. Cerca con Google

4. Andersson H, Barth BU, Ekstrom M, Garoff H (1997). Oligomerization-dependent folding of the membrane fusion protein of Semiliki Forest Virus. J. Virol. 71:9654-9663. Cerca con Google

5. Appel N, Herian U, Bartenschlager R (2005). Efficient rescue of hepatitis C virus RNA replication by trans-complementation with Non Structural protein 5A. J. Virol. 79: 896-909. Cerca con Google

6. Appel N, Schaller T, Penin F, Bartenschlager R (2006). From structure to function: new insights into hepatitits C virus RNA replication. J. Biol. Chem. 281: 9833-9836. Cerca con Google

7. Bartenschlager R, Kaul A, Sparacio S (2003). Replication of the hepatitis C virus in cell culture. Ativiral. Res. 60: 91-102. Cerca con Google

8. Bartenschlager R and Lohmann V (2000). Replication of hepatitis C virus. J.Gen.Virol. 81: 1631-1648. Cerca con Google

9. Bartenschlager R and Pietschmann T (2004). Novel insights into hepatitis C virus replication and persistence. Adv. Virus Res. 63: 71-180. Cerca con Google

10. Barth H, Schäfer C, Adah MI, Zhang F, Linhardt RJ , Toyoda H, Kinoshita-Toyoda A, Toida T, van Kuppevelt TH, Depla E, von Weizsäcker F, Blum HE, Baumert TF (2003). Cellular binding of hepatitic C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J. Biol. Chem. 278: 41003-41012. Cerca con Google

11. Bartosch B, Bukh J, Meunier JC, Granier C, Engle RE, Blackwelder W, Emerson SU, Cosset FL, Purcell RH (2003a). In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proc. Natl. Acad. Sci. USA 100: 14199-14204. Cerca con Google

12. Bartosch B, Dubuisson J, Cosset FL (2003b). Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J. Exp. Med. 197: 633-642. Cerca con Google

13. Bartosch B, Vitelli A, Granier C, Goujon C, Debuisson J, Pascale S, Scarselli E, Cortese R, Nicosia A, Cosset FL (2003c). Cell entry of hepatitis C virus requires a set of co-receptors that include the CD81 tetraspanin and the SR-Bi scavenger receptor. J. Biol. Chem 278: 41624-41630. Cerca con Google

14. Baumert TF, Ito S, Wong DT, Liang TJ (1998). Hepatitis C virus structural proteins assemble into viruslike particles in insect cells. J. Virol. 72: 3827-3836. Cerca con Google

15. Bertaux C and Dragic T (2006). Different domains in CD81 mediate distinct stages of hepatitis C virus pseudoparticle entry. J. Virol. 80: 4940-4948.. Cerca con Google

16. Blanchard E, Belouzard S, Goueslain L, Wakita T, Dubuisson J, Wychowski C, Rouillé Y (2006). Hepatitis C virus entrydepends on clathrin-mediated endocytosis. J. Virol. 80: 6964-6972. Cerca con Google

17. Blanchard E, Brand D, Trassard S, Goudeau A, Roingeard P (2002). Hepatitis C virus-like particle morphogenesis. J Virol. 76: 4073-4079. Cerca con Google

18. Blight KJ, Kolykhalov AA, Rice CM (2000). Efficient initiation of HCV RNA replication in cell culture. Science 290: 1972-1974. Cerca con Google

19. Blight KJ, McKeating JA, Marcotrigiano J, Rice CM (2003). Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J. Virol. 77: 3181-3190. Cerca con Google

20. Blight KJ, McKeating JA, Rice CM (2002). Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J. Virol. 76: 13001-13014. Cerca con Google

21. Bukh J, Purcell RH, Miller RH (1993). At least 12 genotypes of hepatitis C virus predicted by sequence analysis of of the putative E1 gene of isolates collected worldwide. Proc. Natl. Acad. Sci. USA 90: 8234-8238. Cerca con Google

22. Bukh J, Purcell RH, Miller RH (1994). Sequence analysis of the core gene of 14 hepatitis C virus genotypes. Proc. Natl. Acad. Sci. USA 91: 8239-8243. Cerca con Google

23. Brass V, Moradpour D, Blum HE (2006). Molecular virology of hepatitis C virus: 2006 update. Int. J. Med. Sci. 3: 29-34. Cerca con Google

