Vai ai contenuti. | Spostati sulla navigazione | Spostati sulla ricerca | Vai al menu | Contatti | Accessibilità

| Crea un account

Munaretto, Daniele (2014) Video transport optimization techniques design and evaluation for next generation cellular networks. [Tesi di dottorato]

Full text disponibile come:

[img]
Anteprima
Documento PDF (Tesi Dottorato)
3817Kb

Abstract (inglese)

Video is foreseen to be the dominant type of data traffic in the Internet. This vision is supported by a number of studies which forecast that video traffic will drastically increase in the following years, surpassing Peer-to-Peer traffic in volume already in the current year.
Current infrastructures are not prepared to deal with this traffic increase. The current Internet, and in particular the mobile Internet, was not designed with video requirements in mind and, as a consequence, its architecture is very inefficient for handling this volume of video traffic. When a large part of traffic is associated to multimedia entertainment, most of the mobile infrastructure is used in a very inefficient way to provide such a simple service, thereby saturating the whole cellular network, and leading to perceived quality levels that are not adequate to support widespread end user acceptance.
The main goal of the research activity in this thesis is to evolve the mobile Internet architecture for efficient video traffic support. As video is expected to represent the majority of the traffic, the future architecture should efficiently support the requirements of this data type, and specific enhancements for video should be introduced at all layers of the protocol stack where needed. These enhancements need to cater for improved quality of experience, improved reliability in a mobile world (anywhere, anytime), lower exploitation cost, and increased flexibility.
In this thesis a set of video delivery mechanisms are designed to optimize the video transmission at different layers of the protocol stack and at different levels of the cellular network. Upon the architectural choices, resource allocation schemes are implemented to support a range of video applications, which cover video broadcast/multicast streaming, video on demand, real-time streaming, video progressive download and video upstreaming.
By means of simulation, the benefits of the designed mechanisms in terms of perceived video quality and network resource saving are shown and compared to existing solutions. Furthermore, selected modules are implemented in a real testbed and some experimental results are provided to support the development of such transport mechanisms in practice.

Abstract (italiano)

Il traffico video sarà il tipo di applicazione dominante in Internet nei prossimi anni.
Già in questi anni assistiamo al sorpasso del traffico video mobile rispetto al Peer-to-Peer.
Le infrastrutture attuali non sono preparate ad affrontare questo aumento di traffico video. Internet, e in particolare Internet mobile, non è stata progettata sulla base di requisiti video e, di conseguenza, la sua architettura è inefficiente nel gestire questo tipo di traffico.
Quando il traffico è associato all'intrattenimento multimediale, la maggior parte dell'infrastruttura mobile è utilizzata in un modo inefficiente pur fornendo un servizio semplice, saturando in tal modo l'intera rete cellulare e portando il servizio a livelli di qualità non adeguati a sostenere quella che gli utenti si aspettano di ricevere.
L'obiettivo principale dell'attività di ricerca in questa tesi è quello di evolvere l'architettura di Internet mobile per un efficiente supporto del traffico video. Poiché il video è previsto rappresentare la maggior parte del traffico, l'architettura di rete deve supportare in modo efficiente le esigenze di questo tipo di traffico e miglioramenti specifici dovrebbero essere introdotti a tutti i livelli dello stack protocollare.
Questi miglioramenti hanno lo scopo di incrementare la qualità percepita del servizio, di dare una maggiore affidabilità in un mondo mobile, di abbassare i costi di servizio e di aumentare la flessibilità della rete.
In questa tesi una serie di meccanismi di trasmissione video sono progettati per ottimizzare la consegna di applicazioni video su reti cellulari di nuova generazione a diversi livelli dello stack protocollare ed a differenti livelli della rete cellulare. Sulla base di queste scelte architetturali, sistemi di allocazione delle risorse sono implementati per supportare una gamma di applicazioni video che copre il video broadcast/multicast in streaming, video on demand, streaming in tempo reale, il video download progressivo e il video upstreaming.
Tramite campagne di simulazioni, i benefici sotto forma di qualità percepita e di risorse di rete risparmiate sono riportati attraverso il confronto con soluzioni pre-esistenti. Inoltre moduli selezionati sono implementati in un vero e proprio banco di prova e alcuni dei risultati sperimentali conseguiti sono usati per sostenere lo sviluppo di nuovi meccanismi di trasporto video nelle reti mobili future.