24. Brazzoli M, Crotta S, Bianchi A, Bagnoli F, Monaghan P, Wileman T, Abrignani S, Merola M (2007). Intracellular accumulation of hepatitis C virus proteins in human hepatoma cell line. J. Hepatol. 46:53-59 Cerca con Google

25. Brazzoli M, Helenius A, Foung SKT, Houghton M, Abrignani S, Merola M (2005). Folding and dimerization of hepatitis C virus E1 and E2 glycoproteins in stably transfected cells. Virol. 332: 438-453. Cerca con Google

26. Brodsky FM, Chen CY, Knuehl C, Towler MC, Wakeham DE (2001). Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Dev. Biol. 17: 517-568. Cerca con Google

27. Cai Z, Zhang C, Chang KS, Jiang J, Ahn BC, Wakita T, Liang TJ, Luo G (2005). Robust production of infectious hepatitis C virus (HCV) from stably HCV cDNA-transfected human hepatoma cells. J. Virol. 79: 13963-13973. Cerca con Google

28. Callens N, Ciczora Callens N, Ciczora , Bartosch B, Vu-Dac N, Cosset FL, Pawlotskt JM, Perin F, Dubuisson J (2005). Basic residues in hypervariable region 1 of hepatitis C envelope glycoprotein E2 contribute to virus entry. J. Virol. 79:15331-15341. Cerca con Google

29. Carrasco L (1995). Modification of membrane permeability by animal viruses. Adv. Virus Res. 45: 61-112. Cerca con Google

30. Catanese MT, Graziani R, von Hahn T, Moreau M, Huby T, Paonessa G, Santini C, Luzzago A, Rice CM, Cortese R, Vitelli A, Nicosia A (2007). High-avidity monoclonal antibodys against the human scavenger class B type I receptor efficiently block hepatitis C virus infection in the presence of high-density lipoprotein. J. Virol. 81: 8063-8071. Cerca con Google

31. Chen Y and Norkin LC (1999). Extracellular simian virus 40 transmits a signal that promotes virus enclosure within caveolae. Exp. Cell Res. 246: 83-90. Cerca con Google

32. Chevaliez S and Pawlotsky JM (2007). Hepatitis C virus: virology, diagnosis, and management of antiviral therapy. World J. Gastroenterol. 7: 2461-2466. Cerca con Google

33. Chisari FV (2005). Unscrambling hepatitis C virus-host interactions. Nature 436: 930-932. Cerca con Google

34. Choo QL, Kuo G, Ralston R, Weiner A, Chien D, Van Nest G, Han J, Berger K, Thudium K, Kuo C, Kansopon j, McFarland j, Tabrizi A, Ching K, Moss B, Cummins LB, Hounghton M., Muchmorte E (1994). Vaccination of chimpanzee against infection by the hepatitis C virus. Proc. Natl. Acad. Sci. USA 91: 1294-1298. Cerca con Google

35. Ciczora Y, Callens N, Penin F, Pecheur EI, Dubuisson J (2007). The transmembrane domains of HCV envelope glycoproteins: residues involved in E1E2 heterodimerization and involvement of these domains in HCV entry. J. Virol. 81: 2372-2381. Cerca con Google

36. Cocquerel L, Duvet S, Meunier JC, Pillez A, Cacan R, Wychowski C, Dubuisson J (1999). The transmembrane domain of the hepatitis C virus glycoprotein E1 is a signal for static retention in the endoplasmic reticulum. J. Virol. 73: 2641-2649. Cerca con Google

37. Cocquerel L, Voisset C, Dubuisson J (2006). Hepatitis C virus entry: potential receptors and their biological functions. J. Gen. Virol. 87: 1075-1084. Cerca con Google

38. Cocquerel L, Wychowski C, Minner F, Penin F, Dubuisson J (2000). Charged residues in the transmembrane domains of hepatitis C virus glycoproteins play a key role in the processing, subcellular localization and assembly of these envelope proteins. J. Virol. 74: 3623-3633. Cerca con Google

39. Cocquerel L, Op de Beek A, Lambot M, Roussel J, Delgrange D, Pillez A, Wychowski C, Penin F, Dubuisson J (2002). Topologic changes in the transmembrane domains of hepatitis C virus envelope glycoproteins. EMBO J. 21: 2893-2902. Cerca con Google