Statistiche Download - Aggiungi a RefWorks
Tipo di EPrint:Tesi di dottorato
Relatore:Zorzi, Michele
Dottorato (corsi e scuole):Ciclo 26 > Scuole 26 > INGEGNERIA DELL'INFORMAZIONE > SCIENZA E TECNOLOGIA DELL'INFORMAZIONE
Data di deposito della tesi:27 Gennaio 2014
Anno di Pubblicazione:27 Gennaio 2014
Parole chiave (italiano / inglese):QoE, LTE, WiFi, mobility, CDN, video
Settori scientifico-disciplinari MIUR:Area 09 - Ingegneria industriale e dell'informazione > ING-INF/03 Telecomunicazioni
Struttura di riferimento:Dipartimenti > Dipartimento di Ingegneria dell'Informazione
Codice ID:6410
Depositato il:19 Mag 2015 15:54
Simple Metadata
Full Metadata
EndNote Format

Bibliografia

I riferimenti della bibliografia possono essere cercati con Cerca la citazione di AIRE, copiando il titolo dell'articolo (o del libro) e la rivista (se presente) nei campi appositi di "Cerca la Citazione di AIRE".
Le url contenute in alcuni riferimenti sono raggiungibili cliccando sul link alla fine della citazione (Vai!) e tramite Google (Ricerca con Google). Il risultato dipende dalla formattazione della citazione.

[1] “Medieval Home Page.” [Online]. Available: http://www.ict-medieval.eu/ Vai! Cerca con Google

[2] D. Munaretto, D. Jurca, and J. Widmer, “A Resource Allocation Framework for Scalable Video Broadcast in Cellular Networks,” SpringerMobile Networks and Applications, vol. 16, pp. 794 – 806, Dec. 2011. Cerca con Google

[3] I. Ahmed, L. Badia, D. Munaretto, and M. Zorzi, “Analysis of PHY/Application Crosslayer Optimization for Scalable Video Transmission in Cellular Networks,” in IEEE WoWMoM 2013, Madrid, Spain, June 2013. Cerca con Google

[4] D. Munaretto and M. Zorzi, “Robust opportunistic broadcast scheduling for scalable video streaming ,” in IEEEWCNC 2012, Paris, France, April 2012. Cerca con Google

[5] D.Munaretto, “Opportunistic Scheduling and Rate Adaptation for Scalable Broadcast Video Streaming ,” in IEEE WoWMoM 2011, Lucca, Italy, June 2011. Cerca con Google

[6] D. Jurca, D. Munaretto, and J. Widmer, “Method and apparatus for scheduling packets,” Patent 10 163 495.4, Oct 3, 2012. Cerca con Google

[7] H. Schwarz, D. Marpe, and T.Wiegand, “Overview of the scalable video coding extension of H.264/AVC,” IEEE Trans. Circuits Syst. Video Technology, vol. 17, pp. 560–576, 2003. Cerca con Google

[8] T. Melia, D. Munaretto, L. Badia, and M. Zorzi, “Online QoE Computation for Efficient Video Delivery over Cellular Networks,” IEEE COMSOCMMTC E-letter, Mar. 2012. Cerca con Google

[9] D. Munaretto, F. Giust, G. Kunzmann, and M. Zorzi, “Performance analysis of dynamic adaptive video streaming over mobile content delivery networks,” in accepted at IEEE ICC 2014, Sidney, Australia, June 2014. Cerca con Google

[10] R. Costa, T. Melia, D.Munaretto, and M. Zorzi, “When MobileNetworksmeet Content Delivery Networks: challenges and possibilities,” in ACM MobiArch, 2012 , Istanbul, Turkey, Aug. 2012. Cerca con Google

[11] D. Munaretto, M. Zanforlin, and M. Zorzi, “Online Path Selection: a VideoDelivery Framework for Next Generation Cellular Networks,” submitted to IEEE Transactions on Multimedia, 2013. Cerca con Google

[12] B. Fu, D. Munaretto, T. Melia, B. Sayadi, and W. Kellerer, “Analyzing the Combination of Different Approaches for Video Transport Optimization for Next Generation Cellular Networks,” IEEE Network Magazine, special issue on video over mobile networks, vol. 27, pp. 8 – 14, March-April 2013. Cerca con Google

[13] B. Feitor, P. Assuncao, J. Soares, L. Cruz, and R. Marinheiro, “Objective quality predictionmodel for lost frames in 3D video over TS,” in IEEE ICC 2013, Budapest,Hungary, June 2013. Cerca con Google

[14] D. Munaretto, T. Melia, S. Randriamasy, and M. Zorzi, “Online path selection for video delivery over cellular networks,” in Proc. of QoEMC, IEEE Globecom 2012, Anheim, CA, USA, Dec. 2012. Cerca con Google

[15] T. Melia, S. Randriamasy, D. Munaretto, and M. Zorzi, “QoE optimization with network layer awareness on hybridwireless network ,” in Next Generation Service Delivery Platforms (NG SDP), GI/ITG Workshop , Munich, Germany, Oct. 2011. Cerca con Google

[16] Software-DefinedNetworking: TheNew Normfor Networks,ONFWhite Paper, Apr. 2012. Cerca con Google

[17] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: enabling innovation in campus networks,” ACM SIGCOMMComputer Communication Review, vol. 38, pp. 69 – 74, Apr. 2008. Cerca con Google

[18] M. Zanforlin, D. Munaretto, A. Zanella, and M. Zorzi, “SSIM-based video admission control and resource allocation algorithms ,” in submitted to IEEE WiOpt (WiVid) 2014, Sidney, Australia, June 2014. Cerca con Google

[19] A. E. Essaili, E. Steinbach, D. Munaretto, S. Thakolsri, and W. Kellerer, “QoE-driven resource optimization for user generated video content in next generation mobile networks,” in IEEE ICIP 2011, Bruxelles, Belgium, Sep. 2011. Cerca con Google

[20] M. Petracca, M. Ghibaudi, C. Salvadori, P. Pagano, and D.Munaretto, “Performance Evaluation of FEC techniques based on BCH codes in Video Streaming over Wireless Sensor Networks ,” in IEEE ISCC (MediaWiN) 2011, Corfu, Greece, June 2011. Cerca con Google

[21] B. Tomasi, D.Munaretto, and M. Zorzi, “Realtime redundancy allocation for timevarying underwater acoustic channels,” in ACM WUWNet 2012, Los Angeles, CA, Nov. 2012. Cerca con Google

[22] “3GPP Specification Detail.” [Online]. Available: http://www.3gpp.org Vai! Cerca con Google

[23] “3GPP Specification Detail: LTE.” [Online]. Available: http://www.3gpp.org/LTE Vai! Cerca con Google

[24] “3GPP TR 25.913.” [Online]. Available: http://www.3gpp.org/DynaReport/25913.htm Vai! Cerca con Google

[25] P.Lescuyer and T.Lucidarme, Evolved Packet System (EPS): The LTE and the SAE Evolution of 3G UMTS. JohnWiley & Sons Ltd, 2008. Cerca con Google

[26] CISCO, Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012-2017. White Paper, 2013. Cerca con Google

[27] D. Munaretto, D. Jurca, and J. Widmer, “Broadcast Video Streaming in Cellular Networks: An Adaptation Framework for Channel, Video and AL-FEC Rates Allocation,” in WICON 2010, Singapore, Mar. 2010. Cerca con Google

[28] D. Liu, J. C. Zuniga, P. Seite, H. Chan, and C. J. Bernardos, “Distributed Mobility Management: Current practices and gap analysis,” Internet-Draft (work in progress), draft-ietf-dmm-best-practices-gap-analysis-01.txt, June 2013. Cerca con Google

[29] “DASH.” [Online]. Available: http://www-itec.uni-klu.ac.at/dash/ Vai! Cerca con Google

[30] Akamai Technologies Inc., Akamai Media Analytics. White Paper, 2009. Cerca con Google

[31] Y. Fakhri, B. Nsiri, D. Aboutajdine, and J. Vidal, “Throughput Optimization for Wireless OFDM System in Downlink Transmission Using Adaptive Techniques ,” in IEEE WiCOM 2006, Wuhan City, China, Sep. 2006. Cerca con Google