40. Cocquerel L, Kuo CC, Dubuisson J, Levy S (2003a). CD81-dependent binding of hepatitis C virus E1E2 heterodimers. J. Virol. 77: 10677-10683. Cerca con Google

41. Cocquerel L, Quinn ER, Flint M, Hadlock KG, Foung SK, Levy S (2003b). Recognition of native hepatitis C virus E1E2 heterodimers by a human monoclonal antibody. J. Virol. 77: 1604-1609. Cerca con Google

42. Coyne BC and Bergelson JM (2006). Virus-induced AbI and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions. Cell 124: 119-131. Cerca con Google

43. Connelly MA and Williams DL (2003). SR-BI and cholesterol uptake into steroidogenic cells. Trends Endocrinol. Metab. 14: 467-472. Cerca con Google

44. Conner SD and Schmid SL (2003). Regulated portals of entry into the cell. Nature 422: 37-44. Cerca con Google

45. Cormier EG, Durso RJ, Tsamis F, Boussemart L, Manix C, Olson WC, Gardner JP, Dragic T (2004a). L-SIGN (CD 209L) snd DC-SIGN (CD 209) mediate transinfection of liver cells by hepatitis C virus. Proc. Natl. Acad. Sci. USA 101:14067-14072. Cerca con Google

46. Cormier EG, Tsamis F, Kajumo F, Durso RJ, Gardner JP, Dragic T (2004b). CD81 is an entry coreceptor for hepatitis C virus. Proc. Natl. Acad. Sci. USA 101: 7270-7274. Cerca con Google

47. Dago M (2005). Alternative treatments for patients with chronic C hepatitis who did not respond previous treatments. Rev. Gastroenterol. Mex. 70:458-464. Cerca con Google

48. Damm EM, Pelkmans L, Kartenbeck J, Mezzacasa A, Kurzchalia T, Helenius A (2005). Clathrin- and caveolin-1-independent endocytosis: entry of simian virus 40 into cells devoid of caveolae. J. Cell Biol. 168: 477-488. Cerca con Google

49. Deleersnyder V, Pillez A, Wychowski C, Blight K, Xu J, Hahn YS, Rice CM, Dubuisson J (1997). Formation of native hepatitis C virus glycoprotein complexes. J. Virol. 71: 697-704. Cerca con Google

50. Diedrich G (2006). How does hepatitis C virus enter cells?. FEBS J. 273: 3871-3885. Cerca con Google

51. Drummer HE, Maerz A, Poumbourios P (2003). Cell surface expression of functional hepatitis C virus E1 and E2 glycoproteins. FEBS Lett. 546: 385-390. Cerca con Google

52. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M and Trono D, Naldini L (1998). A third-generation lentivirus vector with a conditional packaging system, J. Virol. 72: 8463—8471. Cerca con Google

53. Egger D, Wölk B, Gosert R, Bianchi L, Blum HE, Moradpour D, Bienz K (2002). Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J. Virol. 76: 5974-5984. Cerca con Google

54. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wölk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM (2007). Claudin-1 is a hepatitis C virus co-receptor required for late step in entry. Nature 12: 801-805. Cerca con Google

55. Evans MJ, Rice CM, Goff SP (2004). Genetic interactions between hepatitis C virus replicons. J. Virol. 78: 12085-12089. Cerca con Google

56. Farci P, Shimoda A, Whong D, Cabezon T, De Gioannis D, Strazzera A, Shimizu Y Shapiro M, Alter HJ, Purcell RH (1996). Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc. Natl. Acad. Sci. USA 93: 15394-15399. Cerca con Google

57. Follenzi A and Naldini L (2002). Generation of HIV-1 Derived Lentiviral Vectors. In: Methods in Enzymology. Vol. 346, Ed. Academic Press, p.454-466. Cerca con Google

58. Gardner JP, Durso RJ, Arrigale RR, Donovan GP, Maddon PJ, Dragic T, Olson WC (2003). L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc. Natl. Acad. Sci. USA 100: 4498-4503. Cerca con Google

59. Gottlieb TA, Ivanov IE, Adesnik M, Sabatini DD (1993). Actin microfilaments play a critical role in the endocytosis at the apical but not the basolateral surface of the polarized epithelial cells. J. Cell Biol. 120: 695-709. Cerca con Google

60. Goutagny N, Fatmi A, De Ledinghen V, Penin F, Couzigou P, Inchauspé G, Bain C (2003). Evidence of viral replication in circulating dendritic cells during hepatitis C virus infection. J. Infect. Dis. 187: 1951-1958. Cerca con Google

61. Grassmann CW, Isken O, Tautz N, Behrens SE (2001). Genetic analysis of the pestivirus nonstructural coding region: defects in the NS5A unit can be complemented in trans. J. Virol. 75: 7791-7802. Cerca con Google

62. Greber UF (2002). Signalling in viral entry. Cell. Mol. Life Sci. 59: 608-626. Cerca con Google

63. Grove J HT, Stamataki Z, VanwolleghemT, Meuleman P, Farquhar M, Schwarz A, Moreau M, Owen JS, Leroux-Roels G, Balfe P, McKeating JA (2007). Scavenger receptor BI and BII expression level modulate hepatitis C virus infectivity. J. Virol. 81: 3162:3169. Cerca con Google

64. Harada T, Tautz N, Thiel HJ (2000). E2-p7 region of the bovine viral diarrhea virus polyprotein: processing and functional studies. J. Virol. 74: 9498-9506. Cerca con Google

65. Hügle T, Fehrmann F, Bieck E, Kohara M, Kräusslich HG, Rice CM, Blum HE, Moradpour D (2001). Hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Virol. 284: 70-81. Cerca con Google

66. Hope RG and McLauchlan J (2000). Sequence motifs required for lipid droplet association and protein stability are unique to the hepatitis C virus core protein. J. Gen. Virol. 81: 1913-1925. Cerca con Google

67. Harada T, Tautz N, Thiel HJ (2000). E2-p7 region of the bovin viral diarrhea virus polyprotein: proprocessing and funcional studies. J. Virol. 74: 9498-9506. Cerca con Google

68. Hsu M, Zhang J, Flint M, Logvinoff C, Cheng-Mayer C, Rice CM, McKeating JA (2003). Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc. Natl. Acad. Sci. USA 100: 7271-7276. Cerca con Google

69. Ikeda M, Yi M, Li K, Lemon SM (2002). Selectable subgenomic and genome-length dicistronis RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J. Virol. 76: 2997-3006. Cerca con Google

70. Jones CT, Murray CL, Eastman DK, Tassello J, Rice CM (2007). Hepatitis C virus p7 and NS2 proteins are essential for production of infectious virus. J. Virol. 81: 8374-8383. Cerca con Google

71. Kapadia SB, Baumert BH, McKeating JA, Chisari FV (2007). Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and Scavenger receptor B type I. j. Virol. 81: 374-383. Cerca con Google

72. Kato T (2001). Molecular virology of hepatitis C virus. Acta. Med. Okayama 55: 133-159. Cerca con Google

73. Kato T, Date T, Miyamoto M, Furusaka A, Tokushige K, Mizokami M, Wakita T (2003). Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterol. 125: 1808-1817. Cerca con Google

74. Khromykh AA, Sedlak PL, Guyatt KJ, Hall RA, Westaway EG (1999a). Efficient trans-complementation of the flavivirus Kunjin NS5 protein but not of the NS1 requires its coexpression with other components of the viral replicase. J. Virol. 73: 10272-10280. Cerca con Google

75. Khromykh AA, Varnavski AN, Westaway EG (1998). Encapsidation of the flavivirus kunjin replicon RNA by using a complementation system providing Kunjin viral structural proteins in trans. J. Virol.72: 5967-5977. Cerca con Google

76. Khromykh AA, Sedlak PL, Westaway EG (1999b). Trans-complementation analysis of the flavivirus Kunjin NS5 gene reveales an essential role for translation of its N-terminal half in Rna replication. J.Virol. 73: 9247- 9255. Cerca con Google

77. Khromykh AA, Sedlak PL, Westaway EG (2000). Cis- and trans-acting elements in flavivirus RNA replication. J. Virol. 74: 3253-3263. Cerca con Google