[32] “ALTO Status Pages.” [Online]. Available: http://tools.ietf.org/wg/alto/ Vai! Cerca con Google

[33] “3GPP TS 23.401, 3GPP Specification Detail.” [Online]. Available: Cerca con Google

http://www.3gpp.org Vai! Cerca con Google

[34] J. Kim, T.-W. Um, W. Ryu, and B. S. Lee, “Heterogeneous Networks and Terminal-Aware QoS/QoE-Guaranteed Mobile IPTV Service,” IEEE Communications Magazine, vol. 46, pp. 110 – 117, May 2008. Cerca con Google

[35] D. Munaretto, D. Jurca, and J.Widmer, “A Fast Rate-Adaptation Algorithmfor Robust Wireless Scalable Streaming Applications,” in IEEEWiMob 2009, Marrakech, Morocco, Oct. 2009. Cerca con Google

[36] M. Mehrjoo, M. Dianati, X. Shen, and K. Naik, “Opportunistic fair scheduling for the downlink of IEEE 802.16 wireless metropolitan area networks,” in ACM International conference on Quality of service in heterogeneous wired/wireless networks (QShine), Waterloo, Ontario, Canada, Aug. 2006. Cerca con Google

[37] M. Dianati, R. Tafazolli, X. Shen, and K. Naik, “Call admission control with opportunistic scheduling scheme,” Wireless Journal on Communications and Mobile computing, vol. 10, pp. 372–382, Mar. 2010. Cerca con Google

[38] X. Liu, E. K. P. Chong, and N. B. Shroff, “A Framework for Opportunistic Scheduling in Wireless Networks,” The International Journal of Computer and Telecommunications Networking, vol. 41, pp. 451 – 474, Jan. 2003. Cerca con Google

[39] V. Vukadinovic and E. Drogou, “Opportunistic fair scheduling for the downlink of IEEE 802.16 wireless metropolitan area networks,” in IEEE International Conference on Communications (ICC) , Glasgow, UK, June 2007. Cerca con Google

[40] T.-P. Low, M.-O. Pun, and C.-C. Kuo, “Optimized Opportunistic Multicast Scheduling Over Cellular Networks,” in IEEE Globecom 2008, Los Angeles, CA, Dec. 2008. Cerca con Google

[41] T.-P. Low, M.-O. Pun, Y.-W. P. Hong, and C.-C. Kuo, “Optimized Opportunistic Multicast Scheduling (OMS) over Wireless Cellular Networks,” in Technical Report TR2010-008, MITSUBISHI ELECTRIC RESEARCH LABORATORIES, Mar. 2010. Cerca con Google

[42] H. Hu, J. Liu, and J. Liang, “Downlink Scheduling for Multimedia Multicast/Broadcast over Mobile WiMAX: Connection-oriented Multi-State Adaptation,” IEEE Wireless Communications, vol. 16, pp. 72–79, Aug. 2009. Cerca con Google

[43] J. Kim, J. Cho, and H. Shin, “Resource Allocation for Scalable Video Broadcast inWireless Cellular Networks,” in IEEE WiMob 2005, Montreal, Canada, Aug. 2005. Cerca con Google

[44] P. Pahalawatta, R. Berry, T. Pappas, and A. Katsaggelos, “Content-Aware Resource Allocation and Packet Scheduling for Video Transmission over Wireless Networks,” IEEE Journal on Selected Areas in Communication, vol. 25, pp. 749–759, May 2007. Cerca con Google

[45] “openCDN.” [Online]. Available: http://labtel.ing.uniroma1.it/opencdn/ Vai! Cerca con Google

[46] “Darwin Streaming Server .” [Online]. Available: http://dss.macosforge.org/ Vai! Cerca con Google

[47] “Helix Universal Server .” [Online]. Available: Cerca con Google

http://www.realnetworks.com/helix/index.aspx Vai! Cerca con Google

[48] D. Munaretto, M. Zanforlin, and M. Zorzi, “Performance evaluation in ns-3 of a video delivery framework for next generation cellular networks,” in IEEE ICC (IIMC) 2013, Budapest, Hungary, June 2013. Cerca con Google

[49] T. Stockhammer, “Dynamic Adaptive Streaming over HTTP-Design Priciples and Standards,” in ACM MMSys, New York, NY, Feb. 2011. Cerca con Google

[50] J. Erman, A. Gerber, M. Hajiaghayi, D. Pei, S. Sen, and O. Spatscheck, “To Cache or Not to Cache: The 3G Case,” Internet Computing, IEEE, vol. 15, no. 2, pp. 27–34, 2011. Cerca con Google

[51] “IETF DMM Working Group.” [Online]. Available: Cerca con Google

http://datatracker.ietf.org/wg/dmm/ Vai! Cerca con Google

[52] “Multi-Cost ALTO.” [Online]. Available: Cerca con Google

http://tools.ietf.org/id/draft-randriamasy-alto-multi-cost-05.txt Vai! Cerca con Google

[53] “Seagate.” [Online]. Available: http://www.seagate.com/internal-hard-drives/enterprise-hard-drives Vai! Cerca con Google

[54] Amazon Web Services, How AWS Pricing Works. White Paper, Dec. 2011. Cerca con Google

[55] D. Boscovic, F. Vakil, S. Dautovic, and M. Toic, “Pervasive wireless CDN for greening video streaming tomobile devices,” in IEEEMIPRO, 2011 , Opatija, Croatia, May 2011. Cerca con Google

[56] K. Hosanagar, R. Krishnan, M. Smith, and J. Chuang, “Optimal Pricing of Content Delivery Network (CDN) Services,” in Proceedings of the 37th Annual Hawaii International Conference on System Sciences (HICSS’04), vol. 7. Washington, DC, USA: IEEE Computer Society, Jan. 2004. Cerca con Google

[57] “ns-3 Network Simulator.” [Online]. Available: http://www.nsnam.org Vai! Cerca con Google

[58] M. R.-E. N. Baldo, M. Miozzo and J. Nin-Guerrero, “An Open Source Product-Oriented LTE Network Simulator based on ns-3,” in Proc. of ACM MSWiM, Miami Beach, FL, USA, November 2011. Cerca con Google

[59] “LENA documentation.” [Online]. Available: lena.cttc.es/manual Cerca con Google

[60] K. Stuhlmller, N. Frber, M. Link, and B. Girod, “Analysis of video transmission over lossy channels,” IEEE Journal on Sel. Areas Commun., vol. 18, pp. 1012 – 1030, June 2000. Cerca con Google

[61] S. Kahn, S. Duhovnikov, E. Steinbach, and W. Kellerer, “MOS-based multiuser multiapplication cross-layer optimization for mobile multimedia communication,” ACM Journal on Advances in Multimedia, vol. 2007, pp. 1 – 11, Jan. 2007. Cerca con Google

[62] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2010 - 2015, White Paper, 2011. Cerca con Google

[63] W. Zhang, Y.Wen, Z. Chen, and A. Khisti, “QoE-Driven Cache Management for HTTP Adaptive Bit Rate Streaming Over Wireless Networks,” IEEE Transactions on Multimedia, vol. 15, pp. 1431 – 1445, Oct. 2013. Cerca con Google

[64] G. Kandavanam, D. Botvich, and S. Balasubramaniam, “PaCRA: A Path-aware Content Replication Approach to support QoS guaranteed video on demand service in metropolitan IPTV networks,” in IEEE Network Operations andManagement Symposium (NOMS)2010 , Osaka, Japan, June 2010. Cerca con Google

[65] Z. Zhu, S. Li, and X. Chen, “Design QoS-Aware Multi-Path Provisioning Strategies for Efficient Cloud-Assisted SVC Video Streaming to Heterogeneous Clients,” IEEE Transactions on Multimedia, vol. 15, pp. 758 – 768, June 2013. Cerca con Google

[66] C. E. Palau, J. Mares, B. Molina, and M. Esteve, “Wireless CDN video streaming architecture for IPTV,” ACM Journal on Multimedia Tools and Applications, vol. 53, pp. 591 – 613, July 2011. Cerca con Google