78. Koppel EA, van Gisbergen KPJM, Geijtenbeek TBH, van Kooyk Y (2005). Distinct functions of DC-SIGN and its homologues L-SIGN (DC-SIGNR) and mSIGNR1 in pathogen recognition and immune regulation. Cell. Microbiol. 7: 157-165. Cerca con Google

79. Kuotsuodakis G, Herrmann E, Kallis S, Bartenschlager R, Pietschmann T (2007). The level of CD81 cell surface expression is a key determinant for productive entry of hepatitis C virus into host cells. J. Virol. 81: 588-598. Cerca con Google

80. Kuotsuodakis G, Kaul A, Steinmann E, Kallis S, Lohmann V, Pietschmann T, Bartenschlager R (2006). Characterization of the early steps of hepatitis C virus infection by using luciferase reporter viruses. J. Virol. 80: 5308-5320. Cerca con Google

81. Lamaze C, Chuang TH, Terlecky LJ, Bokoch GM, Schmid LS (1996). Regulation of receptor-mediated endocytosis by Rho and Rac. Nature 382: 117-179. Cerca con Google

82. Lavillette D, Morice Y, Germanidis G, Donot P, Soulier A, Pagkalos E, Sakellariou G, Intrator L, Bartosch B, Pawlotsky JM, Cosset FL (2005a). Human serum facilitates hepatitis C virus infection, and neutralizing responses inversely correlate with viral replication kinetics at the acute phase of the hepatitis C virus infection. J. Virol. 79: 6023-6034. Cerca con Google

83. Lavillette D, Tarr AW, Voisset C, Donot P, Bartosch B, Bain C, Patel AH, Dubuisson J, Bail JK, Cosset FL (2005b). Charaterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatol. 41: 265-274. Cerca con Google

84. Lehmann MJ, Sherer NM, Marks CB, Pypaert M, Mothes W (2005). Actin- and myosin-driven movement of viruses along filopodia precedes their entry into cells. J. Cell. Biol. 170: 317-325. Cerca con Google

85. Lian WN, Tsai JW, Yu PM, Wu TW, Yang SC, Chau YP, Lin CH (1999). Targeting of aminopeptidase N to bile canaliculi correlates with secretory activities of the developing canalicular domain. Hepatol. 30: 748-760. Cerca con Google

86. Li E, Stupack D, Bokoch G, Namerow GR (1998). Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J. Virol. 72: 8806-8812. Cerca con Google

87. Lindenbach BD, Evans MJ, Syder AJ, Wölk B, Tellinghuisen TL, Liu CC, Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM (2005). Complete replication of hepatitis C virus in cell culture. Science 309: 623-626. Cerca con Google

88. Lindenbach BD and Rice CM (2001) Flaviviridae: the viruses and their replication. In: Fields Virology. Eds. Knipe DM and Howley PM. Philadelphia: Lippincott-Raven. p.991-1042. Cerca con Google

89. Lindenbach BD and Rice CM (2005). Unravelling hepatitis C virus replication from genome to function. Nature 436: 933-938. Cerca con Google

90. Lohmann V, Körner F, Koch JO, Herian U, Theilmann L, Bartenschlager R (1999). Replication of subgenomic hepatitic C virus RNAs in hepatoma cell line. Science 285: 110-113. Cerca con Google

91. Lo SY and Ou JH (1998). Expression and dimerization of hepatitis C virus core protein in E. Coli. In: Methods in Molecular Medicine, vol.19, pp. 325-330. Ed. J.Y.N. Lau. Tatowa, NJ: Humana Press. Cerca con Google

92. Lo SY, Selby MJ, Ou JH (1996). Interaction between hepatitis C virus core protein and E1 envelope protein. J. Virol. 70: 5177-5182. Cerca con Google

93. Lozach PY, Lortat-Jacob H, de Lacroix de Lavalette A, Staropoli I, Foung S, Amara A, Houles C, Fieschi F, Schwartz O, Virelizier JL, Arenzana-Seisdedos F, Altmeyer R (2003). DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J. Biol. Chem. 278: 20358-20366. Cerca con Google

94. Lozach PY, Amara A, Bartosch B, Virelizier JL, Arenzana-Seisdedos F, cosset FL, Altmeyer R (2004). C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J. Biol. Chem. 279: 32035-32045. Cerca con Google