[67] W. Kumwilaisak, Y. T. Hou, Q. Zhang,W. Zhu, J. Kuo, and Y.-K. Zhang, “A cross-layer quality-of-service mapping architecture for video delivery in wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 21, pp. 1685 – 1698, Dec. 2003. Cerca con Google

[68] Q. Zhang, W. Zhu, and Y. Q. Zhang, “End-to-End QoS for Video Delivery Over Wireless Internet,” Proceedings of the IEEE, vol. 93, pp. 123 – 134, Jan. 2005. Cerca con Google

[69] N. Amram, B. Fu, G. Kunzmann, T. Melia, D.Munaretto, and M. Zorzi, “QoE-based Transport Optimization for Video Delivery over Next Generation Cellular Networks ,” in IEEE ISCC (MediaWiN) 2011, Corfu, Greece, June 2011. Cerca con Google

[70] Z.Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assessment: from error visibility to structural similarity,” IEEE Trans. Image Process., vol. 13, pp. 600 – 612, Apr. 2004. Cerca con Google

[71] “Advanced Video Coding for Generic Audiovisual Services,” ITU-T Rec. H.264 & ISO/IEC 14496-10 AVC. Cerca con Google

[72] “Test media repository.” [Online]. Available: http://media.xiph.org/video/derf/ Vai! Cerca con Google

[73] “Yuv qcif and cif video file.” [Online]. Available: Cerca con Google

http://trace.eas.asu.edu/yuv/index.html Vai! Cerca con Google

[74] T. Zinner, O. Hohlfeld, O. Abboud, and T. Hossfeld, “Impact of frame rate and resolution on objective QoE metrics,” in Workshop on Quality of Multimedia Experience (QoMEX), Trondheim, Norway, June 2010. Cerca con Google

[75] “Joint scalable video model - reference software.” [Online]. Available: Cerca con Google

http://ip.hhi.de/imagecom G1/savce/downloads/SVC-Reference-Software.htm Vai! Cerca con Google

[76] L.-Q. Xu and Y. Li, “Video classification using spatial-temporal features and PCA,” in IEEE ICME, Baltimore, MD, July 2003. Cerca con Google

[77] I. Spanou, A. Lazaris, and P. Koutsakis, “Scene change detection-based discrete autoregressive modeling for MPEG-4 video traffic,” in IEEE ICC 2013, Budapest, Hungary, June 2013. Cerca con Google

[78] P. Seeling, M. Reisslein, and B. Kulapala, “Network performance evaluation using frame size and quality traces of single-layer and two-layer video: a tutorial,” IEEE Communications Surveys and Tutorials, vol. 6, pp. 58 – 78, Oct-Dec 2004. Cerca con Google

[79] V. Singh, J. Ott, and I. Curcio, “Predictive Buffering for Streaming Video in 3G Networks,” in IEEE WoWMoM 2012, San Francisco, CA, USA, June 2012. Cerca con Google

[80] A. de la Oliva, T. Melia, A. Vidal, C. J. Bernardos, I. Soto, and A. Banchs, “IEEE 802.21 enabled mobile terminals for optimized WLAN/3G handovers: a case study,” ACM SIGMOBILE Mobile Computing and Communications Review, vol. 11, pp. 29 – 40, Apr. 2007. Cerca con Google

[81] Z. Wang, A. C. Bovik, H.R.Sheikh, and E. P. Simoncelli, “Image Quality Assessment: From Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing, vol. 13, pp. 600 – 612, Apr. 2004. Cerca con Google

[82] “VideoLAN.” [Online]. Available: http://compression.ru/video/quality Vai! Cerca con Google

measure/info en.html#ssim Cerca con Google

[83] C.N. Taylor and S.Dey, “Run-time allocation of buffer resources formaximizing video clip quality in a wireless last-hop system,” in IEEE ICC 2004, Paris, Frane, June 2004. Cerca con Google

[84] M. Pinson and S.Wolf, “A new standardized method for objectively measuring video quality,” IEEE Transactions on Broadcasting, vol. 50, pp. 312 – 322, Apr. 2004. Cerca con Google

[85] “Methodology for subjective assessment for television pictures.” [Online]. Available: http://www.itu.int/rec/R-REC-BT.500/en Vai! Cerca con Google

[86] “Methodology for subjective assessment for multimedia.” [Online]. Available: http://www.itu.int/rec/T-REC-P.910/en Vai! Cerca con Google