95. Ma HC, Ke CH, Hsieh TY, Lo SY (2002). The first hydrophobic domain of hepatitis C vius E1 protein is important for interaction with the capsid protein. L. Gen. Virol. 83: 3085-3092. Cerca con Google

96. Mackenzie JM and Westaway EG (2001). Assembly and maturation of the flavivirus Kunjin appear to occur in the rough endoplasmic reticulum and along the secretory pathway, respectively. J. Virol. 75: 10787-10799. Cerca con Google

97. Maillard P, Huby T, Andreo U, Moreau M, Chapman J, Budkowska A (2006). The interaction of human hepatitis C virus with human scavenger receptor SR-BI/Cla1 is mediated by ApoB-containing lipoproteins. FASEB J. 20: 735-737. Cerca con Google

98. Matsumoto M, Hwang SB, Jeng KS, Zhu N Lai MMC (1996). Homotypic interaction and multimerization of hepatitis C virus core protein. Virol. 218: 43-51. Cerca con Google

99. McHutchison JG, Bartenschlager L, Pater K, Pawlotsky JM (2006). The face of future hepatitis C antiviral drugs development: recent biological and virologic advances and their translation to drug development and clinical practice. J. Hepatol. 44: 411-421. Cerca con Google

100. McKeating JA, Zhang LQ, Logvinoff C, Flint M, Zhang J, Yu J, Butera D, Ho DD, Dustin LB, Rice CM, Balfe P (2004). Diverse hepatitis C glycoproteins mediate viral infection in a CD81-dependent manner. J.Virol. 78:8496-8505. Cerca con Google

101. Meertens L, Bertaux C, Dragic T (2006). Hepetitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin-coated vesicles. J. Virol. 80: 11571-11578. Cerca con Google

102. Merola M, Brazzoli M, Cocchiarella F, Heile JM, Helenius A, Weiner AJ, Houghton M, Abrignani S (2001). Folding of hepatitis C virus E1 glycoprotein in a cell free-system. J. Virol 75:11205-11217. Cerca con Google

103. Michalak JP, Wychowski C, Choukhi A, Meunier JC, Ung S, Rice M, Dubuisson J (1997). Characterization of truncated forms of hepatitis C virus glycoproteins. J. Gen. Virol. 78: 2299-2306. Cerca con Google

104. Miyanari Y, Atsuzawa K, Usuda N, Watashi K, Hishiki T, Zayas M, Bartenschlager R, Wakita T, Hijikata M, Shimotohno K (2007). The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol. 9:1089-1097. Cerca con Google

105. MinKyung Y, Villanueva RA, Thomas DL, Wakita T, Lemon S (2006). Production of infectious phenotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc. Natl. Acad. Sci. USA 103: 2310-2315. Cerca con Google

106. Mousavi SA, Malerod L, Berg T, Kjeken R (2004). Clathrin-dependent endocytosis. Biochem. J. 377: 1-16. Cerca con Google

107. Nemerow GR and Stewart PL (1999). Role of alpha(v) integrins in adenovirus cell entry and gene delivery. Microbiol. Mol. Biol. Rev. 63: 725-734. Cerca con Google

108. Nobes CD and Hall A (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53-62. Cerca con Google

109. Op De Beek A, Cocquerel L, Dubuisson J (2001). Biogenesis of hepatitis C virus envelope glycoproteins. J. Gen. Virol. 82: 2589-2595. Cerca con Google

110. Op De Beek A and Dubuisson J (2003). Another putative receptor for hepatitis C virus. Hepatol. 37: 705-707. Cerca con Google

111. Op De Beek A, Voisset C, Bartosch B, Ciczora Y, Cocquerel L, Keck Z, Foung S, Cosset FL, Dubuisson J (2004). Characterization of functional hepatitis C virus envelope glycoproteins. J. Virol. 78: 2994-3002. Cerca con Google

112. Patel J, Patel AH, McLauchlan (1999). Covalent interactions are not required to permit or stabilize the non-covalent associations of hepatitis C virus glycoproteins E1 and E2. J. Gen. Virol. 80: 1681-1690. Cerca con Google

113. Patterson S and Russel WC (1983). Ultrastructural and immunofluorescence studies of early events in adenovirus-HeLa cell interaction. J. Gen. Virol. 64: 1091-1099. Cerca con Google

114. Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M (2005). Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Natue 436: 78-86. Cerca con Google

115. Pelkmans L and Helenius A (2003). Insider information: what viruses tell us about endocytosis. Curr. Opin. Cell. Biol. 15: 414-422. Cerca con Google

116. Pelkmans L, Puntener D, Helenius A (2002). Local actin polymerization and dynamin recruitment in SV40-induced internalization of caveolae. Scienc 296: 535-539. Cerca con Google

117. Penin F, Dubuisson J, Rey FA, Moradpour D, Pawlotsky JM (2004). Structural biology of hepatitis C virus. Hepatol. 39: 5-19 Cerca con Google

118. Pietschmann T, Kaul A, Koutsoudakis G, Shavinskaya A, Kallis S, Steinmann E, Abid K, Negro F, Cosset FL, Bartenschlager R (2006). Construction and characterization of infectious intragenotypic hepatitis C virus chimeras. Proc. Natl. Acad. Sci. USA 103: 7408-7413. Cerca con Google

119. Pietschmann T, Lohmann V, Kaul A, Krieger N, Rinck G, Rutter G, Strand D, Bartenschlager R (2002). Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J. Virol. 76: 4008-4021. Cerca con Google

120. Pileri P, Uematsu Y, Campagnoli S, Galli G, Falugi F, Petracca R, Weiner AJ, Houghton M, Rosa D, Grandi G, Abrignani S (1998). Binding of hepatitic C virus to CD81. Science 282: 938-941. Cerca con Google

121. Pöhlmann S, Zhang J, Baribaud F, Chen Z, Leslie GJ, Lin G, Granelli-Piperno A, Doms RW, Rice CM, McKeating JA (2003). Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J.Virol. 77: 4071-4080. Cerca con Google

122. Reed KE and Rice CM (2000). Overview of hepatitis C genome structure, polyprotein processing, and protein properties. Curr. Top. Microbiol. Immunol. 242: 55-84. Cerca con Google

123. Reinmann I, Meyers G, Beer M (2003). Trans-complementation of autonomously replicating Bovine viral diarrhea virus replicons with delitions in the E2 coding region. Virol. 307: 213-227. Cerca con Google

124. Ridley A and Hall A (1992). The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389-99. Cerca con Google

125. Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992). The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70: 401-10. Cerca con Google

126. Roccasecca R, Ansuini H, Vitelli A, Meola A, Scarseli E, Acali S, Pezzanera M, Ercole BB, McKeating J, Yagnik A, Lahm A, Tramontano A, Cortese R, Nicosia A (2003). Binding of hepatitis C virus E2 glycoprotein to CD81 is strani specific and is modulated by a complex interplay between hypervariable regions 1 and 2. Virol. 77: 1856-1867. Cerca con Google

127. Rosa D, campagnoliS, Moretto C, Guenzi E, Cousens L, Chin M, Dong C, Weiner AJ, Lau JY, Choo QL, Chien D, Pileri P, Houghton M, Abrignani S (1996). A quantitative test to estimate neutralizing antibodies to the hepatitis C virus: cytofluorimetric assessment of envelope glycoprotein 2 binding to target cells. Proc. Natl. Acad. Sci. Usa 93: 1759-1763. Cerca con Google

128. Scarselli E, Ansuini H, Cerino R, Roccasecca R, Acali R, Filocamo G, Traboni C, Nicosia A, Cortese R, Vitelli A (2002). The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. EMBO J. 21: 5017-5025. Cerca con Google

129. Seigneuret M (2006). Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily. Biophys. J. 90: 212-227. Cerca con Google

130. Sharma DK, Brown JC, Choudhury A, Peterson TE, Holicky E, Marks DL, Simari R, Parton RG, Pagano RE (2004). Selective stimulation of caveolar endocytosis by glycosphingolipids and cholesterol. Mol. Biol. Cell 15: 3114-3122. Cerca con Google

131. Silver D, Wang N, Xiao X, Tall A (2001). High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type I results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion. J. Biol. Chem. 276: 25287-25293. Cerca con Google