[87] “WHOI umodem.” [Online]. Available: http://acomms.whoi.edu/umodem/ Vai! Cerca con Google

[88] “Evologics acoustic modems.” [Online]. Available: Cerca con Google

http://www.evologics.de/en/products/acoustics/index.html Vai! Cerca con Google

[89] W. Hodgkiss and J. Preisig, “Kauai Acomms MURI 2011 (KAM11)Experiment,” in Proc. 11th European Conference on Underwater Acoustics (ECUA 2012), 2012, pp. 993 – 1000. Cerca con Google

[90] E. Uysal-Biyikoglu, B. Prabhakar, and A. E. Gamal, “Energy-efficient packet transmission over a wireless link,” IEEE/ACMTransactions on Networking, vol. 10, pp. 487 – 499, 2002. Cerca con Google

[91] E. Uysal-Biyikoglu and A. E. Gamal, “On adaptive transmission for energy efficiency in wireless data networks,” IEEE Transactions on Information Theory, vol. 50, pp. 3081 – 3094, 2004. Cerca con Google

[92] M. Zafer and E. Modiano, “Optimal rate control for delay-constrained data transmission over a wireless channel,” IEEE Transactions on Information Theory, vol. 54, pp. 4020 – 4039, 2008. Cerca con Google

[93] J. Lee and N. Jindal, “Energy-efficient scheduling of delay constrained traffic over fading channels,” IEEE Transactions onWireless Communications, vol. 8, pp. 1866 – 1875, 2009. Cerca con Google

[94] R. Srivastava and C. Koksal, “Energy optimal transmission scheduling inwireless sensor networks,” IEEE Transactions on Wireless Communications, vol. 9, pp. 1550 – 1560, 2010. Cerca con Google

[95] P. Casari, M. Rossi, and M. Zorzi, “Towards optimal broadcasting policies for HARQ based on Fountain codes in underwater networks,” in Proceedings of IEEE/IFIPWONS, 2008. Cerca con Google

[96] P. Casari and A. F. H. III, “Energy-efficient reliable broadcast in underwater acoustic networks,” in Proceedings of ACM WUWNet, 2007. Cerca con Google

[97] W. Zhang and U. Mitra, “A delay-reliability analysis for multihop underwater acoustic communication,” in Proceedings of ACM WUWNet, 2007. Cerca con Google

[98] Z. Haojie, T. Hwee-Pink, A. Valera, and B. Zijian, “Opportunistic ARQ with bidirectional overhearing for reliable multihop underwater networking,” in Proceedings of IEEE OCEANS, 2010. Cerca con Google

[99] Q. Fengzhong and L. Yang, “Rate and reliability oriented underwater acoustic communication schemes,” in Proceedings of IEEE DSP/SPE, 2009. Cerca con Google

[100] U. Erez and G.Wornell, “A super-Nyquist architecture for reliable underwater acoustic communication,” in Proceedings of Conference on Communication, Control, and Computing (Allerton), 2011, pp. 469 – 476. Cerca con Google

[101] N. Bonello, Z. Rong, C. Sheng, and L. Hanzo, “Reconfigurable rateless codes,” IEEE Transactions on Wireless Communications, vol. 8, pp. 5592 – 5600, 2009. Cerca con Google

[102] L. Badia, M. Mastrogiovanni, C. Petrioli, S. Stefanakos, and M. Zorzi, “An optimization framework for joint sensor deployment, link scheduling and routing in underwater sensor networks,” in Proceedings of ACMWUWNet, 2006. Cerca con Google

[103] K. Kredo, P. Djukic, and P. Mohapatra, “STUMP: Exploiting Position Diversity in the Staggered TDMAUnderwaterMAC Protocol,” in Proceedings of IEEE INFOCOM, 2009. Cerca con Google

[104] Y. Polyanskiy, “Channel coding: non-asymptotic fundamental limits,” in Princeton Univ., Princeton, NJ, USA, 2010. Cerca con Google

[105] Y. Polyanskiy, H. V. Poor, and S. Verd´u, “Channel coding rate in the finite blocklength regime,” IEEE Transactions on Information Theory, vol. 56, pp. 2307 – 2359, 2010. Cerca con Google