132. Simmonds P, Bukh J, Combet C, Deléage G, Enomoto N, Feinstone S, Halfon P, Inchauspé G, Kuiken C, Maertens G, Mizokami M, Murphy DG, Okamoto H, Pawlotsky JM, Penin F, Sablon E, Shin-I T, Stuyver LJ, Thiel HJ, Viazov S, Weiner AJ, Widell A (2005). Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatol. 42 :962-973 Cerca con Google

133. Spaete RR, Alexander D, Rugroden ME, Choo QL, Berger K, Crawford K, Leng S, Lee C, Ralston R, Thudium K, Tung JW, Kuo G, Houghton M (1992). Characterization of the hepatitis C virus E2/NS1 gene product expressed in mammalian cells. Virol. 188: 819-830. Cerca con Google

134. Steinmann E, Penin F, Kallis S, Patel AH, Bartenschlager R, Pietschmann T (2007). Hepatitis C virus p7 protein is crucial for assembly and release of infectious virus. PloS Pathogens 3: 962-971. Cerca con Google

135. Sung VM, Shimodaira S, Doughty AL, Picchio GR, Can H, Yen TS, Lindsay KL, Levine AM, Lai MM (2003). Establishment of B-cell lymphoma cell lines persistently infected with hepatitis C virus in vivo and in vitro: the apoptotic effects of virus infection. J Virol. 77: 2134-2146. Cerca con Google

136. Takikawa S, Ishii K, Aizaki H, Suzaki T, Asakura H, Matsuura Y, Miyamura T (2000). Cell fusion activity of hepatitis C virus envelope glycoproteins. J. Virol. 74: 5066-5074. Cerca con Google

137. Tai CL, Chi WK, Chen DS, Hwang LH (1996). The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J. Virol. 70: 8477-8484. Cerca con Google

138. Tscherne DM, Jones TC, Evans MJ, Lindenbach BD, McKeating JA, Rice CM (2006). Time- and temperature-dependent activation of hepatitic C virus for low-pH-triggered entry. J.Virol. 80: 1734-1741. Cerca con Google

139. Villanueva RA, Rouillé Y, Dubuisson J (2005). Interaction sbetween viruss proteins and host cell membranes during the viral life cycle. Int. Rev. Cytol. 245:171-244. Cerca con Google

140. Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K, Kabermann A, Kräusslich HG, Mizokami M, Bartenschlager R, Liang TJ (2005). Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nature Med. 11: 791-796. Cerca con Google

141. Weiner AJ, Christopherson C, Hall JE, Bonino F, Saracco G, Brunetto MR, Crawford K Marion CD, Crawford KA, Venkatakrishna S, et al (1991). Sequence variation in hepatitis C viral isolates. J. Hepatol. 13: S6-14. Cerca con Google

142. Yoon J, Lee JI, Baik SK, Lee KH, Sohn JH, Lee HW, Namkung J, Chang SJ, Choi JW, Kim HW, Yeh BI (2007). Predictive factors for interferon and ribavirin combination therapy in patients with chronic hepatitis C. World J. Gastroenterol. 13: 6236-6242. Cerca con Google

143. Zeisel MB, Fafi-Kremer S, Fofana I, Barth H, Stoll-Keller F, Doffoël M, Baumert TF (2007a). Neutralizing antibodies in hepatitis C virus infection. World J. Gastroenterol. 13: 4824-4830. Cerca con Google

144. Zeisel MB, Koutsoudakis G, Schnober EK, Haberstroh A, Blum HE, Cosset FL, Wakita T, Jaeck D, Doffoel M, Royer C, Soulier E, Schvoerer E, Schuster C, Stoll-Keller F, Bartenschlager R, Pietschmann T, Barth H, Baumert TF (2007b). Scavenger receptor class B type I is a key host factor for hepatitis C virus infection required for an entry step closely linked to CD81. Hepatol. 46: 1722-1731. Cerca con Google

145. Zhang J, Randall G, Higginbottom A, Monk P, Rice CM, McKeating JA (2004). CD81 is required for hepatitis C virus glycoprotein-mediated viral infection. J. Virol. 78: 1448-1455. Cerca con Google

146. Zhong J, Gastaminza P, Cheng G, Kapadia S, Kato T, Burton DR, Wieland SF, Uprichard SL, Wakita T, Chisari FV (2005). Robust hepatitis C virus infection in vitro. Proc. Natl. Acad. Sci. USA 102: 9294-9299. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record