[106] K. Martinez, R. Ong, and J. Hart, “Glacsweb: a Sensor Network for Hostile Environments,” in Proc. of the IEEE Sensor and Ad Hoc Communications and Networks Conference, October 2004, pp. 81–87. Cerca con Google

[107] R. Lee, K. Chen, S. Chiang, C. Lai, H. Liu, and M. Wei, “A Backup Routing with Wireless SensorNetwork for Bridge Monitoring System,” in Proc. of the Communication Networks and Services Research Conference, May 2006, pp. 161–165. Cerca con Google

[108] I. Talzi, A. Hasler, S. Gruber, and C. Tschudin, “PermaSense: Investigating Permafrost with a WSN in the Swiss Alps,” in Proc. of the Fourth Workshop on Embedded Networked Sensors, June 2007, pp. 8–12. Cerca con Google

[109] S. Feller, Y. Zheng, E. Cull, and D. Brady, “Tracking and imaging humans on heterogeneous infrared sensor arrays for law enforcement applications,” in Proc. SPIE Cerca con Google

Aerosense, 2002, pp. 212–221. Cerca con Google

[110] I. Bekmezci and F. Alagoz, “New TDMA based sensor network for military monitoring (MIL-MON),” in Proc. IEEE Military Communications Conference, October 2005, pp. 2238–2243. Cerca con Google

[111] I. Akyildiz, T. Melodia, and K. Chowdury, “A Survey on Wireless Multimedia Sensor Networks,” Computer Networks (Elsevier), vol. 51, no. 4, pp. 921–960, March 2007. Cerca con Google

[112] M. Petracca, G. Litovsky, A. Rinotti, M. Tacca, J. D. Martin, and A. Fumagalli, “Perceptual based Voice Multi-Hop Transmission over Wireless Sensor Networks,” in Proc. IEEE Symposium on Computers and Communications, July 2009, pp. 19–24. Cerca con Google

[113] Y. Jiang, X. Yao,W.Wang, and L. Gu, “New Method forWeighted Coverage Optimization of Occlusion-Free Surveillance in Wireless Multimedia Sensor Network,” in Proc. IEEE International Conference on Networking and Distributed Computing, October 2010, pp. 21–24. Cerca con Google

[114] “IPERMOB:A Pervasive and Heterogeneous Infrastructure to control Urban Mobility in Real-Time,” http://www.ipermob.org, July 2009. Vai! Cerca con Google

[115] I. C. Society, “Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPAN),” The Institute of Electrical and Electronics Engineers, Inc., October 2003. Cerca con Google

[116] E. Culurciello, J. Park, and A. Savvides, “Address-Event Video Streaming over Wireless Sensor Networks,” in Proc. IEEE International Symposium on Circuits and Systems, June 2007, pp. 849–852. Cerca con Google

[117] W. Wang, M. Hempel, D. Peng, H., H. Sharif, and H. Chen, “An Energy Efficient Encryption for Video Streaming in Wireless Sensor Networks,” IEEE Transactions on Multimedia, vol. 12, no. 5, pp. 417–426, August 2010. Cerca con Google

[118] T. Moon, Error Correction Coding: Mathematical Methods and Algorithms. Wiley, 2005. Cerca con Google

[119] P. Gai, E. Bini, G. Lipari, M. D. Natale, and L. Abeni, “Architecture For A Portable Open Source Real Time Kernel Environment,” in Real-Time LinuxWorkshop and Hand’s on Real-Time Linux Tutorial, November 2000. Cerca con Google

[120] “The Erika Enterprise Real-time Operating System,” http://erika.tuxfamily.org. Vai! Cerca con Google

[121] “ETSI EN 300 328 V1.7.1 (2006-10),” www.etsi.org. Vai! Cerca con Google

[122] K. Shuaib, M. Alnuaimi, M. Boulmalf, I. Jawhar, F. Sallabi, and A. Lakas, “Performance Evaluation of IEEE 802.15.4: Experimental and Simulation Results,” Journal of Communications, vol. 2, no. 4, pp. 29–37, June 2007. Cerca con Google

Download statistics

Solo per lo Staff dell Archivio: Modifica questo record